In this paper, Gompertz type models are proposed to understand the temporal tumor volume behavior of prostate cancer when a periodical treatment is provided. Existence, uniqueness, and stability of periodic solutions are established. The models are used to fit the data and to forecast the tumor growth behavior based on prostate cancer treatments using capsaicin and docetaxel anticancer drugs. Numerical simulations show that the combination of capsaicin and docetaxel is the most efficient treatment of prostate cancer.
Citation: Leonardo Schultz, Antonio Gondim, Shigui Ruan. Gompertz models with periodical treatment and applications to prostate cancer[J]. Mathematical Biosciences and Engineering, 2024, 21(3): 4104-4116. doi: 10.3934/mbe.2024181
In this paper, Gompertz type models are proposed to understand the temporal tumor volume behavior of prostate cancer when a periodical treatment is provided. Existence, uniqueness, and stability of periodic solutions are established. The models are used to fit the data and to forecast the tumor growth behavior based on prostate cancer treatments using capsaicin and docetaxel anticancer drugs. Numerical simulations show that the combination of capsaicin and docetaxel is the most efficient treatment of prostate cancer.
[1] | M. S. Litwin, H. J. Tan, The diagnosis and treatment of prostate cancer: a review, JAMA, 317 (2017), 2532–2542. https://doi.org/10.1001/jama.2017.7248 doi: 10.1001/jama.2017.7248 |
[2] | P. Rawla, Epidemiology of prostate cancer, World J. Oncol., 10 (2019), 63. https://doi.org/10.14740/wjon1191 doi: 10.14740/wjon1191 |
[3] | R. J. Rebello, C. Oing, K. E. Knudsen, S. Loeb, D. C. Johnson, R. E. Reiter, et al., Prostate cancer, Nat. Rev. Dis. Prim., 7 (2021), 9. https://doi.org/10.1038/s41572-020-00243-0 doi: 10.1038/s41572-020-00243-0 |
[4] | American Cancer Society, Key statistics for prostate cancer, 2023. Available from: https://www.cancer.org/cancer/types/prostate-cancer/about/key-statistics.html. |
[5] | American Cancer Society, Initial treatment of prostate cancer, by stage and risk group, 2023. Available from: https://www.cancer.org/cancer/types/prostate-cancer/treating/by-stage.html. |
[6] | M. Y. Teo, D. E. Rathkopf, P. Kantoff, Treatment of advanced prostate cancer, Ann. Rev. Med., 70 (2019), 479–499. |
[7] | B. G. Sánchez, A. Bort, P. A. Mateos-Gómez, N. Rodríguez-Henche, I. Díaz-Laviada, Combination of the natural product capsaicin and docetaxel synergistically kills human prostate cancer cells through the metabolic regulator amp-activated kinase, Cancer Cell Int., 19 (2019), 1–14. https://doi.org/10.1186/s12935-019-0769-2 doi: 10.1186/s12935-019-0769-2 |
[8] | T. Phan, S. M. Crook, A. H. Bryce, C. C. Maley, E. J. Kostelich, Y. Kuang, Mathematical modeling of prostate cancer and clinical application, Appl. Sci., 10 (2020), 2721. https://doi.org/10.3390/app10082721 doi: 10.3390/app10082721 |
[9] | S. Benzekry, C. Lamont, A. Beheshti, A. Tracz, J. M. L. Ebos, L. Hlatky, et al., Classical mathematical models for description and prediction of experimental tumor growth, PLoS Comput. Biol., 10 (2014), e1003800. https://doi.org/10.1371/journal.pcbi.1009822 doi: 10.1371/journal.pcbi.1009822 |
[10] | A. K. Laird, Dynamics of tumour growth, British J. Cancer, 18 (1964), 490. https://doi.org/10.1038/bjc.1964.55 doi: 10.1038/bjc.1964.55 |
[11] | A. Akanuma, Parameter analysis of gompertzian function growth model in clinical tumors, Eur. J. Cancer, 14 (1978), 681–688. https://doi.org/10.1016/0014-2964(78)90304-3 doi: 10.1016/0014-2964(78)90304-3 |
[12] | L. Norton, A gompertzian model of human breast cancer growth, Cancer Res., 48 (1988), 7067–7071. |
[13] | L. Norton, R. Simon, H. D. Brereton, A. E. Bogden, Predicting the course of gompertzian growth, Nature, 264 (1976), 542–545. https://doi.org/10.1038/264542a0 doi: 10.1038/264542a0 |
[14] | C. Vaghi, A. Rodallec, R. Fanciullino, J. Ciccolini, J. P. Mochel, M. Mastri, et al., Population modeling of tumor growth curves and the reduced gompertz model improve prediction of the age of experimental tumors, PLoS Comput. Biol., 16 (2020), e1007178. https://doi.org/10.1371/journal.pcbi.1007178 doi: 10.1371/journal.pcbi.1007178 |
[15] | P. F. Verhulst, Notice sur la loi que la population suit dans son accroissement, Corresp. Math. Phys., 10, 113–129. https://doi.org/10.1007/BF02309004 doi: 10.1007/BF02309004 |
[16] | M. H. Zwietering, J. C. De Wit, S. Notermans, Application of predictive microbiology to estimate the number of bacillus cereus in pasteurised milk at the point of consumption, Int. J. Food Microb., 30 (1996), 55–70. https://doi.org/10.1016/0168-1605(96)00991-9 doi: 10.1016/0168-1605(96)00991-9 |
[17] | J. C. M. Mombach, N. Lemke, B. E. J. Bodmann, M. A. P. Idiart, A mean-field theory of cellular growth, Eur. Letters, 59 (2002), 923. https://doi.org/10.1209/epl/i2002-00244-6 doi: 10.1209/epl/i2002-00244-6 |
[18] | O. Sotolongo-Costa, L. M. Molina, D. R. Perez, J. C. Antoranz, M. C. Reyes, Behavior of tumors under nonstationary therapy, Phys. D Nonlinear Phen., 178 (2003), 242–253. https://doi.org/10.1016/S0167-2789(03)00005-8 doi: 10.1016/S0167-2789(03)00005-8 |
[19] | N. Frances, L. Claret, R. Bruno, A. Iliadis, Tumor growth modeling from clinical trials reveals synergistic anticancer effect of the capecitabine and docetaxel combination in metastatic breast cancer, Cancer Chem. Pharm., 68 (2011), 1413–1419. https://doi.org/10.1007/s00280-011-1628-6 doi: 10.1007/s00280-011-1628-6 |
[20] | M. A. Felmlee, M. E. Morris, D. E. Mager, Mechanism-based pharmacodynamic modeling, in Computational Toxicology. Methods in Molecular Biology, (2012), 583–600. |
[21] | T. Reckell, K. Nguyen, T. Phan, S. Crook, E. J. Kostelich, Y. Kuang, Modeling the synergistic properties of drugs in hormonal treatment for prostate cancer, J. Theor. Biol., 514 (2021), 110570. https://doi.org/10.1016/j.jtbi.2020.110570 doi: 10.1016/j.jtbi.2020.110570 |
[22] | R. R. Neubig, M. Spedding, T. Kenakin, A. Christopoulos, International union of pharmacology committee on receptor nomenclature and drug classification. xxxviii. update on terms and symbols in quantitative pharmacology, Pharm. Rev., 55 (2003), 597–606. https://doi.org/10.1124/pr.55.4.4 doi: 10.1124/pr.55.4.4 |
[23] | J. Seo, K. Fu, S. Correa, M. Eisenstein, E. A. Appel, H. T. Soh, Real-time monitoring of drug pharmacokinetics within tumor tissue in live animals, Sci. Adv., 8 (2022), eabk2901. https://doi.org/10.1126/sciadv.abk2901 doi: 10.1126/sciadv.abk2901 |
[24] | J. K. Hale, H. Koak, Dynamics and Bifurcations, Springer-Verlag, New York, 1991. |
[25] | C. O. S. Sorzano, M. A. P. Moreno, J. L. Vilas, An analytical solution for saturable absorption in pharmacokinetics models, Pharm. Res., 40 (2023), 481–485. https://doi.org/10.1007/s11095-022-03455-z doi: 10.1007/s11095-022-03455-z |
[26] | M. Jolly, P. Kulkarni, K. Weninger, J. Orban, H. Levine, Phenotypic plasticity, bet-hedging, and androgen independence in prostate cancer: Role of non-genetic heterogeneity, Front. Oncol., 8 (2018), 50. https://doi.org/10.3389/fonc.2018.00050 doi: 10.3389/fonc.2018.00050 |