Research article Special Issues

On threshold dynamics for periodic and time-delayed impulsive systems and application to a periodic disease model

  • Received: 19 September 2021 Accepted: 11 November 2021 Published: 22 November 2021
  • The basic reproduction ratio $ \mathcal{R}_{0} $ of more general periodic and time-delayed impulsive model which the period of model coefficients is different from that of fixed impulsive moments, is developed. That $ \mathcal{R}_{0} $ is the threshold parameter for the stability of the zero solution of the associated linear system is also shown. The developed theory is further applied to a swine parasitic disease model with pulse therapy. Threshold results on its global dynamics in terms of $ \mathcal{R}_{0} $ are obtained. Some numerical simulation results are also given to support our main results.

    Citation: Hai-Feng Huo, Fan Wu, Hong Xiang. On threshold dynamics for periodic and time-delayed impulsive systems and application to a periodic disease model[J]. Mathematical Biosciences and Engineering, 2022, 19(1): 836-854. doi: 10.3934/mbe.2022038

    Related Papers:

  • The basic reproduction ratio $ \mathcal{R}_{0} $ of more general periodic and time-delayed impulsive model which the period of model coefficients is different from that of fixed impulsive moments, is developed. That $ \mathcal{R}_{0} $ is the threshold parameter for the stability of the zero solution of the associated linear system is also shown. The developed theory is further applied to a swine parasitic disease model with pulse therapy. Threshold results on its global dynamics in terms of $ \mathcal{R}_{0} $ are obtained. Some numerical simulation results are also given to support our main results.



    加载中


    [1] O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio ${R_{0}}$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. doi: 10.1007/bf00178324. doi: 10.1007/bf00178324
    [2] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. doi: 10.1016/s0025-5564(02)00108-6. doi: 10.1016/s0025-5564(02)00108-6
    [3] N. Bacaër, S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421–436. doi: 10.1007/s00285-006-0015-0. doi: 10.1007/s00285-006-0015-0
    [4] W. Wang, X. Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Diff. Equat., 20 (2008), 699–717. doi: 10.1007/s10884-008-9111-8. doi: 10.1007/s10884-008-9111-8
    [5] X. Liang, L. Zhang, X. Q. Zhao, Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease, J. Dyn. Diff. Equat., 31 (2019), 1247–1278. doi: 10.1007/s10884-017-9601-7. doi: 10.1007/s10884-017-9601-7
    [6] X.Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dyn. Diff. Equat., 29 (2017), 67–82. doi: 10.1007/s10884-015-9425-2. doi: 10.1007/s10884-015-9425-2
    [7] Z. Bai, X. Q. Zhao, Basic reproduction ratios for periodic and time-delayed compartmental models with impulses, J. Math. Biol., 80 (2020), 1095–1117. doi: 10.1007/s00285-019-01452-2. doi: 10.1007/s00285-019-01452-2
    [8] H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188–211. doi: 10.1137/080732870. doi: 10.1137/080732870
    [9] N. Bacaër, On the biological interpretation of a definition for the parameter ${R_{0}}$ in periodic population models, J. Math. Biol., 65 (2012), 601–621. doi: 10.1007/s00285-011-0479-4. doi: 10.1007/s00285-011-0479-4
    [10] H. Inaba, On a new perspective of the basic reproduction number in heterogeneous environments. J. Math. Biol., 65 (2012), 309–348. doi: 10.1007/s00285-011-0463-z. doi: 10.1007/s00285-011-0463-z
    [11] W. T. Li, H. F. Huo, Global attractivity of positive periodic solutions for an impulsive delay periodic model of respiratory dynamics, J. Comput. Appl. Math., 174 (2005), 227–238. doi: 10.1016/j.cam.2004.04.010. doi: 10.1016/j.cam.2004.04.010
    [12] S. A. Gourley, R. Liu, J. Wu, Eradicating vector-borne diseases via age-structured culling, J. Math. Biol., 54 (2007), 309–335. doi: 10.1007/s00285-006-0050-x. doi: 10.1007/s00285-006-0050-x
    [13] J. Shen, J. Li, Existence and global attractivity of positive periodic solutions for impulsive predator–prey model with dispersion and time delays, Nonlinear Anal. Real. World. Appl., 10 (2009), 227–243. doi: 10.1016/j.nonrwa.2007.08.026. doi: 10.1016/j.nonrwa.2007.08.026
    [14] G. Ballinger, X. Liu, Existence, uniqueness and boundedness results for impulsive delay differential equations, Appl. Anal., 74 (2000), 71–93. doi: 10.1080/00036810008840804. doi: 10.1080/00036810008840804
    [15] D. Bainov, P. Simeonov, Impulsive differential equations: periodic solutions and applications, CRC Press, 1993.
    [16] Y. Du, Order structure and topological methods in nonlinear partial differential equations: Vol. 1: Maximum principles and applications, World Scientific, 2006. doi: 10.1142/5999.
    [17] L. Burlando, Monotonicity of spectral radius for positive operators on ordered Banach spaces, Arch. Math., 56 (1991), 49–57. doi: 10.1007/bf01190081. doi: 10.1007/bf01190081
    [18] G. Degla, An overview of semi-continuity results on the spectral radius and positivity, J. Math. Anal. Appl., 338 (2008), 101–110. doi: 10.1016/j.jmaa.2007.05.011. doi: 10.1016/j.jmaa.2007.05.011
    [19] N. Sharma, A. K. Gupta, Impact of time delay on the dynamics of SEIR epidemic model using cellular automata, Phys. A., 471 (2017), 114–125. doi: 10.1016/j.physa.2016.12.010. doi: 10.1016/j.physa.2016.12.010
    [20] N. Sharma, A. K. Verma, A. K. Gupta, Spatial network based model forecasting transmission and control of COVID-19, Phys. A., 581 (2021), 126–223. doi: 10.1016/j.physa.2021.126223. doi: 10.1016/j.physa.2021.126223
    [21] K. E. M. Church, X. Liu, Delayed SIR model with pulse vaccination and temporary immunity, in Bifurcation Theory of Impulsive Dynamical Systems (eds. K. E. M. Church, X. Liu), Springer, Cham, (2021) 325–341. doi: 10.1007/978-3-030-64533-5.
    [22] Y. Yang, Y. Xiao, Threshold dynamics for compartmental epidemic models with impulses, Nonlinear Anal. Real. World. Appl., 13 (2012), 224–234. doi: 10.1016/j.nonrwa.2011.07.028. doi: 10.1016/j.nonrwa.2011.07.028
    [23] J. Boes, A. L. Willingham, S. Fuhui, H. Xuguang, Prevalence and distribution of pig helminths in the Dongting Lake Region (Hunan Province) of the People's Republic of China, J. Helminthol., 74 (2000), 45–52. doi: 10.1017/s0022149x00000068. doi: 10.1017/s0022149x00000068
    [24] H. R. Thieme, Global asymptotic stability in epidemic models, in Proceesings Equadiff 82 (eds. H. W. Knobloch, K.Schmitt.), Springer, Berlin (1983), 608–615. doi: 10.1007/bfb0103284.
    [25] S. Busenberg, K. L. Cooke, The effect of integral conditions in certain equations modelling epidemics and population growth, J. Math. Biol., 10 (1980), 13–32. doi: 10.1007/bf00276393. doi: 10.1007/bf00276393
    [26] X. Liang, X. Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Commun. Pur. Appl. Math., 60 (2007), 1–40. doi: 10.1002/cpa.20154. doi: 10.1002/cpa.20154
    [27] Y. B. Weng, Y. J. Hu, Y. Li, B. S. Li, R. Q. Lin, D. H. Xie, Survey of intestinal parasites in pigs from intensive farms in Guangdong Province, People's Republic of China, Vet. Parasitol., 127 (2005), 333–336. doi: 10.1016/j.vetpar.2004.09.030. doi: 10.1016/j.vetpar.2004.09.030
    [28] M. Turkyilmazoglu, Explicit formulae for the peak time of an epidemic from the SIR model, Phys. D., 422 (2021), 132902. doi: 10.1016/j.physd.2021.132902. doi: 10.1016/j.physd.2021.132902
    [29] M. Kröger, M. Turkyilmazoglu, R. Schlickeiser, Explicit formulae for the peak time of an epidemic from the SIR model. Which approximant to use?, Phys. D., 425 (2021), 132–981. doi:10.1016/j.physd.2021.132981. doi: 10.1016/j.physd.2021.132981
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1979) PDF downloads(113) Cited by(1)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog