This study extended a fundamental idea about convexificators to the Hadamard manifolds. The mean value theorem for convexificators on the Hadamard manifold was also derived. An important characterization for the bounded convexificators to have $ \partial_{*}^{*} $-geodesic convexity was derived and the monotonicity of the bounded convexificators was explored. Additionally, a convexificator-based vector variational inequality problem on the Hadamard manifold was examined. Furthermore, the necessary and sufficient conditions for vector optimization problems in terms of the Stampacchia and Minty-type partial vector variational inequality problems ($ \partial_{*}^{*} $-VVIPs) were derived.
Citation: Nagendra Singh, Sunil Kumar Sharma, Akhlad Iqbal, Shahid Ali. On relationships between vector variational inequalities and optimization problems using convexificators on the Hadamard manifold[J]. AIMS Mathematics, 2025, 10(3): 5612-5630. doi: 10.3934/math.2025259
This study extended a fundamental idea about convexificators to the Hadamard manifolds. The mean value theorem for convexificators on the Hadamard manifold was also derived. An important characterization for the bounded convexificators to have $ \partial_{*}^{*} $-geodesic convexity was derived and the monotonicity of the bounded convexificators was explored. Additionally, a convexificator-based vector variational inequality problem on the Hadamard manifold was examined. Furthermore, the necessary and sufficient conditions for vector optimization problems in terms of the Stampacchia and Minty-type partial vector variational inequality problems ($ \partial_{*}^{*} $-VVIPs) were derived.
[1] | Q. H. Ansari, M. Islam, J. C. Yao, Nonsmooth convexity and monotonicity in terms of bifunction on Riemannian manifolds, J. Nonlinear Convex Anal., 18 (2017), 743–762. |
[2] |
H. A. Bhat, A. Iqbal, M. Aftab, First and second order necessary optimality conditions for multiobjective programming with interval-valued objective functions on Riemannian manifolds, RAIRO-Oper. Res., 58 (2024), 4259–4276. https://doi.org/10.1051/ro/2024157 doi: 10.1051/ro/2024157
![]() |
[3] | W. M. Boothby, An introduction to differential manifolds and Riemannian geometry, Revised, 2 Eds., Vol. 120, Academic Press, 2003. |
[4] |
S. L. Chen, Existence results for vector variational inequality problems on Hadamard manifolds, Optim. Lett., 14 (2020), 2395–2411. https://doi.org/10.1007/s11590-020-01562-7 doi: 10.1007/s11590-020-01562-7
![]() |
[5] |
S. L. Chen, N. J. Huang, Vector variational inequalities and vector optimization problems on Hadamard manifolds, Optim. Lett., 10 (2016), 753–767. https://doi.org/10.1007/s11590-015-0896-1 doi: 10.1007/s11590-015-0896-1
![]() |
[6] | V. F. Demyanov, Convexification and concavification of a positively homogenous function by the same family of linear functions, Universita di Pisa, Pisa, 1994. |
[7] | V. F. Demyanov, Exhausters and convexificators—new tools in nonsmooth analysis, In: V. Demyanov, A. Rubinov, Quasidifferentiability and related topics, Nonconvex Optimization and Its Applications, Vol. 43, Springer, Boston, 2000. https://doi.org/10.1007/978-1-4757-3137-8_4 |
[8] |
V. F. Demyanov, V. Jeyakumar, Hunting for a smaller convex subdifferential, J. Glob. Optim., 10 (1997), 305–326. https://doi.org/10.1023/A:1008246130864 doi: 10.1023/A:1008246130864
![]() |
[9] |
X. Feng, W. Jia, Existence and stability of generalized weakly-mixed vector equilibrium problems, J. Nonlinear Funct. Anal., 2023 (2023), 1–11. https://doi.org/10.23952/jnfa.2023.2 doi: 10.23952/jnfa.2023.2
![]() |
[10] |
O. P. Ferreira, L. R. L. Pérez, S. Z. Németh, Singularities of Monotone Vector Fields and an Extragradient-type Algorithm, J. Glob. Optim., 31 (2005), 133–151. https://doi.org/10.1007/s10898-003-3780-y doi: 10.1007/s10898-003-3780-y
![]() |
[11] | F. Giannessi, Theorem of the alternative, quadratic programming and complementary problems, In: R. W. Cottle, F. Giannessi, J. L. Lions, Variational inequalities and complementary problems, New York: Wiley, 1980,151–186. |
[12] | F. Giannessi, On minty variational principle, In: F. Giannessi, S. Komlósi, T. Rapcsák, New trends in mathematical programming, Applied Optimization, Vol 13, Springer, Boston, 1998. https://doi.org/10.1007/978-1-4757-2878-1_8 |
[13] |
A. Jayswal, B. Kumari, I. Ahmad, Vector variational inequalities on Riemannian manifolds with approximate geodesic star-shaped functions, Rend. Circ. Mat. Palermo II. Ser., 72 (2023), 157–167. https://doi.org/10.1007/s12215-021-00671-1 doi: 10.1007/s12215-021-00671-1
![]() |
[14] |
V. Jeyakumar, D. T. Luc, Nonsmooth calculus, minimality, and monotonicity of convexificators, J. Optim. Theory Appl., 101 (1999), 599–621. https://doi.org/10.1023/A:1021790120780 doi: 10.1023/A:1021790120780
![]() |
[15] | J. Jost, Nonpositive curvature: geometric and analytic aspects, Birkhäuser Basel, 1997. https://doi.org/10.1007/978-3-0348-8918-6 |
[16] |
V. Laha, S. K. Mishra, On vector optimization problems and vector variational inequalities using convexificators, Optimization, 66 (2017), 1837–1850. https://doi.org/10.1080/02331934.2016.1250268 doi: 10.1080/02331934.2016.1250268
![]() |
[17] |
X. Li, X. Ge, K. Tu, The generalized conditional gradient method for composite multiobjective optimization problems on Riemannian manifolds, J. Nonlinear Var. Anal., 7 (2023), 839–857. https://doi.org/10.23952/jnva.7.2023.5.10 doi: 10.23952/jnva.7.2023.5.10
![]() |
[18] | G. J. Minty, On the generalization of a direct method of the calculus of variations, Bull. Amer. Math. Soc., 73 (1967), 315–321. |
[19] |
S. K. Mishra, V. Laha, On minty variational principle for nonsmooth vector optimization problems with approximate convexity, Optim. Lett., 10 (2016), 577–589. https://doi.org/10.1007/s11590-015-0883-6 doi: 10.1007/s11590-015-0883-6
![]() |
[20] |
D. Motreanu, N. H. Pavel, Quasi-tangent vectors in flow-invariance and optimization problems on Banach manifolds, J. Math. Anal. Appl., 88 (1982), 116–132. https://doi.org/10.1016/0022-247X(82)90180-9 doi: 10.1016/0022-247X(82)90180-9
![]() |
[21] | M. P. Do Carmo, J. Flaherty Francis, Riemannian geometry, Birkhauser Boston, Boston, 1992. |
[22] |
S. Z. Nemeth, Variational inequalities on Hadamard manifolds, Nonlinear Anal.: Theory, Methods Appl., 52 (2003), 1491–1498. https://doi.org/10.1016/S0362-546X(02)00266-3 doi: 10.1016/S0362-546X(02)00266-3
![]() |
[23] |
S. Rastogi, A. Iqbal, Second-order optimality conditions for interval-valued optimization problem, Asia-Pacific J. Oper. Res., 2024. https://doi.org/10.1142/S0217595924500209 doi: 10.1142/S0217595924500209
![]() |
[24] | T. Sakai, Riemannian geometry, In: Translations of mathematical monographs, Vol. 149, American Mathematical Society, 1996. |
[25] |
N. Singh, A. Iqbal, S. Ali, Bi-step method for variational inequalities on Riemannian manifold of non-negative constant curvature, Int. J. Appl. Comput. Math, 9 (2023), 25. https://doi.org/10.1007/s40819-023-01517-3 doi: 10.1007/s40819-023-01517-3
![]() |
[26] |
N. Singh, A. Iqbal, S. Ali, Nonsmooth vector variational inequalities on Hadamard manifold and their existence, J. Anal., 32 (2024), 41–56. https://doi.org/10.1007/s41478-023-00591-6 doi: 10.1007/s41478-023-00591-6
![]() |
[27] | G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, Académie des Sciences de Paris, 258 (1964), 4413–4416. |
[28] | C. Udriste, Convex functions and optimization methods on Riemannian manifolds, Mathematics and Its Applications, Springer Dordrecht, 1994. https://doi.org/10.1007/978-94-015-8390-9 |
[29] |
B. B. Upadhyay, L. Li, P. Mishra, Nonsmooth interval-valued multiobjective optimization problems and generalized variational inequalities on Hadamard manifolds, Appl. Set-Valued Anal. Optim., 5 (2023), 69–84. https://doi.org/10.23952/asvao.5.2023.1.05 doi: 10.23952/asvao.5.2023.1.05
![]() |