Research article

Derivation of some integrals in Gradshteyn and Ryzhik

  • Received: 04 October 2020 Accepted: 29 November 2020 Published: 30 November 2020
  • MSC : 01A55, 11M06, 11M35, 30-02, 30D10, 30D30, 30E20

  • In this work we present derivations of the formula listed in entry 4.113 in the sixth edition of Gradshteyn and Rhyzik's table of integrals. We evaluate two definite integrals of the form $ \begin{equation*} \int_{0}^{\infty}\frac{e^{-iay}(-iy+\log(z))^k+e^{iay}(iy+\log(z))^k}{\cosh(by)}dy \end{equation*} $ and $ \begin{equation*} \int_{0}^{\infty}\frac{e^{iay}(iy+\log(z))^k-e^{-iay}(-iy+\log(z))^k}{\sinh(b y)}dy \end{equation*} $ in terms of the Lerch function where $ k $, $ a $, $ z $ and $ b $ are arbitrary complex numbers. The entries in the table(s) are obtained as special cases in the paper below.

    Citation: Robert Reynolds, Allan Stauffer. Derivation of some integrals in Gradshteyn and Ryzhik[J]. AIMS Mathematics, 2021, 6(2): 1816-1821. doi: 10.3934/math.2021109

    Related Papers:

  • In this work we present derivations of the formula listed in entry 4.113 in the sixth edition of Gradshteyn and Rhyzik's table of integrals. We evaluate two definite integrals of the form $ \begin{equation*} \int_{0}^{\infty}\frac{e^{-iay}(-iy+\log(z))^k+e^{iay}(iy+\log(z))^k}{\cosh(by)}dy \end{equation*} $ and $ \begin{equation*} \int_{0}^{\infty}\frac{e^{iay}(iy+\log(z))^k-e^{-iay}(-iy+\log(z))^k}{\sinh(b y)}dy \end{equation*} $ in terms of the Lerch function where $ k $, $ a $, $ z $ and $ b $ are arbitrary complex numbers. The entries in the table(s) are obtained as special cases in the paper below.


    加载中


    [1] F. Oberhettinger, Tables of Fourier Transforms and Fourier Transforms of Distributions, 1st ed., Springer-Verlag, Berlin Heidelberg, 1990.
    [2] M. Abramowitz, I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, New York, Dover, 1982.
    [3] A. Erdéyli, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953.
    [4] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Tables of Integral Transforms, Vol. I, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1954.
    [5] I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series and Products, 6 Ed, Academic Press, USA, 2000.
    [6] R. Reynolds, A. Stauffer, A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples, International Mathematical Forum, 15, 2020, 235–244. doi: 10.12988/imf.2020.91272
    [7] Wolfram Research. The Wolfram Functions Site, Gauss Hypergeometric function 2F1, 1998–2020 Wolfram Research, Inc. Available from: https://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/03/.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2024) PDF downloads(160) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog