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Abstract. We consider a hyperbolic conservation law with discontinuous flux.
Such a partial differential equation arises in different applications, in particu-
lar we are motivated by a model of traffic flow. We provide a new formulation
in terms of Riemann Solvers. Moreover, we determine the class of Riemann
Solvers which provide existence and uniqueness of the corresponding weak en-
tropic solutions.

1. Introduction. There are different models that lead us to consider hyperbolic
conservation laws with flux function discontinuous in the state space. Therefore, it
is of great interest to provide a complete theory for the problem

{

ut + h(x, u)x = 0,
u(0, x) = u0(x),

(1)

where h(x, u) is discontinuous in a finite number of points x. We restrict ourselves
to the case h(x, u) = H(x)f(u)+(1−H(x))g(u), where H is the Heaviside function,
thus there is a single point of discontinuity at x = 0. This restriction, however, is
interesting for our model, and, on the other hand, the general situation can be
deduced by this analysis.

A natural condition to impose at the point of discontinuity of the flux is the
equality f(u(t, 0+)) = g(u(t, 0−)) for almost every t, which plays the role of the
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Rankine-Hugoniot condition at x = 0 and it provides the conservation of the quan-
tity u through the discontinuity. This condition is not sufficient in general to en-
sure uniqueness of solution to the Cauchy problem (1); hence some other condi-
tions should be added. Our approach consists of providing a good formulation
for an appropriate Riemann Solver at x = 0. A Riemann Solver is a function
R : R × R → R × R, R(ul, ur) = (R1(ul, ur), R2(ul, ur)) = (u−, u+), which pro-
vides the left and right traces at the boundary x = 0 of a solution to the Cauchy
problem (1) with initial datum

u0(x) =

{

ul, x < 0,
ur, x > 0.

In this paper, we prove that there exists a class of Riemann Solvers, which deter-
mines a unique solution to the Cauchy problem (1) depending in a Lipschitz fashion
on the initial data.

Let us first illustrate the main results available in the literature. A seminal work
about this problem is the paper by Gimse and Risebro [7]. The authors considered a
model for two phase flux through a one-dimensional porous medium. Using Darcy’s
law and conservation of mass, they studied the equation

ut + {f(u)(v − k(x)g(u))}x = 0,

where k(x) represents the absolute permeability of the rock type; thus the function
k can be discontinuous. Moreover the authors proved existence of weak solutions,
rewriting the equation in a triangular 2×2 non-strictly hyperbolic system and using
the wave-front tracking method.

In [5] and [6] Diehl studied the case h(x, u) = H(x)f(u)+ (1−H(x))g(u) and he
introduced a condition, called Γ-condition, which guarantees uniqueness of solution.
This condition corresponds to a particular choice of the Riemann Solver at the
discontinuity point.

The special case h(x, u) = k(x)f(u), where f is a strictly concave function,
was considered in the papers by Seguin and Vovelle [21] and by Towers [22, 23].
In particular, Towers in [22] proved existence of solutions in the following way:
he approximated the solution by using the schemes of Godunov and Engquist-
Osher, then he introduced a map ψ(u, k), called a singular map, in order to have
BV estimates for the approximations ψ(un, k) and to pass to the limit by Helly’s
theorem. He also proved that, if k is a piecewise C1 function with a finite number
of discontinuity, then the limit function satisfies the entropy formulation

∫ T

0

∫

R

[

|u− c|φt + k sgn(u − c)(f(u) − f(c))φx + f(c)|k′(x)|φ
]

dxdt+ (2)

+f(c)

∫ T

0

n
∑

i=0

|k(ξ+i ) − k(ξ−i )| dt > 0.

for every c ∈ R and φ ∈ C1
0 (R×(0, T ); [0,+∞[), where ξi are the discontinuity points

of k. From this characterization he deduced the contractivity of the semigroup for
piecewise regular solutions.

Karlsen, Risebro and Towers in [14] studied the Cauchy problem (1) with a
hyperbolic relaxation approach. They proved existence of a weak solution using the
method of the compensated compactness.

The general case for system (1) was considered in [4, 15, 16, 17]. In particular in
[17] the authors considered a flux of the type h(k(x, t), u) and, under appropriate
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conditions on h and k, proved that a Lax-Friedrichs scheme converges to a weak
solution to the Cauchy problem (1). Moreover, assuming k piecewise constant and
discontinuous along a finite number of Lipschitz curves (γi(t), t), they proved that
the solutions satisfy the entropy formulation

∫ T

0

∫

R

[

|u− c|φt + sgn(u− c)(h(k, u) − h(k, c))φx

]

dxdt+ (3)

+

∫

R

|u0 − c|φdx+

∫ T

0

n
∑

i=0

|f(k(γi(t), t)+, c)) − f(k(γi(t), t)−, c))|φdt > 0,

for every c ∈ R and φ ∈ C1
0 (R × [0, T )), φ > 0, which is a generalization of (2).

A different concept of an entropy solution was given in [1] and [2]. The case
h(x, u) = H(x)f(u) + (1 −H(x))g(u), where the functions f and g have a unique
minimum or maximum point, was considered. The motivations for entropy solutions
were deduced by a model of two-phase flows in a porous medium. In this model,
undercompressive waves are not allowed; thus shocks can not enter simultaneously
from both sides of the discontinuity x = 0. This leads to entropy solutions, dif-
ferent from those considered in [17]. In [1], using a Godunov-type approximation,
the authors proved convergence of the approximations to an entropy solution u in
the domains (0,+∞) × (0, T ) and (−∞, 0) × (0, T ). In [2], Adimurthi, Mishra and
Gowda described all the classes of entropy solutions for the Cauchy problem (1),
which provide contractivity in L1. Moreover, they proved that a sequence of approx-
imated solutions, constructed with a Godunov scheme, admits an a.e. converging
subsequence. The limit function provides a solution to the Cauchy problem (1) if
its discontinuities form a discrete set of Lipschitz curves.

It is interesting to note that various models need different concept of solution
for the same problem (1). This depends on the different physical models of the
underlying applications. In this paper, we are motivated by a model of traffic flow
for which there is no a priori preferable physical solution. Thus we are interested
in giving a unifying point of view for all the possible entropy formulations.

In this paper, by using the wave-front tracking method, we prove that a solution
to the Cauchy problem (1) exists for every initial datum in L1(R), which can be
approximated by piecewise constant functions with a finite number of discontinu-
ities. Our idea consists in describing all the possible Riemann Solvers at x = 0.
This permits to completely characterize solutions to the Cauchy Problem (1).

We study the case h(x, u) = H(x)f(u)+ (1−H(x))g(u) and we assume that the
fluxes f : [uo

a, u
o
b] → R, g : [ui

a, u
i
b] → R satisfy the following properties:

1. f and g are strictly concave functions;
2. there exists σg ∈]ui

a, u
i
b[ such that g(σg) > g(u) for every u ∈ [ui

a, u
i
b];

3. there exists σf ∈]uo
a, u

o
b[ such that f(σf ) > f(u) for every u ∈ [uo

a, u
o
b].

In Section 2 we give a fluidodynamic description for the problem of traffic flow
on a simple road network, composed by two roads connected together by a junction
(see [10, 13] for a more general network). We use the scalar model, based on
the conservation of the number of cars and introduced by Lighthill, Whitham and
Richards; see [20, 26]. Then, problem (1) comes naturally by considering different
flux functions for the two roads.

In Section 3 we analyze possible solutions to the Riemann problem at the junc-
tion, which satisfies the Rankine-Hugoniot and other conditions. Then, for each
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Riemann Solver at the junction, we give a consistent definition of admissible solu-
tions. More precisely:

Definition 1. Fix a Riemann Solver R and an initial condition u0 ∈ BV (R). We
say that u is an entropy solution to problem (1), related to the Riemann Solver R,
if and only if

1. u, restricted to (0, T )× (−∞, 0), is an entropy solution to

ut + g(u)x = 0;

2. u, restricted to (0, T )× (0,+∞), is an entropy solution to

ut + f(u)x = 0;

3. f(u(t, 0+)) = g(u(t, 0−)) for almost every t ∈ (0, T );
4. R(u(t, 0−), u(t, 0+)) = (u(t, 0−), u(t, 0+)) for almost every t ∈ (0, T ).

The concepts of solutions given in [1] and in [17] correspond to our entropy
solution related to particular choices of the Riemann Solver.

In Section 4 we obtain existence of a solution according to Definition 1, using
the method of the wave-front tracking. The key point is to obtain a uniform BV
estimate for the sequence of fluxes h(·, un(t, ·)), where un are wave-front tracking
approximations. In the general case, it is not possible to obtain BV estimates
directly for un, since interactions of waves with the junction can increase the total
variation of the conserved quantity.

In Section 5 we deal with uniqueness, determining the class of Riemann Solvers
ensuring this property. The tool to prove uniqueness is the doubling method by
Kruzkov.

2. Description of the problem. Let us consider a road network composed by
two roads I1 and I2 connected together by a junction J . I1 is the incoming road,
modeled by the interval ] − ∞, 0], while I2 is the outgoing one, modeled by the
interval [0,+∞[. In this case the junction J is at the point x = 0.

In the incoming road I1, the evolution of the traffic is described by the conser-
vation law

{

ut(t, x) + g(u(t, x))x = 0, if (t, x) ∈ (0, T )× (−∞, 0),
u(0, x) = u0, if x ∈ (−∞, 0),

(4)

where u(t, x) ∈ [ui
a, u

i
b] denotes the density of cars at time t > 0 and at the point

x ∈ I1, g is the flux depending on the density u and u0 represents the initial density.
In the outgoing road I2, the evolution of traffic is described by the conservation

law
{

ut(t, x) + f(u(t, x))x = 0, if (t, x) ∈ (0, T ) × (0,∞),
u(0, x) = u0, if x ∈ (0,∞),

(5)

where u ∈ [uo
a, u

o
b ] is the density and f is the flux.

Assume that the fluxes f : [uo
a, u

o
b ] → R and g : [ui

a, u
i
b] → R satisfy the following

properties:

1. f and g are strictly concave functions;
2. there exists σg ∈]ui

a, u
i
b[ such that g(σg) > g(u) for every u ∈ [ui

a, u
i
b];

3. there exists σf ∈]uo
a, u

o
b[ such that f(σf ) > f(u) for every u ∈ [uo

a, u
o
b].

Define γi
a := g(ui

a), γi
b := g(ui

b), γ
o
a := f(uo

a), γo
b := f(uo

b); see Figure 1. For (4)
and (5) we consider weak entropic solutions; see [8].
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Figure 1. Graphs of the fluxes f and g.

Definition 2. A function u : [0,+∞[×] − ∞, 0] → R is called a weak entropic
solution to (4) if

1. for every function ϕ : [0,+∞[×I1 → R smooth with compact support on
]0,+∞[×] −∞, 0[

∫ +∞

0

∫

I1

[

u(t, x)
∂

∂t
ϕ(t, x) + g(u(t, x))

∂

∂x
ϕ(t, x)

]

dxdt = 0;

2. for every k ∈ [ui
a, u

i
b] and for every function ϕ : [0,+∞[×I1 → R smooth,

positive with compact support on ]0,+∞[×] −∞, 0[

∫ +∞

0

∫

I1

|u(t, x) − k|
∂

∂t
ϕ(t, x)dxdt

+

∫ +∞

0

∫

I1

sgn(u(t, x) − k)(g(u(t, x)) − g(k))
∂

∂x
ϕ(t, x)dxdt > 0.

The definition of weak entropic solution to (5) is analogous.

The previous definition of weak entropic solutions is due to Volpert [25] and it is
a generalization of the classical entropy condition in the case of a scalar equation.

Consider the Riemann problem at J














ut + g(u)x = 0, if x < 0, t > 0,
ut + f(u)x = 0, if x > 0, t > 0,
u(0, x) = ul, if x < 0,
u(0, x) = ur, if x > 0,

(6)

where ul ∈ [ui
a, u

i
b] and ur ∈ [uo

a, u
o
b ].

Definition 3. We say that u− ∈ [ui
a, u

i
b] and u+ ∈ [uo

a, u
o
b] determine a weak

solution to the Riemann problem (6) at J if

(R-1) the wave (ul, u
−) on I1 has negative speed;

(R-2) the wave (u+, ur) on I2 has positive speed;
(R-3) g(u−) = f(u+).

The weak solution to the Riemann problem (6) at J is given by the waves (ul, u
−)

and (u+, ur) respectively on I1 and I2.
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Figure 2. The fluxes f and g in the case of Lemma 1.

We look for conditions on γi
a, γi

b, γ
o
a, γo

b in order that, for every ul ∈ [ui
a, u

i
b] and

for every ur ∈ [uo
a, u

o
b], the Riemann problem (6) admits at least a weak solution

satisfying (R-1), (R-2) and (R-3). The following lemmas hold.

Lemma 1. Assume γi
a 6 γi

b, γ
o
a > γo

b . The Riemann problem (6) admits a weak
solution satisfying (R-1), (R-2) and (R-3) for every initial condition if and only if
γi

a = γi
b = γo

a = γo
b .

Proof. If γi
a = γi

b = γo
a = γo

b , then

u− =

{

ui
b, if ul 6= ui

a,
ui

a, if ul = ui
a,

and

u+ =

{

uo
a, if ur 6= uo

b,
uo

b , if ur = uo
b,

provide a weak solution to the Riemann problem satisfying (R-1), (R-2) and (R-3).
Suppose now that the Riemann problem (6) admits a least one weak solution

satisfying (R-1), (R-2) and (R-3) for every initial condition.
Assume by contradiction that γi

a < γi
b. Fix ul such that g(ul) < γi

b. By (R-
1), u− = ul and so, by (R-3), f(u+) = g(ul). This implies that γo

a 6 g(ul) and
γo

b > g(ul), otherwise, if γo
a > g(ul), then the Riemann problem with initial condi-

tion (ul, ur) = (ul, u
o
a) does not admit weak solutions, while, if γo

b < g(ul), then the
Riemann problem with initial condition (ul, ur) = (ul, u

o
b) does not admit weak solu-

tions. Thus we have g(ul) = γ0
a = γo

b , that is a contradiction since the arbitrariness
of ul. Therefore γi

a = γi
b.

By contradiction assume that γo
a > γo

b . Fixing ur such that f(ur) < γo
a as in

the previous case, we conclude that f(ur) = γi
a = γi

b, that is a contradiction. So
γo

a = γo
b .

Taking now (ul, ur) = (ui
a, u

o
b), we conclude that γi

a = γi
b = γo

a = γo
b ; see Figure 2.

Lemma 2. Assume γi
a > γi

b, γ
o
a > γo

b . The Riemann problem (6) admits a weak
solution satisfying (R-1), (R-2) and (R-3) for every initial condition if and only if
γi

b 6 γo
b 6 γo

a 6 γi
a.



CONSERVATION LAWS WITH DISCONTINUOUS FLUX 165

f
g

σg σf
uu

g(σg)

f(σf )

γi
b

γi
a

γo
b

γo
a

ui
bui

a
uo

buo
a

Figure 3. The fluxes f and g in the case of Lemma 2.

Proof. Consider first the case γi
b 6 γo

b 6 γo
a 6 γi

a. For every ul define the set

A−(ul) :=
{

ũ ∈ [ui
a, u

i
b] : the wave (ul, ũ) has negative speed

}

.

We have that

[γi
b, γ

i
a] ⊆ g(A−(ul))

for every ul. If ur satisfies f(ur) < γo
a, then u+ = ul and there exists an element in

A−(ul) satisfying (R-3). If instead ur satisfies f(ur) > γo
a, then there exists a weak

solution such that u+ = uo
a. Thus the sufficient condition is proved.

Assume now that the Riemann problem (6) admits a weak solution satisfying
(R-1), (R-2) and (R-3) for every initial condition.

Suppose first by contradiction that γi
b > γo

b . Consider ur = uo
b. Then, by (R-2),

u+ = ul and so it is not possible to satisfy (R-3). Therefore γi
b 6 γo

b .
Suppose now that γo

a > γi
a. Consider (ul, ur) = (ui

a, u
o
a). By (R-1), u− satisfies

g(u−) 6 γi
a. By (R-2), u+ satisfies f(u+) > γo

a. Then (R-3) is not satisfied and so
we get γo

a 6 γi
a; see Figure 3.

This concludes the lemma.

Lemma 3. Assume γi
a 6 γi

b, γ
o
a < γo

b . The Riemann problem (6) admits a weak
solution satisfying (R-1), (R-2) and (R-3) for every initial condition if and only if
γo

a 6 γi
a 6 γi

b 6 γo
b .

Proof. The proof is given in the same way as in Lemma 2, since the situation is
completely symmetric.

Lemma 4. Assume γi
a > γi

b, γ
o
a < γo

b . The Riemann problem (6) admits a weak
solution satisfying (R-1), (R-2) and (R-3) for every initial condition if and only if
γo

a 6 γi
a and γi

b 6 γo
b .

Proof. Assume first that γo
a 6 γi

a and γi
b 6 γo

b . For every ul and ur define the sets

A−(ul) :=
{

ũ ∈ [ui
a, u

i
b] : the wave (ul, ũ) has negative speed

}

and

A+(ur) := {ũ ∈ [uo
a, u

o
b] : the wave (ũ, ur) has positive speed} .

We have that

[γi
b, γ

i
a] ⊆ g(A−(ul)), [γo

a, γ
o
b ] ⊆ f(A+(ur)),
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Figure 4. The fluxes f and g in the case of Lemma 4.
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Figure 5. The fluxes f and g considered in Section 3.

for every ul and ur. By assumption

[γi
b, γ

i
a] ∩ [γo

a, γ
o
b ] 6= ∅

and so it is possible to find u− ∈ A−(ul) and u+ ∈ A+(ur) such that f(u+) = g(u−).
Hence the sufficient condition is proved.

Assume now that the Riemann problem (6) admits a weak solution satisfying
(R-1), (R-2) and (R-3) for every initial condition.

Suppose by contradiction that γi
a < γo

a. If ul = ui
a, then u− by (R-1) satisfies

g(u−) 6 γi
a and so (R-3) can not be satisfied. Therefore γi

a > γo
a.

Suppose now that γi
b > γo

b . If ur = uo
b , then u+ satisfies f(u+) 6 γo

b and so (R-3)
can not be satisfied. Thus γi

b 6 γo
b (see Figure 4) and the proof is finished.

3. Construction of Riemann solvers. Consider the Riemann problem at J (6).
For simplicity, let us assume that ui

a = uo
a = 0, ui

b = uo
b = 1 and γi

a = γi
b = γo

a =
γo

b = 0; see Figure 5.

Definition 4. A Riemann solver for the Riemann problem (6) is a function R :
[0, 1] × [0, 1] → [0, 1] × [0, 1], R(ul, ur) = (R1(ul, ur), R2(ul, ur)) = (u−, u+), such
that

(H1). g(u−) = f(u+);



CONSERVATION LAWS WITH DISCONTINUOUS FLUX 167

(H2). the wave (ul, u
−) has negative speed, while the wave (u+, ur) has positive

speed;
(H3). the function (ul, ur) 7→ (g(u−), f(u+)) is continuous;
(H4). R(R(ul, ur)) = R(ul, ur) for every ul ∈ [0, 1] and ur ∈ [0, 1];
(H5). for every (ul, ur) = R(ul, ur) and ũ such that the wave (ũ, R1(ul, ur)) has

positive speed the following holds:

g(R1(ũ, ur)) ∈ [min{g(ul), g(ũ)},max{g(ul), g(ũ)}]; (7)

(H6). for every (ul, ur) = R(ul, ur) and ũ such that the wave (R2(ul, ur), ũ) has
negative speed the following holds:

f(R2(ul, ũ)) ∈ [min{f(ur), f(ũ)},max{f(ur), f(ũ)}]. (8)

Definition 5. A couple (ul, ur) is said an equilibrium if R(ul, ur)=(ul, ur).

Remark 1. Observe that conditions (H1) and (H2) are motivated physically by
the conservation of mass at the junction and by the fact waves originated at x = 0
in I1 (resp. in I2) must travel with negative (resp. positive) speed, since I1 (resp.
I2) is modeled by the interval (−∞, 0) (resp. (0,+∞)).

Condition (H3) is a regularity property for the Riemann solver, while (H4) is a
stability condition, in the sense that the image of R is a fixed point of the same
function.

Finally conditions (H5) and (H6) are the key assumptions for some important
estimates for the existence of solutions to Cauchy problems, as we see in Section 4.

Example 1. Assume f = g and σg = σf = 1
2 . Let Ω = [12 , 1] × [0, 1

2 ] and let

S : Ω → [0, η] (0 < η < g(1
2 )) be a continuous function such that

1. S(x, y) = 0 for every (x, y) ∈ ∂Ω;
2. S(x, y) = f(x) for every (x, y) ∈ Ω, f(y) = f(x) 6 η.

Consider the following Riemann Solver R. If (ul, ur) ∈ ([0, 1] × [0, 1]) \ Ω, then
R(ul, ur) = (1, 0). If (ul, ur) ∈ Ω, then R(ul, ur) = (u−, u+) ∈ Ω, where g(u−) =
f(u+) = S(ul, ur). It is clear that R satisfies (H1)–(H4), but not (H5) and (H6).

The aim of this section is to describe all the possible Riemann solvers for (6). We
treat only the case f(σf ) > g(σg), the other one similar. We have some different
possibilities:

1. ul ∈ [σg , 1] and ur ∈ [0, σf ]. Since the waves produced must have negative
speed in I1 and positive speed in I2, then u− ∈ [σg, 1] and u+ ∈ [0, σf ]. By
hypothesis (H3), there exists a continuous function

Γ : [0, g(σg)] × [0, f(σf )] → [0, g(σg)] (9)

such that

g(u−) = f(u+) = Γ(g(ul), f(ur)).

By (H4) we deduce that, if a ∈ ImΓ, then Γ(a, a) = a and so, every element of
the image of Γ is the flux of an equilibrium for the Riemann problem. Conversely,
if (ul, ur) is an equilibrium for the Riemann problem, then

Γ(g(ul), f(ur)) = f(ur) = g(ul),

and so the image of Γ coincides with the set X defined by

X := {s∈ [0, g(σg)] : (ul, ur)∈ [σg, 1]×[0, σf ] equilibrium, g(ul)=f(ur)=s} . (10)

We have the following characterization of the set X .
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Lemma 5. X is a closed, non empty and connected set. Thus X = [γ̄1, γ̄2], with
0 6 γ̄1 6 γ̄2 6 g(σg).

Proof. X is a connected set since it is the image of a connected set through a
continuous function. Moreover X is clearly non empty. Finally we take x ∈ X̄ and
a sequence an → x such that an ∈ X for every n ∈ N. We have:

Γ(x, x) = lim
n→+∞

Γ(an, an) = lim
n→+∞

an = x

and so x ∈ X .

From now on with γ̄1 and γ̄2 we denote respectively the minimum and maximum
of the set X .

2. ul ∈ [0, σg[ and ur ∈ [0, σf ]. Some different cases are possible.

a. g(ul) 6 γ̄1. By (H2), u− either is ul or belongs to [σg, 1] with g(u−) <
g(ul). The second possibility can not happen since otherwise g(u−) < γ̄1, a
contradiction with (H4); so the solution is given by (ul, u

+) with u+ ∈ [0, σf [,
f(u+) = g(ul).

b. g(ul) > γ̄2. We claim that u− ∈ [σg, 1] and g(u−) ∈ X . Indeed, consider the
function

hur
: [0, σg] → [0, g(σg)]

ul 7→ g(u−)

giving the flux in I1 of the solution to the Riemann problem with (ul, ur)
initial states. It is continuous by (H3). Therefore

lim
r→σ

−

g

hur
(r) = hur

(σg) 6 γ̄2,

by the analysis of possibility 1. Moreover there exists a left neighborhood
V of σg such that hur

(s) 6 γ̄2 for every s ∈ V , otherwise, by (H2) on the
speed of waves, there exists a sequence sn → σ−

g so that g(s1) > γ̄2 and
hur

(sn) = g(sn) > g(s1) > γ̄2 contradicting the continuity of hur
. Consider

the set
Y := {r ∈ [0, σg[: g(r) > γ̄2, hur

(r) > γ̄2}

and suppose by contradiction that Y 6= ∅. Define η := supY . The previous
analysis implies that

0 < η < σg, γ̄2 < g(η)

and by continuity of hur

hur
(η) > g(η) > γ̄2.

Moreover
lim

r→η+
hur

(r) 6 γ̄2,

a contradiction. Thus Y = ∅ and the claim is proved.
c. γ̄1 < g(ul) 6 γ̄2. In this case hur

(ul) ∈ [γ̄1, γ̄2]. If hur
(ul) = g(ul), then

the solution is given by (ul, u
+), where u+ ∈ [0, σf [ with f(u+) = g(ul).

Otherwise, if hur
(ul) < g(ul), then u− ∈ [σg, 1].

Remark 2. If γ̃ ∈]γ̄1, γ̄2[ satisfies hur
(ul) = γ̃ for ul ∈ [0, σg[ and ur ∈ [0, σf ]

with g(ul) = f(ur) = γ̃, then conditions (H2) and (H5) imply that

hur
(r) = g(r)

for every r ∈ [0, σg[ such that γ̄1 6 g(r) 6 γ̃.
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3. ul ∈ [σg, 1] and ur ∈]σf , 1]. This case is completely symmetric with respect
to the previous one.

4. ul ∈ [0, σg[ and ur ∈]σf , 1]. We have some different cases.

a. min{g(ul), f(ur)} 6 γ̄1. Without loss of generalities we suppose that g(ul) 6

f(ur). By (H2), u− either is ul or u− ∈]σg, 1] with g(u−) < g(ul). Analogously
u+ either is ur or u+ ∈ [0, σf [ with f(u+) < f(ur). If u− ∈]σg, 1], then, by
(H1), u+ ∈ [0, σf [, but this is not an equilibrium. Thus u− = ul. If f(ur) =
g(ul), then u+ = ur and the solution is (ul, ur). Otherwise if f(ur) > g(ul),
then u+ ∈ [0, σf [, f(u+) = g(ul) and the solution is (ul, u

+).
b. γ̄1 < min{g(ul), f(ur)} 6 γ̄2. Without loss of generalities we suppose g(ul) 6

f(ur). If g(ul) < f(ur), then u+ ∈ [0, σf [ and the case is completely identical
to 2.c.

If g(ul) = f(ur), then, by the continuity assumption (H3), the solution is
uniquely determined as a limiting procedure by the case g(ul) < f(ur).

c. min{g(ul), f(ur)} > γ̄2. Without loss of generalities we suppose that g(ul) 6

f(ur). If g(ul) < f(ur), then u+ ∈ [0, σf [ by (H2) and also u− ∈]σg , 1] by 2.b.
If g(ul) = f(ur), then, by the continuity assumption (H3), the solution is

uniquely determined as a limiting procedure by the case g(ul) < f(ur).

Given a Riemann solver at the junction J , it is possible to define an admissible
weak solution to (4) and (5).

Definition 6. Fix a Riemann solver R. A function u ∈ L∞((0, T ) × R) is an
admissible weak solution to (4) and (5) if

1. u is a weak entropic solution to (4) in (0, T )× (−∞, 0);
2. u is a weak entropic solution to (5) in (0, T )× (0,+∞);
3. for almost every t ∈ (0, T ), the couple (u(t, 0−), u(t, 0+)) is an equilibrium

for the Riemann solver R.

Observe that the previous definition is well posed, since Vasseur [24] proved
existence of the trace for entropy solutions of conservation laws.

3.1. Case of X singleton. In this subsection let us consider the special case
X = {γ̄}. The Riemann solver is completely described by the following possibilities.

1. ul ∈ [σg, 1] and ur ∈ [0, σf ]. In this case the solution to the Riemann problem
satisfies u− ∈ [σg, 1], u+ ∈ [0, σf ] and g(u−) = f(u+) = γ̄.

2. ul ∈ [0, σg[ and ur ∈ [0, σf ]. If g(ul) > γ̄, then the solution to the Riemann
problem satisfies u− ∈ [σg, 1], u+ ∈ [0, σf ] and g(u−) = f(u+) = γ̄.

If g(ul) 6 γ̄, then the solution to the Riemann problem satisfies u− = ul,
u+ ∈ [0, σf ] and g(u−) = f(u+).

3. ul ∈ [σg, 1] and ur ∈]σf , 1]. The situation is completely symmetric to the
previous case.

4. ul ∈ [0, σg[ and ur ∈]σf , 1]. If min{g(ul), f(ur)} > γ̄, then the solution to the
Riemann problem satisfies u− ∈ [σg, 1], u+ ∈ [0, σf ] and g(u−) = f(u+) = γ̄.

If min{g(ul), f(ur)} 6 γ̄ and g(ul) = f(ur), then the solution to the Rie-
mann problem is (ul, ur).

If min{g(ul), f(ur)} 6 γ̄ and g(ul) < f(ur), then the solution to the Rie-
mann problem satisfies u− = ul, u

+ ∈ [σf , 1] and g(ul) = f(u+).
If min{g(ul), f(ur)} 6 γ̄ and g(ul) > f(ur), then the solution to the Rie-

mann problem satisfies u− ∈ [σg, 1], u+ = ur and g(u−) = f(ur).
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Remark 3. If f(σf ) = g(σg) and X = {g(σg)}, then the Riemann solver is com-
pletely identical to that used in [1] and [10].

Remark 4. If there exists a unique u∗ ∈]0, 1[ such that f(u∗) = g(u∗) and if
X = {f(u∗)}, then the Riemann solver is identical to that used in [5, 6, 17].

4. Existence of solutions. In this Section we consider a Riemann Solver R such
that the related set X defined by (10) is a singleton. We denote with XR the set X
related to the Riemann Solver R. Using a wave-front tracking method, we prove the
existence of an admissible solution of problem (4) and (5) for any fixed Riemann
solver R of this kind. We denote with Rγ the Riemann solver such that XR = {γ}.
Observe that for every γ ∈ (0, g(σg)] we can define Rγ .

The wave front tracking algorithm is very useful for treating systems of conserva-
tion laws. In our case, the situation is simpler since we consider a scalar conservation
law: this allows us to overcome difficulties due to the discontinuity of the flux. For
a detailed description of the algorithm, we refer the reader to [8].

Let us summarize the main points of this approach for our specific case. Fix a
sequence of piecewise constant approximations u0,ν of the initial datum u0, such that
Tot.Var.u0,ν 6 Tot.Var.u0. We solve the Riemann problems at any discontinuity
point and in particular at x = 0, where we use the fixed Riemann Solver Rγ . We
split rarefaction waves into rarefaction fans formed by rarefaction shocks (i.e. non
entropic shocks.) When two waves interact or a wave interact with the junction,
we solve a new Riemann problem. Notice that the number of waves can increase
only for interactions with the junction. However, in this case at most two waves
are produced and any such wave can interact with the junction again only after
canceling one wave inside the roads (see also [13].)

Finally, there is a finite number of waves and we can define, for every ν, a function
uν for every time, which provides a wave front tracking approximate solution (in
fact it is a weak solution violating the entropy condition by a quantity going to zero
with ν → ∞; see [8].)

Theorem 1. Given γ ∈ (0, σg] and u0 ∈ BV (R), there exists an admissible solution
u to problem (4) and (5) in the sense of Definition 6 with the Riemann solver Rγ.
Moreover such a solution is obtained as an almost everywhere limit of approximate
wave front tracking solutions.

We divide the proof of the previous theorem in some lemmas. First of all we prove
an equivalent formulation of an admissible solution valid for the case of singleton.

Lemma 6. Let γ ∈ (0, σg]. A function u ∈ L∞((0, T )×R) is an admissible solution
to (4) and (5) in the sense of Definition 6 for the Riemann solver Rγ if and only if

1. u is a weak entropic solution to (4) in (0, T ) × (−∞, 0);
2. u is a weak entropic solution to (5) in (0, T ) × (0,+∞);
3. for almost every t > 0 the couple (u(t, 0−), u(t, 0+)) satisfies the following

conditions
(a) g(u(t, 0−)) = f(u(t, 0+)) 6 γ;
(b) if (u(t, 0−), u(t, 0+)) ∈ [σg, 1) × (0, σf ], then

(u(t, 0−), u(t, 0+)) = (aγ , bγ)

where aγ (resp. bγ) is the unique value in [σg, 1) (resp. (0, σf ]) such that
g(aγ) = γ (resp. f(bγ) = γ).
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Proof. This result is an immediate consequence of the analysis done in Section
3.1.

The following lemma shows that the total variation of the flux of a wave front
tracking approximate solution does not change when a wave interacts with J . This
is due in particular to the properties (H5) and (H6) of Definition 4.

Lemma 7. Fix an approximate wave front tracking solution ū. If a wave interacts
with J at time t̄, then

Tot.Var. [f(ū(t̄+, ·)) + g(ū(t̄+, ·))] = Tot.Var. [f(ū(t̄−, ·)) + g(ū(t̄−, ·))] .

Proof. Fix an equilibrium (ul, ur). First suppose that a wave (ũ, ul) with positive
speed interacts with J from the incoming road I1. We denote with (u−, u+) the
solution to the Riemann problem at J with the initial datum (ũ, ur). We have

Tot.Var. [f(ū(t̄+, ·)) + g(ū(t̄+, ·))] =
∣

∣g(ũ) − g(u−)
∣

∣ +
∣

∣f(u+) − f(ur)
∣

∣

=
∣

∣g(ũ) − g(u−)
∣

∣ +
∣

∣g(u−) − g(ul)
∣

∣

= |g(ũ) − g(ul)|

= Tot.Var. [f(ū(t̄−, ·)) + g(ū(t̄−, ·))] ,

where we used (H1) and (H5).
Suppose now that a wave (ur, ũ) with negative speed interacts with J from the

outgoing road I2. We denote with (u−, u+) the solution to the Riemann problem
at J with the initial datum (ul, ũ). We have

Tot.Var. [g(ū(t̄+, ·)) + f(ū(t̄+, ·))] =
∣

∣g(ul) − g(u−)
∣

∣ +
∣

∣f(u+) − f(ũ)
∣

∣

=
∣

∣f(ur) − f(u+)
∣

∣ +
∣

∣f(u−) − f(ũ)
∣

∣

= |f(ũ) − f(ur)|

= Tot.Var. [f(ū(t̄−, ·)) + g(ū(t̄−, ·))] ,

where we used (H1) and (H6).
This completes the proof.

Lemma 8. Fix an approximate wave front tracking solution ū. For every t > 0, it
holds

Tot.Var.(h(·, ū(t, ·))) 6 Tot.Var.(h(·, ū(0+, ·))). (11)

Proof. By Lemma 7, we know that the total variation of the flux does not change
when a wave approaches the junction J .

If, instead, two waves interact in a road, then the total variation of the flux either
remains constant or strictly decreases.

In order to pass to the limit in the sequence of approximate wave front track-
ing solutions uν we study in depth interactions of waves at the junction. Given
an approximate wave front tracking solution ū, we denote with u−(t) and u+(t)
respectively the values ū(t, 0−) and ū(t, 0+). Sometimes to simplify the notation
we shall write only u− and u+.

From now on, we fix a Riemann Solver Rγ . Given a generic equilibrium (u−, u+)
for an approximate wave front tracking solution, we classify it in four classes. More
precisely we say that u− is “good” if u− ∈ [aγ , 1] instead we say that u+ is “good”
if u+ ∈ [0, bγ]. If u− or u+ is not good, then we say that they are “bad”. Using this
property we introduce four classes of equilibrium,
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I. u− and u+ are “good”: we denote it by G|G. In this case u− and u+ are
equal to aγ and bγ ;

II. u− is “good” and u+ is “bad”: we denote it by G|B;
III. u− is “bad” and u+ is “good”: we denote it by B|G;
IV. u− and u+ are “bad”: we denote it by B|B.

We analyze the interaction of a wave (ũ, u−) that reaches the junction from the
left at time t∗ in the four cases. Since the wave reaches the boundary we have that
ũ is “bad”.

In the case G|G necessarily g(ũ) < g(u−) = g(aγ) = γ. In this situation for the
results proved in Section 3.1 we have that after time t∗ the new equilibrium is in
the class B|G given by (ũ, f−1

1 (g(ũ))). Where f−1
1 is the inverse of the function f

restricted in the interval [0, σf ].
In the case G|B we have that g(ũ) < g(u−). After time t∗ we are in the class

B|G and the new equilibrium is (ũ, f−1
1 (g(ũ))).

Suppose now to stay in the case B|G; we have to distinguish two cases. If
g(ũ) 6 γ, then the new equilibrium after time t∗ is given by (ũ, f−1

1 (g(ũ))) and we
remain in the same class B|G. Otherwise if g(ũ) > γ, then the new equilibrium is
given by (aγ , bγ) and we are in the class G|G.

In the last case B|B there are the same two possibilities of case III, then after
the interaction we arrive to the situation B|G or G|G.

Symmetric situations happen if we consider a wave (u+, ũ) that reaches the junc-
tion from the right. In view of these results we give the following remarks.

Remark 5. Equilibrium IV is extremely unstable. In fact it can happen only at
initial time. If a wave reaches the junction, then this kind of equilibrium is lost and
it is impossible to obtain it again.

Remark 6. Suppose that until time T waves reach the junction only on one side,
for example from the left. Then u+(·) can change only one time from “bad” to
“good” and it remains “good” at least until time T . It changes type at the moment
in which a wave reaches the junction from the right.

Now we are able to prove the following result.

Lemma 9. For every initial datum u0 with finite total variation, there exists an
entropy solution u(t, x) that satisfies points 1 and 2 of Definition 6.

Proof. Fix a sequence of initial data u0,ν such that

Tot.Var.(u0,ν) 6 Tot.Var.(u0)

for every ν ∈ N and
u0,ν → u0

in L1
loc as ν → +∞. For each u0,ν we consider a wave-front tracking approximate

solution uν such that uν(0, x) = u0,ν(x) and rarefactions are split in rarefaction
shocks of size 1/ν. If we are able to prove that there exists a subsequence of {uν}
converging in L1 to a function u, then, following [8], we conclude that u satisfies
conditions 1 and 2 of Definition 6.

By Lemma 8 we deduce, passing to a subsequence, that f(un) converges in L1

to a function f . We follow the procedure of [10, Definition 5.7 and Theorem 5.10]
to conclude the proof.

For every ν we consider the curves Y ν
− and Y ν

+ such that Y ν
−(0) = Y ν

+(0) = 0 and
these follow the generalized characteristics (see [12]) defined for the approximate



CONSERVATION LAWS WITH DISCONTINUOUS FLUX 173

front tracking solution uν letting Y ν
−(t) = 0 (resp. Y ν

+(t) = 0) if Y ν
−(t) (resp. Y ν

−(t))
reaches the boundary and g′(u(t, 0−)) > 0 (resp. f ′(u(t, 0+)) 6 0). We define the
sets

Dν
1 =

{

(t, x) ∈ (0, T ) × R : Y ν
−(t) 6 x 6 Y ν

+(t)
}

,

and Dν
2 = ((0, T )× R) \Dν

1 . By definition we see that the set Dν
2 is not influenced

by the junction; this gives a priori estimate for the total variation of uν(·, t) in the
intervals (−∞, Y ν

−(t)) and (Y ν
+(t),+∞) that depends only on the total variation of

u0. Using Remark 6 we can observe that for every t in the intervals (Y ν
−(t), 0] there

is at most one point x̃ such that sgn(uν(t, x̃−) − aγ) sgn(uν(t, x̃+) − aγ) 6 0. An
analogous result is true in the interval [0, Y ν

+(t)). In particular, for γ < σg inverting
g and f we deduce for every t a priori estimate of the total variation of uν(t, ·) that
depends only on initial data and the constants 1

g′(aγ) and 1
f ′(bγ) . When γ = σg a

priori estimate for the total variation of uν is not true in general. In this case we
can divide for every t the intervals (Y ν

−(t), Y ν
+(t)) in a finite number of intervals in

which f and g are invertible. This assures that we can extract a subsequence that
we call again {uν} converging in L1

loc to a function u. This concludes the proof.

Remark 7. Lemma 9 can be generalized to the case of a general roads network,
where junctions could have either one incoming and one outgoing road or one in-
coming and two outgoing roads or two incoming and one outgoing roads or finally
two incoming and two outgoing roads.

We conclude the proof of Theorem 1 if we prove that function u obtained by
Lemma 9 verifies condition 3 of Lemma 6. For this aim it is necessary to obtain a
priori estimate for the total variation of the flux of a generic approximate solution
along the junction. More precisely we have the following lemma.

Lemma 10. Let {uν} be the approximate wave front tracking sequence given in
Lemma 9. Then for every ν we have

Tot.Var.(g(u−ν (·), (0, T )) = Tot.Var.(f(u+
ν (·), (0, T )) (12)

6 2 Tot.Var.(h(·, u0(·)),R).

Proof. Let us simplify the notations writing v and v0 instead of the generic function
uν and of the initial datum u0,ν. Moreover we introduce the following functions

M(t) = lim
ε→0+

Tot.Var.(g(v−(·)), (0, t+ ε));

F (t, [x1, x2]) = lim
ε→0+

Tot.Var.(h(·, v(t, ·)), [x1 + sgn(x1)ε, x2 + sgn(x2)ε]);

S([x1, x2]) = F (0, [x1, x2]).

More precisely M denotes the total variation of g(v−) in the time interval (0, t] and
F is the total variation of h(·, v(t, ·)) in a spatial interval at a fixed time t > 0.

If the initial datum is chosen in equilibrium (u−, u+) near the junction x = 0,
then M(·) is zero until a wave reaches J . It is not restrictive to assume that the first
wave comes from the left. Let τ1 be the time in which a wave reaches the boundary
and Y−1(·) the backward minimal characteristic starting from (0, τ1). We denote
with x−1 the point Y−1(0) and with u−1 the value v0(x−1−). Analogously we define
t1 the first time in which a wave reaches the junction from the right; if it does not
exist we put t1 = +∞. When t1 exists finite we consider the maximal backward
characteristic Y1(·) starting from (0, t1). Moreover we introduce x1 := Y1(0) and
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u1 := v0(x1+). Let us introduce the quantities

τ̄1 := max{t ∈ [τ1, t1) :∃ a wave reaching J from the left at time t},

Ȳ−1(·) is the minimal backward characteristic that starts from point (0, τ̄1), x̄−1 =
Ȳ−1(0) and ū−1 = v0(x̄−1−). Obviously τ̄1 can coincide with τ1. Suppose that
after time t1 there exists a wave that reaches J from the left; we denote with τ2
the corresponding interaction time. As before we define the values x−2 and u−2.
Moreover we introduce the time

t̄1 := max{t ∈ [t1, τ2) :∃ a wave reaching J from the right at time t},

and the corresponding quantities x̄1 and ū1.
With this procedure we can define four sequences of times, that eventually can

become constantly equal to +∞, {τn}, {τ̄n}, {tn} and {t̄n}, such that τn 6 τ̄n <
tn 6 t̄n < τn+1, if they are finite.

Moreover we can define four sequences on the x axis, that eventually can become
constant, {x−n}, {x̄−n}, {xn} and {x̄n}, such that

0 = x0 > x−1 > x̄−1 > · · · > x−n > x̄−n > x−n−1 > · · ·

and

0 = x0 < x1 6 x̄1 < · · · < xn 6 x̄n < xn+1 < · · · .

Finally we have the sequences {u−n}, {ū−n}, {un} and {ūn}, where we set u0 = u−.
Let us prove the following estimates

M(τn) 6 S([x̄−n+1, x̄n−1]) +

n−1
∑

i=1

(f(ūi) − f(ui)) +

n−1
∑

i=1

(g(ū−i) − g(u−i−1)), (13)

for every n > 2 and

M(tn) 6 S([x̄−n, x̄n−1]) +

n−1
∑

i=1

(f(ūi)−f(ui)) (14)

+

n−1
∑

i=1

(g(ū−i)−g(u−i−1)) + g(ū−n) − f(un).

for every n > 1.
Let us prove (13) and (14) by induction. Consider the case n = 1. At time τ1

the value u−1 reaches the boundary; so we use the analysis made before. Therefore
necessarily u−1 is a “bad” value and if g(u−1) 6 γ, then the new equilibrium
is given by (u−1, f

−1
1 (g(u−1))). Otherwise if g(u−1) > γ, the new equilibrium is

(aγ , bγ). In any case since f(u+) = g(u−) 6 γ, we have that M(τ1) 6 |g(u−1) −
g(u−)| = S([x−1, x0]). In the interval (τ1, τ̄1] waves can arrive only from the interval
[x̄−1, x−1); this implies that the total variation of the flux at the junction depends
only on the total variation of the flux at initial time. More precisely we obtain the
estimateM(τ̄1) 6 S([x̄−1, 0]). Using the considerations made before for interactions
of waves with J , we know that after time τ1 and at least until time t1 the equilibrium
is of the type G|G or B|G. This means that the value u1, which reaches J at time
t1, is necessarily “bad” and f(u1) < g(ū−1). In particular the new equilibrium is
(g−1

2 (f(u1)), u1), where we denote with g−1
2 the inverse of the function g restricted

to the interval (σg, 1). From this observation we have that

M(t1) = M(τ̄1) + g(ū−1) − f(u1) 6 S([x̄−1, 0]) + g(ū−1) − f(u1)
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that corresponds to (14) for n = 1 and with the choice x̄0 = 0. Reasoning as before
we see that M(t̄1) 6 S([x̄−1, x̄1])+ g(ū−1)− f(u1). Moreover in the interval (t1, τ2)
the equilibrium can only be of the type G|G or G|B; thus necessarily u−2 is a “bad”
value, g(u−2) < f(ū1) and the new equilibrium has u−2 as left value. This implies
that

M(τ2) = M(t̄1) + f(ū1) − g(u−2)

6 S([x̄−1, x̄1]) + g(ū−1) − g(u−2) + f(ū1) − f(u1)

that give (13) for n = 2.
Let us assume that (13) is true for a generic n. We prove as before that

M(τ̄n) 6 S([x̄−n+1, x̄n−1]) +

n−1
∑

i=1

(f(ūi) − f(ui)) +

n−1
∑

i=1

(g(ū−i) − g(u−i−1)). (15)

In the interval (τ̄n, tn) the equilibrium is of the type B|G or G|G. Again this implies
that un is a “bad” value and g(ū−n) > f(un). ThereforeM(tn) = M(τ̄n)+g(ū−n)−
f(un). Using (15) and rearranging the terms we obtain (14). Repeating the same
arguments we prove that

M(t̄n) 6 S([x̄−n, x̄n]) +
n−1
∑

i=1

(f(ūi)−f(ui))

+
n−1
∑

i=1

(g(ū−i)−g(u−i−1)) + g(ū−n) − f(un).

Finally observing that in the in interval [t̄n, τn+1) the equilibrium is of the type
G|B or G|G, we deduce that u−n−1 is a “bad” value and f(ūn) > g(u−n−1); so
M(τn+1) = M(t̄n) + f(ūn)− g(u−n−1), which gives (13) for n+ 1. This permits us
to conclude by an induction argument.

The proof of the lemma is an immediate consequence of (13) and (14).

By Lemma 10, we deduce that f(u+
ν (·)) = g(u−ν (·)) is bounded in BV and con-

verges in L1 to a BV function. This permits us to prove the following result, which
concludes the proof of Theorem 1.

Lemma 11. The function u obtained in Lemma 9 satisfies condition 3 of Lemma 6.

Proof. By Lemma 6 every equilibria of a generic wave front tracking approximate
solution verify condition 3. In particular, letting ν to +∞, the limit u obtained in
Lemma 1 satisfies f(u+(·)) = g(u−(·)) 6 γ almost everywhere, which gives the first
part of condition 3. We finish the proof if we show that, for almost every t such
that (u−(t), u+(t)) ∈ [σg , 1)×(0, σf ], we have (u−(t), u+(t)) = (aγ , bγ). Let us prove
this fact by contradiction. We know that f(u+(·)) and g(u−(·)) are BV functions.
Let t̄ be a point of continuity for g(u−(·)) such that (u−(t̄), u+(t̄)) ∈ [σg, 1)× (0, σf ]
and g(u−(t̄)) < γ. Then there exists a neighborhood of (t̄, 0) where g(u) < γ.
This means that in such set, the equilibria are of type G|B or B|G for every ν.
Thus it is not restrictive to assume that there exists a subsequence, which we call
again {uν}, such that u−ν is of “bad” type. Moreover, since near the point (t̄, 0)
the characteristics point outside the domain (0, T )×R

−, we find a two dimensional
neighborhood C of (t̄, 0) such that uν takes values in [0, g−1

1 (γ)), where g−1
1 denotes

the inverse of g restricted to (0, σg). By Lemma 9, uν converges to u in L1
loc and so
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we conclude that u− is of the “bad” type almost everywhere in C ∩ {x = 0}. This
is a contradiction.

5. Uniqueness. In this section we investigate the problem of uniqueness for admis-
sible solutions to problem (4)–(5). In particular we prove that there is uniqueness
if and only if XR, the set defined in (10), is a singleton.

Suppose that the set XR is not a singleton. Let γ1 < γ2 ∈ XR and take u−1 , u
−
2 ∈

[σg, 1], u+
1 , u

+
2 ∈ [0, σf ] such that

g(u−1 ) = f(u+
1 ) = γ1, g(u−2 ) = f(u+

2 ) = γ2.

Clearly (u−1 , u
+
1 ) and (u−2 , u

+
2 ) are equilibria. Then for every initial data

u0(x) =

{

u, if x 6 0,
u, if x > 0,

where u ∈ [σg, 1] and u ∈ [0, σf ], we can find two admissible solutions u1 and u2

to problem (4)–(5) such that the equilibria are respectively (u−1 , u
+
1 ) and (u−2 , u

+
2 ).

This shows that for general initial data there is not uniqueness.
In the following we assume that XR = {γ} and denote by Rγ the corresponding

Riemann Solver. Let us prove the following result that is crucial to prove uniqueness.

Proposition 1. Consider a Riemann Solver Rγ . For every two equilibria (u−1 , u
+
1 )

and (u−2 , u
+
2 ) of Rγ it holds

sgn(u−1 − u−2 )
[

g(u−1 ) − g(u−2 )
]

> sgn(u+
1 − u+

2 )
[

f(u+
1 ) − f(u+

2 )
]

. (16)

Proof. Using that f(u+
1 ) = g(u−1 ) and f(u+

2 ) = g(u−2 ), inequality (16) is equivalent
to

[sgn(u−1 − u−2 ) − sgn(u+
1 − u+

2 )][g(u−1 ) − g(u−2 )] > 0. (17)

Since inequality (17) is symmetric in u1 and u2, it is not restrictive to assume
u−1 6 u−2 . If u+

1 6 u+
2 , then the conclusion is obvious. Let us consider all the

remaining cases assuming that u+
1 > u+

2 .

1. u−1 , u−2 ∈ [0, σg]. Then g(u−1 ) 6 g(u−2 ) and this implies (17).
2. u−1 ∈ [0, σg], u

−
2 ∈ [σg , 1], u+

2 ∈ [0, σf ]. Using Lemma 6 we deduce that

f(u+
2 ) = g(u−2 ) = γ and g(u−1 ) 6 γ. This gives the result.

3. u−1 ∈ [0, σg], u
−
2 ∈ [σg, 1], u+

2 ∈ [σf , 1]. Then u+
1 ∈ [σf , 1] and g(u−1 ) =

f(u+
1 ) < f(u+

2 ) = g(u−2 ); so we obtain again the inequality.
4. u−1 , u−2 ∈ [σg, 1], u+

2 ∈ [0, σf ]. Then we obtain the same conclusion of case 2.

5. u−1 , u−2 ∈ [σg, 1], u+
2 ∈ [σf , 1]. Then we proceed as in the case 3.

The proof is finished.

Now we are able to prove uniqueness and continuous dependence in L1 respect
to initial data for admissible solutions.

Theorem 2. Fix γ ∈ (0, g(σg)] and u0, v0 ∈ BV (R). Let u and v be admissible
solutions to problem (4) and (5) in the sense of Definition 6, for the Riemann Solver
Rγ and initial data respectively u0 and v0. Then for every C > 0 and for almost
every t ∈ (0, T )

∫ C

−C

|u(t, x) − v(t, x)| dx 6

∫ C+Mt

−C−Mt

|u0(x) − v0(x)| dx, (18)
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where

M = max

{

max
u∈[−a,a]

|f ′(u)|, max
u∈[−a,a]

|g′(u)|

}

and a = max{‖u‖L∞, ‖v‖L∞}.

Proof. Let u and v be entropy solutions in Π−
T := (0, T ) × (−∞, 0). Using the

doubling method by Kruzkov, we obtain
∫ ∫

Π−

T

|u− v|φt + sgn(u− v)(g(u) − g(v))φxdxdt > 0 (19)

for any φ ∈ C1
0 (Π−

T ), φ > 0; see also [23].
We now choose a particular set of test functions. Consider ǫ, θ ∈ R

+ and t′,
t′′ ∈ R such that 0 < t′ < t′′ < T , t′′ + θ < T , t′ − θ > 0. Define ξθ (resp. ξǫ)
the corresponding cut-off function, i.e. a smooth function, which approximates the
characteristic function of the interval [−θ, θ] (resp. [−ǫ, ǫ]). Set:

Yθ(x) :=

∫ x

−∞

ξθ(y) dy.

Letting I(((t−t′′)M−C,−2ǫ)) be the characteristic function of the interval ((t− t′′)M −
C,−2ǫ), we can finally define the following test function:

φ(x, t) = (Yθ(t− t′) − Yθ(t− t′′))(I(((t−t′′)M−C,−2ǫ)) ∗ ξǫ)(x).

It is easily seen that φ > 0, φ ∈ C∞
0 (Π−

T ). Putting φ in the inequality (19) and
using the definition of constant M we obtain

∫ ∫

Π−

T

|u− v|(ξθ(t− t′) − ξθ(t− t′′))I(((t−t′′)M−C,−2ǫ)) ∗ ξǫ)(x) dxdt (20)

>

∫ ∫

Π−

T

H+(u− v)(g(u) − g(v))ξǫ(x+ 2ǫ) dxdt.

Passing to limit as ǫ→ 0+ and using existence of the trace we obtain

∫ T

0

∫ 0

(t−t′′)M−C

|u− v|(ξθ(t− t′) − ξθ(t− t′′)) dxdt >

∫ T

0

sgn(u−(t, 0) − v−(t, 0))(g(u−) − g(v−))(Yθ(t− t′) − Yθ(t− t′′)) dt.

Suppose that t′′, t′ are Lebesgue points for the function

s(t) =

∫ 0

−C−TM

|u(t, x) − v(t, x)| dx,

for the arbitrariness of ξθ and letting t′ to 0+, we obtain

∫ 0

−C

|u(t′′, x) − v(t′′, x)| dx 6

∫ 0

−t′′M−C

|u0(x) − v0(x)| dx

−

∫ t′′

0

sgn(u−(t, 0) − v−(t, 0))(g(u−(t, 0)) − g(v−(t, 0))) dt.
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Proceeding in the same way in the domain (0, T ) × (0,∞), for almost every t it
holds

∫ C

−C

|u(t, x) − v(t, x)| dx 6

∫ tM+C

−tM−C

|u0(x) − v0(x)| dx

+

∫ t

0

sgn(u+(s, 0) − v+(s, 0))(f(u+(s, 0)) − f(v+(s, 0)))

− sgn(u−(s, 0) − v−(s, 0))(g(u−(s, 0)) − g(v−(s, 0))) ds.

Since, by Definition 6, (u−(0, ·), u+(0, ·)) and (v−(0, ·), v+(0, ·)) are almost every-
where equilibria for the Riemann solver Rγ , the conclusion follows from Proposition
1.

REFERENCES
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