Research article

Error bounds for generalized vector inverse quasi-variational inequality Problems with point to set mappings

  • Received: 11 September 2020 Accepted: 08 November 2020 Published: 30 November 2020
  • MSC : 49J40, 47H09, 47J20, 54H25

  • The goal of this paper is further to study a kind of generalized vector inverse quasi-variational inequality problems and to obtain error bounds in terms of the residual gap function, the regularized gap function, and the global gap function by utilizing the relaxed monotonicity and Hausdorff Lipschitz continuity. These error bounds provide effective estimated distances between an arbitrary feasible point and the solution set of generalized vector inverse quasi-variational inequality problems.

    Citation: S. S. Chang, Salahuddin, M. Liu, X. R. Wang, J. F. Tang. Error bounds for generalized vector inverse quasi-variational inequality Problems with point to set mappings[J]. AIMS Mathematics, 2021, 6(2): 1800-1815. doi: 10.3934/math.2021108

    Related Papers:

  • The goal of this paper is further to study a kind of generalized vector inverse quasi-variational inequality problems and to obtain error bounds in terms of the residual gap function, the regularized gap function, and the global gap function by utilizing the relaxed monotonicity and Hausdorff Lipschitz continuity. These error bounds provide effective estimated distances between an arbitrary feasible point and the solution set of generalized vector inverse quasi-variational inequality problems.


    加载中


    [1] X. Li, X. S. Li, N. J. Huang, A generalized f-projection algorithm for inverse mixed variational inequalities, Optim. Lett., 8 (2014), 1063-1076. doi: 10.1007/s11590-013-0635-4
    [2] G. Y. Chen, C. J. Goh, X. Q. Yang, On gap functions for vector variational inequalities. In: F. Giannessi, (ed.), Vector variational inequalities and vector equilibria: mathematical theories, Kluwer Academic Publishers, Boston, 2000.
    [3] X. Q. Yang, J. C. Yao, Gap functions and existence of solutions to set-valued vector variational inequalities, J. Optim. Theory Appl., 115 (2002), 407-417. doi: 10.1023/A:1020844423345
    [4] Salahuddin, Regularization techniques for Inverse variational inequalities involving relaxed cocoercive mapping in Hilbert spaces, Nonlinear Anal. Forum, 19 (2014), 65-76.
    [5] S. J. Li, H. Yan, G. Y. Chen, Differential and sensitivity properties of gap functions for vector variational inequalities, Math. Methods Oper. Res., 57 (2003), 377-391. doi: 10.1007/s001860200254
    [6] M. V. Solodov, Merit functions and error bounds for generalized variational inequalities, J. Math. Anal. Appl., 287 (2003), 405-414. doi: 10.1016/S0022-247X(02)00554-1
    [7] D. Aussel, R. Gupta, A. Mehra, Gap functions and error bounds for inverse quasi-variational inequality problems, J. Math. Anal. Appl., 407 (2013), 270-280. doi: 10.1016/j.jmaa.2013.03.049
    [8] B. S. Lee, Salahuddin, Minty lemma for inverted vector variational inequalities, Optimization, 66 (2017), 351-359. doi: 10.1080/02331934.2016.1271799
    [9] J. Chen, E. Kobis, J. C. Yao, Optimality conditions for solutions of constrained inverse vector variational inequalities by means of nonlinear scalarization, J. Nonlinear Var. Anal., 1 (2017), 145-158.
    [10] X. K. Sun, Y. Chai, Gap functions and error bounds for generalized vector variational inequalities, Optim. Lett., 8 (2014), 1663-1673. doi: 10.1007/s11590-013-0685-7
    [11] K. Q. Wu, N. J. Huang, The generalised f-projection operator with an application, Bull. Aust. Math. Soc., 73 (2006), 307-317. doi: 10.1017/S0004972700038892
    [12] C. Q. Li, J. Li, Merit functions and error bounds for constrained mixed set-valued variational inequalities via generalized $f$-projection operators, Optimization, 65 (2016), 1569-1584. doi: 10.1080/02331934.2016.1163555
    [13] S. S. Chang, Salahuddin, L. Wang, G. Wang, Z. L. Ma, Error bounds for mixed set-valued vector inverse quasi variational inequalities, J. Inequal Appl., 2020:160 (2020), 1-16.
    [14] Z. B. Wang, Z. Y. Chen, Z. Chen, Gap functions and error bounds for vector inverse mixed quasi-variational inequality problems, Fixed Point Theory Appl., 2019:14 (2019), 1-14. doi: 10.17654/FP014010001
    [15] F. Giannessi, Vector variational inequalities and vector equilibria: mathematical theories, Kluwer Academic Publishers/Boston/London, Dordrecht, 2000.
    [16] Salahuddin, Solutions of vector variational inequality problems, Korean J. Math., 26 (2018), 299-306.
    [17] X. Li, Y. Z. Zou, Existence result and error bounds for a new class of inverse mixed quasi-variational inequalities, J. Inequal. Appl., 2016 (2016), 1-13. doi: 10.1186/s13660-015-0952-5
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2528) PDF downloads(213) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog