Theoretical models for chronotherapy: Periodic perturbations in hyperchaos

  • Received: 01 November 2008 Accepted: 29 June 2018 Published: 01 June 2010
  • MSC : 92C50.

  • In this work, a hyperchaotic system was used as a model for chronotherapy. We applied a periodic perturbation to a variable, varying the period and amplitude of forcing. The system, five-dimensional, has until three positive Lyapunov exponents. As a result, we get small periodical windows, but it was possible to get large areas of hyperchaos of two positive Lyapunov exponents from a chaotic behavior. In this chronotherapy model, chaos could be considered as a dynamical disease, and therapy goal must be to restore the hyperchaotic state.

    Citation: Juvencio Alberto Betancourt-Mar, Víctor Alfonso Méndez-Guerrero, Carlos Hernández-Rodríguez, José Manuel Nieto-Villar. Theoretical models for chronotherapy: Periodic perturbations in hyperchaos[J]. Mathematical Biosciences and Engineering, 2010, 7(3): 553-560. doi: 10.3934/mbe.2010.7.553

    Related Papers:

    [1] Juvencio Alberto Betancourt-Mar, José Manuel Nieto-Villar . Theoretical models for chronotherapy: Periodic perturbations in funnel chaos type. Mathematical Biosciences and Engineering, 2007, 4(2): 177-186. doi: 10.3934/mbe.2007.4.177
    [2] Ryotaro Tsuneki, Shinji Doi, Junko Inoue . Generation of slow phase-locked oscillation and variability of the interspike intervals in globally coupled neuronal oscillators. Mathematical Biosciences and Engineering, 2014, 11(1): 125-138. doi: 10.3934/mbe.2014.11.125
    [3] Jifa Jiang, Qiang Liu, Lei Niu . Theoretical investigation on models of circadian rhythms based on dimerization and proteolysis of PER and TIM. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1247-1259. doi: 10.3934/mbe.2017064
    [4] Miguel Lara-Aparicio, Carolina Barriga-Montoya, Pablo Padilla-Longoria, Beatriz Fuentes-Pardo . Modeling some properties of circadian rhythms. Mathematical Biosciences and Engineering, 2014, 11(2): 317-330. doi: 10.3934/mbe.2014.11.317
    [5] Hai-Feng Huo, Fan Wu, Hong Xiang . On threshold dynamics for periodic and time-delayed impulsive systems and application to a periodic disease model. Mathematical Biosciences and Engineering, 2022, 19(1): 836-854. doi: 10.3934/mbe.2022038
    [6] Ya'nan Wang, Sen Liu, Haijun Jia, Xintao Deng, Chunpu Li, Aiguo Wang, Cuiwei Yang . A two-step method for paroxysmal atrial fibrillation event detection based on machine learning. Mathematical Biosciences and Engineering, 2022, 19(10): 9877-9894. doi: 10.3934/mbe.2022460
    [7] Gerardo Aquino, Andrea Rocco . Bimodality in gene expression without feedback: from Gaussian white noise to log-normal coloured noise. Mathematical Biosciences and Engineering, 2020, 17(6): 6993-7017. doi: 10.3934/mbe.2020361
    [8] Yuan Tian, Sanyi Tang . Dynamics of a density-dependent predator-prey biological system with nonlinear impulsive control. Mathematical Biosciences and Engineering, 2021, 18(6): 7318-7343. doi: 10.3934/mbe.2021362
    [9] Tong Li, Zhi-An Wang . Traveling wave solutions of a singular Keller-Segel system with logistic source. Mathematical Biosciences and Engineering, 2022, 19(8): 8107-8131. doi: 10.3934/mbe.2022379
    [10] Guirong Jiang, Qishao Lu, Linping Peng . Impulsive Ecological Control Of A Stage-Structured Pest Management System. Mathematical Biosciences and Engineering, 2005, 2(2): 329-344. doi: 10.3934/mbe.2005.2.329
  • In this work, a hyperchaotic system was used as a model for chronotherapy. We applied a periodic perturbation to a variable, varying the period and amplitude of forcing. The system, five-dimensional, has until three positive Lyapunov exponents. As a result, we get small periodical windows, but it was possible to get large areas of hyperchaos of two positive Lyapunov exponents from a chaotic behavior. In this chronotherapy model, chaos could be considered as a dynamical disease, and therapy goal must be to restore the hyperchaotic state.


  • This article has been cited by:

    1. Jian Lin, Oppositional backtracking search optimization algorithm for parameter identification of hyperchaotic systems, 2015, 80, 0924-090X, 209, 10.1007/s11071-014-1861-8
    2. Vasileios Basios, Chris G. Antonopoulos, Hyperchaos & labyrinth chaos: Revisiting Thomas–Rössler systems, 2019, 460, 00225193, 153, 10.1016/j.jtbi.2018.10.025
    3. H. Suárez, A. Guerra, R. Mansilla, J.M. Nieto-Villar, Ferroptosis as a biological Phase transition II: Chronotherapy of avascular and vascular tumor growth, 2023, 0929-1016, 1, 10.1080/09291016.2023.2256522
    4. A. Guerra, J. A. Betancourt-Mar, J. A. Llanos-Pérez, R. Mansilla, J. M. Nieto-Villar, 2024, Chapter 4, 978-1-0716-3576-6, 45, 10.1007/978-1-0716-3577-3_4
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2500) PDF downloads(554) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog