This paper presents various sufficient conditions for asymptotic flocking in the relativistic Cucker–Smale (RCS) model with time delay. This model considers a self-processing time delay. We reduce the time-delayed RCS model to its dissipative structure for relativistic velocities. Then, using this dissipative structure, we demonstrate several sufficient frameworks in terms of the initial data and system parameters for asymptotic flocking of the proposed model.
Citation: Hyunjin Ahn. Asymptotic flocking of the relativistic Cucker–Smale model with time delay[J]. Networks and Heterogeneous Media, 2023, 18(1): 29-47. doi: 10.3934/nhm.2023002
This paper presents various sufficient conditions for asymptotic flocking in the relativistic Cucker–Smale (RCS) model with time delay. This model considers a self-processing time delay. We reduce the time-delayed RCS model to its dissipative structure for relativistic velocities. Then, using this dissipative structure, we demonstrate several sufficient frameworks in terms of the initial data and system parameters for asymptotic flocking of the proposed model.
[1] | H. Ahn, S.Y Ha, M Kang, W Shim, Emergent behaviors of relativistic flocks on Riemannian manifolds, Physica. D., 427 (2021), 133011. https://doi.org/10.1016/j.physd.2021.133011 doi: 10.1016/j.physd.2021.133011 |
[2] | H. Ahn, S.Y Ha, J Kim, Nonrelativistic limits of the relativistic Cucker–Smale model and its kinetic counterpart, J. Math. Phys., 63 (2022), 082701. https://doi.org/10.1063/5.0070586 doi: 10.1063/5.0070586 |
[3] | H. Ahn, S.Y Ha, J Kim, Uniform stability of the relativistic Cucker–Smale model and its application to a mean-field limit, Commun. Pure Appl. Anal., 20 (2021), 4209–4237. http://dx.doi.org/10.3934/cpaa.2021156 doi: 10.3934/cpaa.2021156 |
[4] | J Byeon, S.Y Ha, J Kim, Asymptotic flocking dynamics of a relativistic Cucker–Smale flock under singular communications, J. Math. Phys., 63 (2022), 012702. https://doi.org/10.1063/5.0062745 doi: 10.1063/5.0062745 |
[5] | H Cho, J.G Dong, S.Y Ha, Emergent behaviors of a thermodynamic Cucker–Smale flock with a time delay on a general digraph, Math. Methods Appl. Sci., 45 (2021), 164–196. https://doi.org/10.1002/mma.7771 doi: 10.1002/mma.7771 |
[6] | S.H Choi, S.Y Ha, Interplay of the unit-speed constraint and time-delay in Cucker–Smale flocking, J. Math. Phys., 59 (2018), 082701. https://doi.org/10.1063/1.4996788 doi: 10.1063/1.4996788 |
[7] | Y.P Choi, S.Y Ha, Z Li, Emergent dynamics of the Cucker–Smale flocking model and its variants, In N. Bellomo, P. Degond, and E. Tadmor (Eds.), Active Particles Vol.I Theory, Models, Applications (tentative title), Series: Modeling and Simulation in Science and Technology, Birkhauser: Springer, 2017,299-331. |
[8] | Y.P Choi, J Haskovec, Cucker–Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011–1033. http://dx.doi.org/10.3934/krm.2017040 doi: 10.3934/krm.2017040 |
[9] | Y.P Choi, Z Li, Emergent behavior of Cucker–Smale flocking particles with heterogeneous time delays, Appl. Math. Lett., 86 (2018), 49–56. https://doi.org/10.1016/j.aml.2018.06.018 doi: 10.1016/j.aml.2018.06.018 |
[10] | J Cho, S.Y Ha, F Huang, C Jin, D Ko, Emergence of bi-cluster flocking for the Cucker–Smale model, Math. Models Methods Appl. Sci., 26 (2016), 1191–1218. https://doi.org/10.1142/S0218202516500287 doi: 10.1142/S0218202516500287 |
[11] | F Cucker, S Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852–862. https://doi.org/10.1109/TAC.2007.895842 doi: 10.1109/TAC.2007.895842 |
[12] | P Degond, S Motsch, Large-scale dynamics of the persistent turning walker model of fish behavior, J. Stat. Phys., 131 (2008), 989–1022. https://doi.org/10.1007/s10955-008-9529-8 doi: 10.1007/s10955-008-9529-8 |
[13] | J.G Dong, S.Y Ha, D Kim, Interplay of time delay and velocity alignment in the Cucker–Smale model on a general digraph, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5569–5596. http://dx.doi.org/10.3934/dcdsb.2019072 doi: 10.3934/dcdsb.2019072 |
[14] | J.G Dong, S.Y Ha, D Kim, J Kim, Time-delay effect on the flocking in an ensemble of thermomechanical Cucker–Smale particles, J. Differ. Equ., 266 (2019), 2373–2407. https://doi.org/10.1016/j.jde.2018.08.034 doi: 10.1016/j.jde.2018.08.034 |
[15] | J.G Dong, L Qiu, Flocking of the Cucker–Smale model on general digraphs, IEEE Trans. Automat. Control, 62 (2017), 5234–5239. https://doi.org/10.1109/TAC.2016.2631608 doi: 10.1109/TAC.2016.2631608 |
[16] | A Figalli, M.J. Kang, A rigorous derivation from the kinetic Cucker-Smale model to the pressureless Euler system with nonlocal alignment, Anal. PDE., 12 (2019), 843–866. https://doi.org/10.2140/apde.2019.12.843 doi: 10.2140/apde.2019.12.843 |
[17] | S.Y Ha, D Kim, F.W. Schlöder, Emergent behaviors of Cucker–Smale flocks on Riemannian manifolds, IEEE Trans. Automat. Contr., 66, (2021), 3020–3035. https://doi.org/10.1109/TAC.2020.3014096 doi: 10.1109/TAC.2020.3014096 |
[18] | S.Y Ha, J Kim, T. Ruggeri, Kinetic and hydrodynamic models for the relativistic Cucker–Smale ensemble and emergent dynamics, Commun. Math. Sci., 19 (2021), 1945–1990. https://dx.doi.org/10.4310/CMS.2021.v19.n7.a8 doi: 10.4310/CMS.2021.v19.n7.a8 |
[19] | S.Y Ha, J Kim, T. Ruggeri, From the relativistic mixture of gases to the relativistic Cucker–Smale Flocking, Arch. Rational Mech. Anal., 235 (2020), 1661–1706. https://doi.org/10.1007/s00205-019-01452-y doi: 10.1007/s00205-019-01452-y |
[20] | S.Y Ha, J Kim, C. H Min, T. Ruggeri, X Zhang, Uniform stability and mean-field limit of a thermodynamic Cucker-Smale model, Quart. Appl. Math., 77 (2019), 131–176. https://doi.org/10.1090/qam/1517 doi: 10.1090/qam/1517 |
[21] | S.Y Ha, J Kim, T. Ruggeri, Emergent behaviors of thermodynamic Cucker–Smale particles, SIAM J. Math. Anal., 50 (2019), 3092–3121. https://doi.org/10.1137/17M111064X doi: 10.1137/17M111064X |
[22] | S.Y Ha, J Kim, X Zhang, Uniform stability of the Cucker-Smale model and its application to the mean-field limit, Kinet. Relat. Models, 11 (2018), 1157–1181. http://dx.doi.org/10.3934/krm.2018045 doi: 10.3934/krm.2018045 |
[23] | S.Y Ha, J.G. Liu, A simple proof of Cucker–Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297–325. |
[24] | Z Li, S.Y Ha, On the Cucker–Smale flocking with alternating leaders, Quart. Appl. Math., 73 (2015), 693–709. https://doi.org/10.1090/qam/1401 doi: 10.1090/qam/1401 |
[25] | T.K. Karper, A. Mellet, K. Trivisa, Hydrodynamic limit of the kinetic Cucker–Smale flocking model, Math. Models Methods Appl. Sci., 25 (2015), 131–163. https://doi.org/10.1142/S0218202515500050 doi: 10.1142/S0218202515500050 |
[26] | Z Li, X Xue, Cucker–Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156–3174. https://doi.org/10.1137/100791774 doi: 10.1137/100791774 |
[27] | P.B. Mucha, J. Peszek, The Cucker–Smale equation: singular communication weight, measure-valued solutions and weak-atomic uniqueness, Arch. Rational Mech. Anal., 227 (2018), 273–308. https://doi.org/10.1007/s00205-017-1160-x doi: 10.1007/s00205-017-1160-x |
[28] | R. Olfati-Saber, Flocking for multi-agent dynamic systems: algorithms and theory, IEEE Trans. Automat. Contr., 51 (2006), 401–420. https://doi.org/10.1109/TAC.2005.864190 doi: 10.1109/TAC.2005.864190 |
[29] | C. Pignotti, I.R. Vallejo, Flocking estimates for the Cucker–Smale model with time lag and hierarchical leadership, J. Math. Anal. Appl., 464 (2018), 1313–1332. https://doi.org/10.1016/j.jmaa.2018.04.070 doi: 10.1016/j.jmaa.2018.04.070 |
[30] | J Shen, Cucker–Smale flocking under hierarchical leadership, Siam J. Appl. Math., 68, 694–719. https://doi.org/10.1137/060673254 |
[31] | J Toner, Y Tu, Flocks, herds, and schools: A quantitative theory of flocking, Phys. Rev. E, 58 (1998), 4828–4858. https://doi.org/10.1103/PhysRevE.58.4828 doi: 10.1103/PhysRevE.58.4828 |
[32] | C.M. Topaz, A.L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152–174. https://doi.org/10.1137/S0036139903437424 doi: 10.1137/S0036139903437424 |
[33] | A.T. Winfree, The geometry of biological time, New York: Springer, 1980. |
[34] | A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15–42. https://doi.org/10.1016/0022-5193(67)90051-3 doi: 10.1016/0022-5193(67)90051-3 |