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1. Introduction

In 2014, Li et al. [1] suggested a new class of inverse mixed variational inequality in Hilbert spaces
that has simple problem of traffic network equilibrium control, market equilibrium issues as
applications in economics and telecommunication network problems. The concept of gap function
plays an important role in the development of iterative algorithms, an evaluation of their convergence
properties and useful stopping rules for iterative algorithms, see [2–5]. Error bounds are very
important and useful because they provide a measure of the distance between a solution set and a
feasible arbitrary point. Solodov [6] developed some merit functions associated with a generalized
mixed variational inequality, and used those functions to achieve mixed variational error limits.
Aussel et al. [7] introduced a new inverse quasi-variational inequality (IQVI), obtained local (global)
error bounds for IQVI in terms of certain gap functions to demonstrate the applicability of IQVI, and
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provided an example of road pricing problems, also see [8, 9]. Sun and Chai [10] introduced
regularized gap functions for generalized vector variation inequalities (GVVI) and obtained GVVI
error bounds for regularized gap functions. Wu and Huang [11] implemented generalized
f -projection operators to deal with mixed variational inequality. Using the generalized f -projection
operator, Li and Li [12] investigated a restricted mixed set-valued variational inequality in Hilbert
spaces and proposed four merit functions for the restricted mixed set valued variational inequality and
obtained error bounds through these functions.

Our goal in this paper is to present a problem of generalized vector inverse quasi-variational
inequality problems. They propose three gap functions, the residual gap function, the regularized gap
function, and the global gap function, and obtain error bounds for generalized vector inverse
quasi-variational inequality problem using these gap functions and generalized f -projection operator
under the monotonicity and Lipschitz continuity of underlying mappings.

2. Preliminaries

Throughout this article, R+ denotes the set of non-negative real numbers, 0 denotes the origins of all
finite dimensional spaces, ‖ · ‖ and 〈·, ·〉 denotes the norms and the inner products in finite dimensional
spaces, respectively. Let Ω,F,P : Rn → Rn be the set-valued mappings with nonempty closed convex
values, Ni : Rn × Rn → Rn (i = 1, 2, · · · ,m) be the bi-mappings, B : Rn → Rn be the single-valued
mappings, and fi : Rn → R (i = 1, 2, · · · ,m) be real-valued convex functions. We put

f = ( f1, f2, · · · , fm), N(·, ·) = (N1(·, ·),N2(·, ·), · · · ,Nm(·, ·)),

and for any x,w ∈ Rn,

〈N(x, x),w〉 = (〈N1(x, x),w〉, 〈N2(x, x),w〉, · · · , 〈Nn(x, x),w〉).

In this paper, we consider the following generalized vector inverse quasi-variational inequality for
finding x̄ ∈ Ω(x̄), ū ∈ F(x̄) and v̄ ∈ P(x̄) such that

〈N(ū, v̄), y − B(x̄)〉 + f (y) − f (B(x̄)) < −intRm
+ , ∀y ∈ Ω(x̄), (2.1)

and solution set is denoted by f.

Special cases:

(i) If P is a zero mapping and N(·, ·) = N(·), then (2.1) reduces to the following problem for finding
x̄ ∈ Ω(x̄) and ū ∈ F(x̄) such that

〈N(ū), y − B(x̄)〉 + f (y) − f (B(x̄)) < −intRm
+ , ∀y ∈ Ω(x̄), (2.2)

studied in [13] and solution set is denoted by f1.

(ii) If F is single valued mapping, then (2.2) reduces to the following vector inverse mixed quasi-
variational inequality for finding x̄ ∈ Ω(x̄) such that

〈N(x̄), y − B(x̄)〉 + f (y) − f (B(x̄)) < −intRm
+ , ∀y ∈ Ω(x̄), (2.3)

studied in [14] and solution set is denoted by f2.
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(iii) If C ⊂ Rn is a nonempty closed and convex subset, B(x) = x and Ω(x) = C for all x ∈ Rn,

then (2.3) collapses to the following generalized vector variational inequality for finding x̄ ∈ C
such that

〈N(x̄), y − x〉 + f (y) − f (x̄) < −intRm
+ , ∀y ∈ C, (2.4)

which is considered in [10].
(iv) If f (x) = 0 for all x ∈ Rn, then (2.4) reduces to vector variational inequality for finding x̄ ∈ C

such that
〈N(x̄), y − x〉 < −intRm

+ , ∀y ∈ C, (2.5)

studied in [15].
(v) If Rm

+ = R+ then (2.5) reduces to variational inequality for finding x̄ ∈ C such that

〈N(x̄), y − x〉 ≥ 0, ∀y ∈ C, (2.6)

studied in [16].

Definition 2.1 [7] Let G : Rn → Rn and g : Rn → Rn be two maps.

(i) (G, g) is said to be a strongly monotone if there exists a constant µg > 0 such that

〈G(y) −G(x), g(y) − g(x)〉 ≥ µg‖y − x‖2, ∀x, y ∈ Rn;

(ii) g is said to be Lg-Lipschitz continuous if there exists a constant Lg > 0 such that

‖g(x) − g(y)‖ ≤ Lg‖x − y‖,∀x, y ∈ Rn.

For any fixed γ > 0, let G : Rn × Ω̃→ (−∞,+∞] be a function defined as follows:

G(ϕ, x) = ‖x‖2 − 2〈ϕ, x〉 + ‖ϕ‖2 + 2γ f (x), ∀ϕ ∈ Rn, x ∈ Ω̃, (2.7)

where Ω̃ ⊂ Rn is a nonempty closed and convex subset, and f : Rn → R is convex.
Definition 2.2 [11] We say that ג f

Ω̃
: Rn → 2Ω̃ is a generalized f -projection operator if

ג f
Ω̃
ϕ =

{
w ∈ Ω̃ : G(ϕ,w) = inf

y∈Ω̃
G(ϕ, y)

}
, ∀ϕ ∈ Rn.

Remark 2.3 If f (x) = 0 for all x ∈ Ω̃, then the generalized f -projection operator ג f
Ω̃

is equivalent to
the following metric projection operator:

PΩ̃(ϕ) =
{
w ∈ Ω̃ : ‖w − ϕ‖ = inf

y∈Ω̃
‖y − ϕ‖

}
, ∀ϕ ∈ Rn.

Lemma 2.4 [1, 11] The following statements hold:

(i) For any given ϕ ∈ Rn, ג f
Ω̃
ϕ is nonempty and single-valued;

(ii) For any given ϕ ∈ Rn, x = ג f
Ω̃
ϕ if and only if

〈x − ϕ, y − x〉 + γ f (y) − γ f (x) ≥ 0, ∀y ∈ Ω̃;
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(iii) ג f
Ω̃

: Rn → Ω is nonexpansive, that is,

ג‖ f
Ω̃

x − ג f
Ω̃

y‖ ≤ ‖x − y‖, ∀x, y ∈ Rn.

Lemma 2.5 [17] Let m be a positive number, B ⊂ Rn be a nonempty subset such that

‖d‖ ≤ m for all d ∈ B.

Let Ω : Rn → Rn be a set-valued mapping such that, for each x ∈ Rn, Ω(x) is a closed convex set, and
let f : Rn → R be a convex function on Rn. Assume that

(i) there exists a constant τ > 0 such that

D(Ω(x),Ω(y)) ≤ τ‖x − y‖, x, y ∈ Rn,

whereD(·, ·) is a Hausdorff metric defined on Rn;
(ii) 0 ∈

⋂
w∈Rn

Ω(w);

(iii) f is `-Lipschitz continuous on Rn. Then there exists a constant κ =
√

6τ(m + γ`) such that

ג‖ f
Ω(x)z − ג

f
Ω(x)z‖ ≤ κ‖x − y‖,∀x, y ∈ Rn, z ∈ B.

Lemma 2.6 A function r : Rn → R is said to be a gap function for a generalized vector inverse
quasi-variational inequality on a set S̃ ⊂ Rn if it satisfies the following properties:

(i) r(x) ≥ 0 for any x ∈ S̃;
(ii) r(x̄) = 0, x̄ ∈ S̃ if and only if x̄ is a solution of (2.1).

Definition 2.7 Let B : Rn → Rn be the single-valued mapping and N : Rn × Rn → Rn be a
bi-mapping.

(i) (N,B) is said to be a strongly monotone with respect to the first argument of N and B, if there
exists a constant µB > 0 such that

〈N(y, ·) − N(x, ·),B(y) − B(x)〉 ≥ µB‖y − x‖2, ∀x, y ∈ Rn;

(ii) (N,B) is said to be a relaxed monotone with respect to the second argument of N and B, if there
exists a constant ζB > 0 such that

〈N(·, y) − N(·, x),B(y) − B(x)〉 ≥ −ζB‖y − x‖2, ∀x, y ∈ Rn;

(iii) N is said to be σ-Lipschitz continuous with respect to the first argument with constant σ > 0 and
℘-Lipschitz continuous with respect to the second argument with constant ℘ > 0 such that

‖N(x, x̄) − N(y, ȳ)‖ ≤ σ‖x − y‖ + ℘‖x̄ − ȳ‖,∀x, x̄, y, ȳ ∈ Rn.

(iv) B is said to be `-Lipschitz continuous if there exists a constant ` > 0 such that

‖B(x) − B(y)‖ ≤ `‖x − y‖,∀x, y ∈ Rn.
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Example 2.8 The variational inequality (2.6) can be solved by transforming it into an equivalent
optimization problem for the so-called merit function r(·; τ) : X = Rn → R ∪ {+∞} defined by

r(x; τ) = sup{〈N(x̄), y − x〉X − τ‖x̄ − x‖2X |x ∈ C} for x̄ ∈ C,

where τ is a nonnegative parameter. If X is finite dimensional,the function r(·; 0) is usually called the
gap function for τ = 0, and the function r(·; τ) for τ > 0 is called the regularized gap function.

Example 2.9 Assume that N : Rn → Rn be a given mapping and C a closed convex set in Rn. Let
g and f be given scalar satisfying g > f > 0 then (2.6) has a D-gap function if

Ngf(x) = Ng(x) − Nf(x),∀x ∈ Rn

where D stands for difference.

3. The residual gap functions

In this section, we discuss the residual gap function for generalized vector inverse quasi-variational
inequality problem by using the strong monotonicity, relaxed monotonicity, Hausdorff Lipschitz
continuity and prove error bounds related to the residual gap function. We define the residual gap
function for (2.1) as follows:

rγ(x) = min
1≤i≤m
{‖B(x) − ג fi

Ω(x)[B(x) − γNi(u, v)]‖}, x ∈ Rn, u ∈ F(x), v ∈ P(x), γ > 0. (3.1)

Theorem 3.1 Suppose that F,P : Rn → Rn are set-valued mappings and Ni : Rn × Rn → Rn(i =

1, 2, · · · ,m) are the bi-mappings. Assume that B : Rn → Rn is single-valued mapping, then for any
γ > 0, rγ(x) is a gap function for (2.1) on Rn.

Proof. For any x ∈ Rn,
rγ(x) ≥ 0.

On the other side, if
rγ(x̄) = 0,

then there exists 0 ≤ i0 ≤ m such that

B(x̄) = ג
fi0
Ω(x̄)[B(x̄) − γNi0(ū, v̄)], ∀ū ∈ F(x̄), v̄ ∈ P(x̄).

From Lemma 2.4, we have

〈B(x̄) − [B(x̄) − γNi0(ū, v̄)], y − B(x̄)〉 + γ f (y) − γ f (B(x̄)) ≤ 0,∀y ∈ Ω(x̄), ū ∈ F(x̄), v̄ ∈ P(x̄)

and
〈Ni0(ū, v̄), y − B(x̄)〉 + f (y) − f (B(x̄)) ≤ 0, ∀y ∈ Ω(x̄), ū ∈ F(x̄), v̄ ∈ P(x̄).

It gives that

〈N(ū, v̄), y − B(x̄)〉 + f (y) − f (B(x̄)) < −intRm
+ , ∀y ∈ Ω(x̄), ū ∈ F(x̄), v̄ ∈ P(x̄).
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Thus, x̄ is a solution of (2.1).
Conversely, if x̄ is a solution of (2.1), there exists 1 ≤ i0 ≤ m such that

〈Ni0(ū, v̄), y − B(x̄)〉 + fi0(y) − fi0(B(x̄)) ≥ 0, ∀y ∈ Ω(x̄), ū ∈ F(x̄), v̄ ∈ P(x̄).

By using the Lemma 2.4, we have

B(x̄) = ג
fi0
Ω(x̄)[B(x̄) − γNi0(ū, v̄)], ∀ū ∈ F(x̄), v̄ ∈ P(x̄).

This means that
rγ(x̄) = min

1≤i≤m
{‖B(x̄) − ג fi

Ω(x̄)[B(x̄) − γNi(ū, v̄)]‖} = 0.

The proof is completed. �

Next we will give the residual gap function rγ, error bounds for (2.1).
Theorem 3.2 Let F,P : Rn → Rn be D-ϑF-Lipschitz continuous and D-%P-Lipschitz continuous

mappings, respectively. Let Ni : Rn × Rn → Rn(i = 1, 2, · · · ,m) be σi-Lipschitz continuous with
respect to the first argument and ℘i-Lipschits continuous with respect to the second argument, and
B : Rn → Rn be `-Lipschitz continuous, and (Ni,B) be strongly monotone with respect to the first
argument of Ni and B with positive constant µBi , and relaxed monotone with respect to the second
argument of Ni and B with positive constant ζBi . Let

m⋂
i=1

(fi) , ∅.

Assume that there exists κi ∈

(
0,

µBi − ζ
B
i

σiϑF + %P℘i

)
such that

ג‖ fi
Ω(x)z − ג

fi
Ω(y)z‖ ≤ κi‖x − y‖, ∀x, y ∈ Rn, u ∈ F(x), v ∈ P(x),

z ∈ {w | w = B(x) − γNi(u, v)}. (3.2)

Then, for any x ∈ Rn and µBi > ζ
B
i + κi(σiϑ

F + ℘i%
P),

γ >
κi`

µBi − ζ
B
i − κi(σiϑF + ℘i%P)

,

d(x,f) ≤
γ(σiϑ

F − ℘i%
P) + `

γ(µBi − ζ
B
i − κi(σiϑF + ℘i%P)) − κi`

rγ(x),

where
d(x,f) = inf

x̄∈f
‖x − x̄‖

denotes the distance between the point x and the solution set f.
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Proof. Since
m⋂

i=1

(fi) , ∅.

Let x̄ ∈ Ω(x̄) be the solution of (2.1) and thus for any i ∈ {1, · · · ,m}, we have

〈Ni(ū, v̄), y − B(x̄)〉 + fi(y) − fi(B(x̄)) ≥ 0, ∀y ∈ Ω(x̄), ū ∈ F(x̄), v̄ ∈ P(x̄). (3.3)

From the definition of ג fi
Ω(x̄)[B(x) − γNi(u, v)], and Lemma 2.4, we have

ג〉 fi
Ω(x̄)[B(x) − γNi(u, v)] − (B(x) − γNi(u, v)), y − ג fi

Ω(x̄)[B(x) − γNi(u, v)]〉

+ γ fi(y) − γ fi(ג
fi
Ω(x̄)[B(x) − γNi(u, v)]) ≥ 0, ∀y ∈ Ω(x̄), u ∈ F(x), v ∈ P(x). (3.4)

Since

x̄ ∈
m⋂

i=1

(fi), and B(x̄) ∈ Ω(x̄).

Replacing y by B(x̄) in (3.4), we get

ג〉 fi
Ω(x̄)[B(x) − γNi(u, v)] − (B(x) − γNi(u, v)), B(x̄) − ג fi

Ω(x̄)[B(x) − γNi(u, v)]〉

+ γ fi(B(x̄)) − γ fi(ג
fi
Ω(x̄)[B(x) − γNi(u, v)]) ≥ 0, ∀u ∈ F(x), v ∈ P(x). (3.5)

Since
ג fi
Ω(x̄)[B(x) − γNi(u, v)] ∈ Ω(x̄),

from (3.3), it follows that

〈γNi(ū, v̄), ג fi
Ω(x̄)[B(x) − γNi(u, v)] − B(x̄)〉 + γ fi(ג

fi
Ω(x̄)[B(x) − γNi(u, v)]) − γ fi(B(x̄)) ≥ 0. (3.6)

Utilizing (3.5) and (3.6), we have

〈γNi(ū, v̄) − γNi(u, v) − ג fi
Ω(x̄)[B(x) − γNi(u, v)] + B(x), ג fi

Ω(x̄)[B(x) − γNi(u, v)] − B(x̄)〉 ≥ 0,

which implies that

〈γNi(ū, v̄) − γNi(u, v), ג fi
Ω(x̄)[B(x) − γNi(u, v)] − B(x)〉 − 〈γNi(ū, v̄) − γNi(u, v),B(x̄) − B(x)〉

+〈B(x) − ג fi
Ω(x̄)[B(x) − γNi(u, v)], ג fi

Ω(x̄)[B(x) − γNi(u, v)] − B(x)〉

+〈B(x) − ג fi
Ω(x̄)[B(x) − γNi(u, v)],B(x) − B(x̄)〉 ≥ 0.

Since F is D-ϑF-Lipschitz continuous, P is D-%P-Lipschits continuous and Ni is σi-Lipschitz
continuous with respect to the first argument and ℘i-Lipschitz continuous with respect to the second
argument, we have
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‖ū − u‖ ≤ D(F(x̄),F(x)) ≤ ϑF‖x̄ − x‖;
‖v̄ − v‖ ≤ D(P(x̄),P(x)) ≤ %P‖x̄ − x‖;
‖Ni(ū, v̄) − Ni(u, v)‖ ≤ σi‖ū − u‖ + ℘i‖v̄ − v‖. (3.7)

Again, for i = 1, 2, · · · ,m, (Ni,B) are strongly monotone with respect to the first argument of Ni and
B with a positive constant µBi ,, and relaxed monotone with respect to the second argument of Ni and B
with a positive constant ζBi , we have

〈γNi(ū, v̄) − γNi(u, v), ג fi
Ω(x̄)[B(x) − γNi(u, v)] − B(x)〉 − ‖B(x) − ג fi

Ω(ū)[B(x) − γNi(u, v)]‖2

+〈B(x) − ג fi
Ω(x̄)[B(x) − γNi(u, v)],B(x) − B(x̄)〉 ≥ γµBi ‖x − x̄‖2 − γζBi ‖x − x̄‖2.

By adding ג fi
Ω(x)[B(x) − γNi(u, v)] and using the Cauchy-Schwarz inequality along with the triangular

inequality, we have

‖γNi(ū, v̄) − γNi(u, v)‖
{
ג‖ fi

Ω(x̄)[B(x) − γNi(u, v)] − ג fi
Ω(x)[B(x) − γNi(u, v)]‖

ג‖+ fi
Ω(x)[B(x) − γNi(u, v)] − B(x)‖

}
+‖B(x) − B(x̄)‖

{
‖B(x) − ג fi

Ω(x)[B(x) − γNi(u, v)]‖ + ג‖ fi
Ω(x)[B(x) − γNi(u, v)]

ג− fi
Ω(x̄)[B(x) − γNi(u, v)]‖

}
≥ γµBi ‖x − x̄‖2 − γζBi ‖x − x̄‖2.

Using the (3.7) and condition (3.2), we have

(σiϑ
F + ℘i%

P)γ‖x̄ − x‖
{
κi‖x̄ − x‖ + ג‖ fi

Ω(x)[B(x) − γNi(u, v)] − B(x)‖
}

+`‖x − x̄‖
{
‖B(x) − ג fi

Ω(x)[B(x) − γNi(u, v)]‖ + κi‖x − x̄‖
}
≥ γ(µBi − ζ

B
i )‖x − x̄‖2.

Hence, for any x ∈ Rn and i ∈ {1, 2, · · · ,m}, µBi > ζ
B
i + κi(σiϑ

F + ℘i%
P),

γ >
κi`

µBi − ζ
B
i − κi(σiϑF + ℘i%P)

,

we have

‖x − x̄‖ ≤
γ(σiϑ

F + ℘i%
P) + `

γ(µBi − ζ
B
i − κi(σiϑF + ℘i%P)) − κi`

‖B(x) − ג fi
Ω(x)[B(x) − γNi(u, v)]‖, ∀u ∈ F(x), v ∈ P(x).

This implies

‖x − x̄‖ ≤
γ(σiϑ

F + ℘i%
P) + `

γ(µBi − ζ
B
i − κi(σiϑF + ℘i%P)) − κi`

min
1≤i≤m

{
‖B(x) − ג fi

Ω(x)[B(x) − γNi(u, v)]‖
}

which means that

d(x,f) ≤ ‖x − x̄‖ ≤
γ(σiϑ

F + ℘i%
P) + `

γ(µBi − ζ
B
i − κi(σiϑF + ℘i%P)) − κi`

rγ(x).

The proof is completed. �
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4. The regularized gap function

The regularized gap function for (2.1) is defined for all x ∈ Rn as follows:

φγ(x) = min
1≤i≤m

sup
y∈Ω(x),

u∈F(x),v∈P(x)

{
〈Ni(u, v),B(x) − y〉 + fi(B(x)) − fi(y) −

1
2γ
‖B(x) − y‖2

}
where γ > 0 is a parameter.

Lemma 4.1 We have

φγ(x) = min
1≤i≤m

{
〈Ni(u, v),Ri

γ(x)〉 + fi(B(x)) − fi(B(x) − Ri
γ(x)) −

1
2γ
‖Ri

γ(x)‖2
}
, (4.1)

where
Ri
γ(x) = B(x) − ג fi

Ω(x)[B(x) − γNi(u, v)],∀x ∈ Rn, u ∈ F(x), v ∈ P(x)

and if
x ∈ B−1(Ω)

and
B−1(Ω) =

{
ξ ∈ Rn

∣∣∣B(ξ) ∈ Ω(ξ)
}
,

then
φγ(x) ≥

1
2γ

rγ(x)2. (4.2)

Proof. For given x ∈ Rn, u ∈ F(x), v ∈ P(x) and i ∈ {1, 2, · · · ,m}, set

ψi(x, y) = 〈Ni(u, v),B(x) − y〉 + fi(B(x)) − fi(y) −
1

2γ
‖B(x) − y‖2, y ∈ Rn.

Consider the following problem:
gi(x) = max

y∈Ω(x)
ψi(x, y).

Since ψi(x, ·) is a strongly concave function and Ω(x) is nonempty closed convex, the above
optimization problem has a unique solution z ∈ Ω(x). Evoking the condition of optimality at z, we get

0 ∈ Ni(u, v) + ∂ fi(z) +
1
γ

(z − B(x)) +NΩ(x)(z),

whereNΩ(x)(z) is the normal cone at z to Ω(x) and ∂ fi(z) denotes the subdifferential of fi at z. Therefore,

〈z − (B(x) − γNi(u, v)), y − z〉 + γ fi(y) − γ fi(z) ≥ 0, ∀y ∈ Ω(x), u ∈ F(x), v ∈ P(x)

and so
z = ג fi

Ω(x)[B(x) − γNi(u, v)], ∀u ∈ F(x), v ∈ P(x).

Hence gi(x) can be rewritten as
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gi(x) = 〈Ni(u, v),B(x) − ג fi
Ω(x)[B(x) − γNi(u, v)]〉 + fi(B(x)) − fi(ג

fi
Ω(x)[B(x) − γNi(u, v)])

−
1

2γ
‖B(x) − ג fi

Ω(x)[B(x) − γNi(u, v)]‖2, ∀u ∈ F(x), v ∈ P(x).

Letting
Ri
γ(x) = B(x) − ג fi

Ω(x)[B(x) − γNi(u, v)], ∀u ∈ F(x), v ∈ P(x),

we get

gi(x) = 〈Ni(u, v),Ri
γ(x)〉 + fi(B(x)) − fi(B(x) − Ri

γ(x))

−
1

2γ
‖Ri

γ(x)‖2, ∀u ∈ F(x), v ∈ P(x), (4.3)

(4.4)

and so
φγ(x) = min

1≤i≤m

{
〈Ni(u, v),Ri

γ(x)〉 + fi(B(x)) − fi(B(x) − Ri
γ(x)) −

1
2γ
‖Ri

γ(x)‖2
}
.

From the definition of projection ג fi
Ω(x)[B(x) − γNi(u, v)], we have

ג〉 fi
Ω(x)[B(x) − γNi(u, v)] − B(x) + γNi(u, v), y − ג fi

Ω(x)[B(x) − γNi(u, v)]〉

+ γ fi(y) − γ fi(ג
fi
Ω(x)[B(x) − γNi(u, v)]) ≥ 0, ∀u ∈ F(x), v ∈ P(x). (4.5)

For any x ∈ B−1(Ω), we have
B(x) ∈ Ω(x).

Therefore, putting y = B(x) in (4.5), we get

〈γNi(u, v) − Ri
γ(x),Ri

γ(x)〉 + γ fi(B(x)) − γ fi(B(x) − Ri
γ(x)) ≥ 0, ∀u ∈ F(x), v ∈ P(x),

that is,

〈Ni(u, v),Ri
γ(x)〉 + fi(B(x)) − fi(B(x) − Ri

γ(x)) ≥
1
γ
〈Ri

γ(x),Ri
γ(x)〉

=
1
γ
‖Ri

γ(x)‖2. (4.6)

From the definition of rγ(x) and (4.1), we get

φγ(x) ≥
1

2γ
rγ(x)2.

The proof is completed. �

Theorem 4.2 For γ > 0, φγ is a gap function for (2.1) on the set

B−1(Ω) = {ξ ∈ Rn|B(ξ) ∈ Ω(ξ)}.
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Proof. From the definition of φγ, we have

φγ(x) ≥ min
1≤i≤m

{
〈Ni(u, v),B(x) − y〉 + fi(B(x)) − fi(y) −

1
2γ
‖B(x) − y‖2

}
, (4.7)

for all y ∈ Ω(x), u ∈ F(x), v ∈ P(x).

Therefore, for any x ∈ B−1(Ω), putting y = B(x) in (4.7), we have

φγ(x) ≥ 0.

Suppose that x̄ ∈ B−1(ξ) with φγ(x̄) = 0. From (4.2), it follows that

rγ(x̄) = 0,

which implies that x̄ is the solution of (2.1).
Conversely, if x̄ is a solution of (2.1), there exists 1 ≤ i0 ≤ m such that

〈Ni0(ū, v̄),B(x̄) − y〉 + fi0(B(x̄)) − fi0(y) ≤ 0, ∀y ∈ Ω(x̄), ū ∈ F(x̄), v̄ ∈ P(x̄),

which means that

min
1≤i≤m

{
sup

y∈Ω(x̄),
ū∈F(x̄),v̄∈P(x̄)

{
〈Ni(ū, v̄),B(x̄) − y〉 + fi(B(x̄)) − fi(y) −

1
2γ
‖B(x̄) − y‖2

}}
≤ 0.

Thus,
φγ(x̄) ≤ 0.

The preceding claim leads to
φγ(x̄) ≥ 0

and it implies that
φγ(x̄) = 0.

The proof is completed. �

Since φγ can act as a gap function for (2.1), according to Theorem 4.2, investigating the error bound
properties that can be obtained with φγ is interesting. The following corollary is obtained directly by
Theorem 3.2 and (3.5).

Corollary 4.3 Let F,P : Rn → Rn be D-ϑF-Lipschitz continuous and D-%P-Lipschitz continuous
mappings, respectively. Let Ni : Rn × Rn → Rn (i = 1, 2, · · · ,m) be σi-Lipschitz continuous with
respect to the first argument and ℘i-Lipschitz continuous with respect to the second argument, B :
Rn → Rn be `-Lipschitz continuous, and (Ni,B) be strongly monotone with respect to the first argument
of N and B with respect to the constant µBi > 0, and relaxed monotone with respect to the second
argument of N and B with respect to the constant ζBi > 0. Let

m⋂
i=1

(fi) , ∅.
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Assume that there exists κi ∈

(
0,

µBi − ζ
B
i

ϑFσi + ℘i%P

)
such that

ג‖ fi
Ω(x)z − ג

fi
Ω(y)z‖ ≤ κi‖x − y‖, ∀x, y ∈ Rn, u ∈ F(x), v ∈ P(x) ∀z ∈ {w | w = B(x) − γNi(u, v)}.

Then, for any x ∈ B−1(Ω) and any

γ >
κi`

µBi − ζ
B
i − κi(ϑFσi + ℘i%P)

,

d(x,f) ≤
γ(ϑFσi + ℘i%

P) + `

γ(µBi − ζ
B
i − κi(ϑFσi + ℘i%P)) − κi`

√
2γφγ(x).

5. The global gap functions

The regularized gap function φγ does not provide global error bounds for (2.1) on Rn. In this section,
we first discuss the D-gap function, see [6] for (2.1), which gives Rn the global error bound for (2.1).
For (2.1) with f > g > 0, the D-gap function is defined as follows:

Gfg(x) = min
1≤i≤m

{
sup

y∈Ω(x),
u∈F(x),v∈P(x)

{
〈Ni(u, v),B(x) − y〉 + fi(B(x)) − fi(y) −

1
2f
‖B(x) − y‖2

}
− sup

y∈Ω(x)
u∈F(x),v∈P(x)

{
〈Ni(u, v),B(x) − y〉 + fi(B(x)) − fi(y) −

1
2g
‖B(x) − y‖2

}}
.

From (4.1), we know Gfg can be rewritten as

Gfg(x) = min
1≤i≤m

{
〈Ni(u, v),Ri

f(x)〉 + fi(B(x)) − fi(B(x) − Ri
f(x)) −

1
2f
‖Ri
f(x)‖2

−
(
〈Ni(u, v),Ri

g(x)〉 + fi(B(x)) − fi(B(x) − Ri
g(x)) −

1
2g
‖Ri
g(x)‖2

)}
,

where
Ri
f(x) = B(x) − ג fi

Ω(x)[B(x) − fNi(u, v)]

and
Ri
g(x) = B(x) − ג fi

Ω(x)[B(x) − gNi(u, v)], ∀x ∈ Rn, u ∈ F(x), v ∈ P(x).

Theorem 5.1 For any x ∈ Rn, f > g > 0, we have

1
2

(
1
g
−

1
f

)
r2
g(x) ≤ Gfg(x) ≤

1
2

(
1
g
−

1
f

)
r2
f(x). (5.1)

Proof. From the definition of Gfg(x), it follows that

Gfg(x) = min
1≤i≤m

{
〈Ni(u, v),Ri

f(x) − Ri
g(x)〉 − fi(B(x) − Ri

f(x))

−
1

2f
‖Ri
f(x)‖2 + fi(B(x) − Ri

g(x)) +
1

2g
‖Ri
g(x)‖2

}
,∀u ∈ F(x), v ∈ P(x).
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For any given i ∈ {1, 2, · · · ,m}, we set

gi
fg(x) = 〈Ni(u, v),Ri

f(x) − Ri
g(x)〉 − fi(B(x) − Ri

f(x)) −
1

2f
‖Ri
f(x)‖2

+ fi(B(x) − Ri
g(x)) +

1
2g
‖Ri
g(x)‖2, ∀u ∈ F(x), v ∈ P(x). (5.2)

From ג fi
Ω(x)[B(x) − gNi(u, v)] ∈ Ω(x), by Lemma 2.4, we know

ג〉 fi
Ω(x)[B(x) − fNi(u, v)] − (B(x) − fNi(u, v)), ג fi

Ω(x)[B(x) − gNi(u, v)] − ג fi
Ω(x)[B(x) − fNi(u, v)]〉

+ f fi(ג
fi
Ω(x)[B(x) − gNi(u, v)]) − f fi(ג

fi
Ω(x)[B(x) − fNi(u, v)]) ≥ 0, ∀u ∈ F(x), v ∈ P(x)

which means that

〈fNi(u, v) − Ri
f(x),Ri

f(x) − Ri
g(x)〉 + f fi(B(x) − Ri

g(x)) − f fi(B(x) − Ri
f(x)) ≥ 0. (5.3)

Combining (5.2) and (5.3), we get

gi
fg(x) ≥

1
f
〈Ri
f(x),Ri

f(x) − Ri
g(x)〉 −

1
2f
‖Ri
f(x)‖2 +

1
2g
‖Ri
g(x)‖2

=
1

2f
‖Ri
f(x) − Ri

g(x)‖2 +
1
2

(
1
g
−

1
f

)
‖Ri
g(x)‖2. (5.4)

Since
ג fi
Ω(x)[B(x) − fNi(u, v)] ∈ Ω(x),

from Lemma 2.4, we have

ג〉 fi
Ω(x)[B(x) − gNi(u, v)] − (B(x) − gNi(u, v)), ג fi

Ω(x)[B(x) − fNi(u, v)] − ג fi
Ω(x)[B(x) − gNi(u, v)]〉

+ g fi(ג
fi
Ω(x)[B(x) − fNi(u, v)]) − g fi(ג

fi
Ω(x)[B(x) − gNi(u, v)]) ≥ 0, ∀u ∈ F(x), v ∈ P(x).

Hence
〈gNi(u, v) − Ri

g(x),Ri
g(x) − Ri

f(x)〉 + g fi(B(x) − Ri
f(x))

− g fi(B(x) − Ri
g(x)) ≥ 0,∀u ∈ F(x), v ∈ P(x)

and so

1
g
〈Ri
g(x),Ri

f(x) − Ri
g(x)〉 ≥ 〈Ni(u, v),Ri

f(x) − Ri
g(x)〉

− fi(B(x) − Ri
f(x)) + fi(B(x) − Ri

g(x)).

It will require and (5.3),

gi
fg(x) ≤

1
g
〈Ri
g(x),Ri

f(x) − Ri
g(x)〉 −

1
2f
‖Ri
f(x)‖2 +

1
2g
‖Ri
g(x)‖2

= −
1

2g
‖Ri
f(x) − Ri

g(x)‖2 +
1
2

(
1
g
−

1
f

)
‖Ri
f(x)‖2. (5.5)
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From (5.4) and (5.5), for any i ∈ {1, 2, · · · ,m}, we get

1
2

(
1
g
−

1
f

)
‖Ri
g(x)‖2 ≤ gi

fg(x) ≤
1
2

(
1
g
−

1
f

)
‖Ri
f(x)‖2.

Hence
1
2

(
1
g
−

1
f

)
min
1≤i≤m

{
‖Ri
g(x)‖2

}
≤ min

1≤i≤m

{
gi
fg(x)

}
≤

1
2

(
1
g
−

1
f

)
min
1≤i≤m

{
‖Ri
f(x)‖2

}
,

and so
1
2

(
1
g
−

1
f

)
r2
g(x) ≤ Gfg(x) ≤

1
2

(
1
g
−

1
f

)
r2
f(x).

The proof is completed. �

Now we are in position to prove that Gfg in the set Rn is a global gap function for (2.1).
Theorem 5.2 For 0 < g < f, Gfg is a gap function for (2.1) on Rn.

Proof. From (5.2), we have
Gfg(x) ≥ 0, ∀x ∈ Rn.

Suppose that x̄ ∈ Rn with
Gfg(x̄) = 0,

then (5.2) implies that
rg(x̄) = 0.

From Theorem 3.1, we know x̄ is a solution of (2.1).
Conversely, if x̄ is a solution of (2.1), than from Theorem 3.1, it follows that

rf(x̄) = 0.

Obviously, (5.2) shows that
Gfg(x̄) = 0.

The proof is completed. �

Use Theorem 3.2 and (5.2), we immediately get a global error bound in the set Rn for (2.1).
Corollary 5.3 Let F,P : Rn → Rn be D-ϑF-Lipschitz continuous and D-%P-Lipschitz continuous

mappings, respectively. Let Ni : Rn × Rn → Rn (i = 1, 2, · · · ,m) be σi-Lipschitz continuous with
respect to the first argument and ℘i-Lipschitz continuous with respect to the second argument, and
B : Rn → Rn be `-Lipschitz continuous. Let (Ni,B) be the strongly monotone with respect to the first
argument of Ni and B with constant µBi and relaxed monotone with respect to the second argument of
N and B with modulus ζBi . Let

m⋂
i=1

(fi) , ∅.

Assume that there exists κi ∈

(
0,

µBi − ζ
B
i

ϑFσi + ℘i%P

)
such that

ג‖ fi
Ω(x)z − ג

fi
Ω(y)z‖ ≤ κi‖x − y‖,∀x, y ∈ Rn, u ∈ F(x), v ∈ P(x), z ∈ {w | w = B(x) − gNi(u, v)}.
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Then, for any x ∈ Rn and

g >
κi`

µBi − ζ
B
i − κi(ϑFσi + ℘i%P)

,

d(x,fi) ≤
g(ϑFσi + %P℘i) + `

g(µBi − ζ
B
i − κi(ϑFσi + %P℘i)) − κi`

√
2 f g
f − g

Gfg(x).

6. Conclusions

One of the traditional approaches to evaluating a variational inequality (VI) and its variants is to turn
into an analogous optimization problem by notion of a gap function. In addition, gap functions play
a pivotal role in deriving the so-called error bounds that provide a measure of the distances between
the solution set and feasible arbitrary point. Motivated and inspired by the researches going on in
this direction, the main purpose of this paper is to further study the generalized vector inverse quasi-
variational inequality problem (1.2) and to obtain error bounds in terms of the residual gap function,
the regularized gap function, and the global gap function by utilizing the relaxed monotonicity and
Hausdorff Lipschitz continuity. These error bounds provide effective estimated distances between an
arbitrary feasible point and the solution set of (1.2).
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