Research article Special Issues

Computation method of the Hosoya index of primitive coronoid systems

  • Received: 09 June 2022 Revised: 02 July 2022 Accepted: 05 July 2022 Published: 11 July 2022
  • Coronoid systems are natural graph representations of coronoid hydrocarbons associated with benzenoid systems, but they differ in that they contain a hole. The Hosoya index of a graph $ G $ is defined as the total number of independent edge sets, that are called $ k $-matchings in $ G $.

    The Hosoya index is a significant molecular descriptor that has an important position in QSAR and QSPR studies. Therefore, the computation of the Hosoya index of various molecular graphs is needed for making progress on investigations. In this paper, a method based on the transfer matrix technique and the Hosoya vector for computing the Hosoya index of arbitrary primitive coronoid systems is presented. Moreover, the presented method is customized for hollow hexagons by using six parameters. As a result, the Hosoya indices of both each arbitrary primitive coronoid system and also each hollow hexagon can be computed by means of a summation of four selected multiplications consisting of presented transfer matrices and two vectors.

    Citation: Mert Sinan Oz, Roberto Cruz, Juan Rada. Computation method of the Hosoya index of primitive coronoid systems[J]. Mathematical Biosciences and Engineering, 2022, 19(10): 9842-9852. doi: 10.3934/mbe.2022458

    Related Papers:

  • Coronoid systems are natural graph representations of coronoid hydrocarbons associated with benzenoid systems, but they differ in that they contain a hole. The Hosoya index of a graph $ G $ is defined as the total number of independent edge sets, that are called $ k $-matchings in $ G $.

    The Hosoya index is a significant molecular descriptor that has an important position in QSAR and QSPR studies. Therefore, the computation of the Hosoya index of various molecular graphs is needed for making progress on investigations. In this paper, a method based on the transfer matrix technique and the Hosoya vector for computing the Hosoya index of arbitrary primitive coronoid systems is presented. Moreover, the presented method is customized for hollow hexagons by using six parameters. As a result, the Hosoya indices of both each arbitrary primitive coronoid system and also each hollow hexagon can be computed by means of a summation of four selected multiplications consisting of presented transfer matrices and two vectors.



    加载中


    [1] I. Gutman, S. J. Cyvin, Introduction to the Theory Benzenoid Hydrocarbons, Springer-Verlag, Berlin 1989. https://doi.org/10.1007/978-3-642-87143-6
    [2] R. Cruz, A. D. S. Galvis, J. Rada, Extremal values of vertex-degree-based topological indices of coronoid systems, Int. J. Quantum Chem., 121 (2021), e26536. https://doi.org/10.1002/qua.26536 doi: 10.1002/qua.26536
    [3] S. J. Cyvin, J. Brunvoll, B. N. Cyvin, Theory of Coronoid Hydrocarbons. Lecture Notes in Chemistry, Vol. 54, Springer-Verlag, Berlin 1991. https://doi.org/10.1007/978-3-642-51110-3
    [4] S. J. Cyvin, J. Brunvoll, R. S. Chen, B. N. Cyvin, F. J. Zhang, Theory of Coronoid Hydrocarbons II. Lecture Notes in Chemistry, Vol. 62, Springer-Verlag, Berlin, 1994. https://doi.org/10.1007/978-3-642-50157-9
    [5] H. Hosoya, Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Jpn., 44 (1971), 2332–2339. https://doi.org/10.1246/bcsj.44.2332 doi: 10.1246/bcsj.44.2332
    [6] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986. https://doi.org/10.1515/9783112570180
    [7] S. Wagner, I. Gutman, Maxima and Minima of the Hosoya Index and Merrifield-Simmons, Acta Appl. Math., 112 (2010), 323–346. https://doi.org/10.1007/s10440-010-9575-5 doi: 10.1007/s10440-010-9575-5
    [8] S. Bermudo, R. A. Higuita, J. Rada, Domination number of catacondensed hexagonal systems, J. Math. Chem., 59 (2021), 1348–1367. https://doi.org/10.1007/s10910-021-01243-5 doi: 10.1007/s10910-021-01243-5
    [9] S. Bermudo, R. A. Higuita, J. Rada, Domination in hexagonal chains, Appl. Math. Comput., 369 (2020), 124817. https://doi.org/10.1016/j.amc.2019.124817 doi: 10.1016/j.amc.2019.124817
    [10] H. Degn, The anti-forcing number of double hexagonal chains, MATCH Commun. Math. Comput. Chem., 60 (2017), 183–192.
    [11] A. A. Dobrynin, E. Estaji, Wiener index of certain families of hexagonal chains, J. Appl. Math. Comput., 59 (2019), 245–256. https://doi.org/10.1007/s12190-018-1177-9 doi: 10.1007/s12190-018-1177-9
    [12] R. Cruz, C. A. Marín, J. Rada, Computing the Hosoya index of catacondensed hexagonal systems, MATCH Commun. Math. Comput. Chem., 77 (2017), 749–764.
    [13] R. Cruz, F. Duque, J. Rada, Anacondensed hexagonal systems, Appl. Math. Comput., 418 (2022), 126798. https://doi.org/10.1016/j.amc.2021.126798 doi: 10.1016/j.amc.2021.126798
    [14] Y. Lan, H. Lei, T. Li, Y. Shi, Y. Wang, Harary index of pericondensed benzenoid graphs, MATCH Commun. Math. Comput. Chem., 85 (2021), 63–76.
    [15] M. S. Oz, I. N. Cangul, Computing the Merrifield-Simmons indices of benzenoid chains and double benzenoid chains, J. Appl. Math. Comput., (2021). https://doi.org/10.1007/s12190-021-01659-x doi: 10.1007/s12190-021-01659-x
    [16] M. S. Oz, I. N. Cangul, Computing the Hosoya and the Merrifield-Simmons indices of two special benzenoid systems, Iran. J. Math. Chem., 12 (2021), 161–174.
    [17] M. S. Oz, I. N. Cangul, Enumeration of independent sets in benzenoid chains, MATCH Commun. Math. Comput. Chem., 88 (2022), 79–92. https://doi.org/10.46793/match.88-1.093O doi: 10.46793/match.88-1.093O
    [18] M. S. Oz, I. N. Cangul, Computing the number of $k$-matchings in benzenoid chains, MATCH Commun. Math. Comput. Chem., 88 (2022), 93–107. https://doi.org/10.46793/match.88-1.079O doi: 10.46793/match.88-1.079O
    [19] O. E. Polansky, M. Randić, H. Hosoya, Transfer matrix approach to the Wiener numbers of cata-condensed benzenoids, MATCH Commun. Math. Comput. Chem., 24 (1989), 3–28.
    [20] M. Randić, Haruo Hosoya, O. E. Polansky, On the construction of the matching polynomial for unbranched catacondensed benzenoids, J. Comput. Chem., 10 (1989), 683–697. https://doi.org/10.1002/jcc.540100510 doi: 10.1002/jcc.540100510
    [21] N. Tratnik, P. Ž. Pleteršek, The edge-Hosoya polynomial of benzenoid chains, J. Math. Chem., 57 (2019), 180–189. https://doi.org/10.1007/s10910-018-0942-1 doi: 10.1007/s10910-018-0942-1
    [22] R. Aguilar-Sánchez, J. A. Méndez-Bermúdez, J. M. Rodríguez, J. M. Sigarreta, Analytical and statistical studies of Rodriguez-Velazquez indices, J. Math. Chem., 59 (2021), 1246–1259. https://doi.org/10.1007/s10910-021-01239-1 doi: 10.1007/s10910-021-01239-1
    [23] J. A. Rodríguez–Velázquez, A. T. Balaban, Two new topological indices based on graph adjacency matrix eigenvalues and eigenvectors, J. Math. Chem., 57 (2019), 1053–1074. https://doi.org/10.1007/s10910-019-01008-1 doi: 10.1007/s10910-019-01008-1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1662) PDF downloads(84) Cited by(1)

Article outline

Figures and Tables

Figures(9)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog