Research article

On the numerical solution of highly oscillatory Fredholm integral equations using a generalized quadrature method

  • Received: 18 December 2024 Revised: 20 February 2025 Accepted: 24 February 2025 Published: 13 March 2025
  • MSC : 65N35, 65R20

  • In this paper, a numerical method is presented for solving Fredholm integral equations with highly oscillatory kernels. The proposed method combined piecewise collocation with a generalized quadrature rule in a uniform mesh. Due to the oscillatory nature of the kernels of integral equation, the discretized collocation equations required the evaluation of oscillatory integrals, which were computed using an efficient generalized quadrature rule. Convergence was analyzed in terms of both asymptotic and classical accuracy. The method's practical performance and reliability were showcased with two numerical examples.

    Citation: Adil Owaid Jhaily, Saeed Sohrabi, Hamid Ranjbar. On the numerical solution of highly oscillatory Fredholm integral equations using a generalized quadrature method[J]. AIMS Mathematics, 2025, 10(3): 5631-5650. doi: 10.3934/math.2025260

    Related Papers:

  • In this paper, a numerical method is presented for solving Fredholm integral equations with highly oscillatory kernels. The proposed method combined piecewise collocation with a generalized quadrature rule in a uniform mesh. Due to the oscillatory nature of the kernels of integral equation, the discretized collocation equations required the evaluation of oscillatory integrals, which were computed using an efficient generalized quadrature rule. Convergence was analyzed in terms of both asymptotic and classical accuracy. The method's practical performance and reliability were showcased with two numerical examples.



    加载中


    [1] H. Brunner, Collocation methods for Volterra integral and related functional equations, Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511543234
    [2] H. Brunner, Volterra integral equations: an introduction to theory and applications, Cambridge University Press, 2017. https://doi.org/10.1017/9781316162491
    [3] H. Brunner, On Volterra integral operators with highly oscillatory kernels, Discrete Contin. Dyn. Syst., 34 (2014), 915–929. https://doi.org/10.3934/dcds.2014.34.915 doi: 10.3934/dcds.2014.34.915
    [4] J. G. Blom, H. Brunner, The numerical solution of nonlinear Volterra integral equations of the second kind by collocation and iterated collocation methods, SIAM J. Sci. Statist. Comput., 8 (1987), 806–830. https://doi.org/10.1137/0908068 doi: 10.1137/0908068
    [5] H. Brunner, A. Iserles, S. P. Nørsett, The computation of the spectra of highly oscillatory Fredholm integral operators, J. Integral Equ. Appl., 23 (2011), 467–519. https://doi.org/10.1216/JIE-2011-23-4-467 doi: 10.1216/JIE-2011-23-4-467
    [6] A. Bellen, Z. Jackiewicz, R. Vermiglio, M. Zennaro, Stability analysis of Runge-Kutta methods for Volterra integral equations of the second kind, IMA J. Numer. Anal., 10 (1990), 103–118. https://doi.org/10.1093/imanum/10.1.103 doi: 10.1093/imanum/10.1.103
    [7] H. Brunner, Y. Y. Ma, Y. S. Xu, The oscillation of solutions of Volterra integral and integro-differential equations with highly oscillatory kernels, J. Integral Equ. Appl., 27 (2015), 455–487. https://doi.org/10.1216/JIE-2015-27-4-455 doi: 10.1216/JIE-2015-27-4-455
    [8] D. Conte, Z. Jackiewicz, B. Paternoster, Two-step almost collocation methods for Volterra integral equations, Appl. Math. Comput., 204 (2008), 839–853. https://doi.org/10.1016/j.amc.2008.07.026 doi: 10.1016/j.amc.2008.07.026
    [9] D. Conte, L. Moradi, B. Paternoster, H. Podhaisky, Collocation methods for nonlinear Volterra integral equations with oscillatory kernel, Appl. Numer. Math., 203 (2024), 1–15. https://doi.org/10.1016/j.apnum.2024.05.002 doi: 10.1016/j.apnum.2024.05.002
    [10] D. Conte, B. Paternoster, Multistep collocation methods for Volterra integral equations, Appl. Numer. Math., 59 (2009), 1721–1736. https://doi.org/10.1016/j.apnum.2009.01.001 doi: 10.1016/j.apnum.2009.01.001
    [11] Y. P. Chen, T. Tang, Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel, Math. Comp., 79 (2010), 147–167.
    [12] A. Deaño, D. Huybrechs, Complex Gaussian quadrature of oscillatory integrals, Numer. Math., 112 (2009), 197–219. https://doi.org/10.1007/s00211-008-0209-z doi: 10.1007/s00211-008-0209-z
    [13] S. Fazeli, G. Hojjati, S. Shahmorad, Multistep Hermite collocation methods for solving Volterra integral equations, Numer. Algor., 60 (2012), 27–50. https://doi.org/10.1007/s11075-011-9510-5 doi: 10.1007/s11075-011-9510-5
    [14] J. Gao, G. Q. Chang, A bivariate Filon-Clenshaw-Curtis method of the highly oscillatory integrals on a square, J. Comput. Appl. Math., 439 (2024), 115599. https://doi.org/10.1016/j.cam.2023.115599 doi: 10.1016/j.cam.2023.115599
    [15] F. Z. Geng, X. Y. Wu, Reproducing kernel function-based Filon and Levin methods for solving highly oscillatory integral, Appl. Math. Comput., 397 (2021), 125980. https://doi.org/10.1016/j.amc.2021.125980 doi: 10.1016/j.amc.2021.125980
    [16] C. Huang, M. Stynes, Spectral Galerkin methods for a weakly singular Volterra integral equation of the second kind, IMA J. Numer. Anal., 37 (2017), 1411–1436. https://doi.org/10.1093/imanum/drw034 doi: 10.1093/imanum/drw034
    [17] D. Huybrechs, S. Vandewalle, On the evaluation of highly oscillatory integrals by analytic continuation, SIAM J. Numer. Anal., 44 (2006), 1026–1048. https://doi.org/10.1137/050636814 doi: 10.1137/050636814
    [18] L. G. Ixaru, Operations on oscillatory functions, Comput. Phys. Commun., 105 (1997), 1–19. https://doi.org/10.1016/S0010-4655(97)00067-2 doi: 10.1016/S0010-4655(97)00067-2
    [19] L. G. Ixaru, G. V. Berghe, Exponential fitting, Kluwer Academic Publishers, 2004. https://doi.org/10.1007/978-1-4020-2100-8
    [20] A. Iserles, S. P. Nørsett, Efficient quadrature of highly oscillatory integrals using derivatives, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 1383–1399. https://doi.org/10.1098/rspa.2004.1401 doi: 10.1098/rspa.2004.1401
    [21] A. Iserles, S. P. Nørsett, On quadrature methods for highly oscillatory integrals and their implementation, BIT Numer. Math., 44 (2004), 755–772. https://doi.org/10.1007/s10543-004-5243-3 doi: 10.1007/s10543-004-5243-3
    [22] J. Jiang, Y. S. Xu, Deep neural network solutions for oscillatory Fredholm integral equations, J. Integral Equ. Appl., 36 (2024), 23–55. https://doi.org/10.1216/jie.2024.36.23 doi: 10.1216/jie.2024.36.23
    [23] S. Khan, S. E. Alhazmi, A. M. Alqahtani, A. EI-Sayed Ahmed, M. F. Yaseen, E. M. Tag-Eldin, et al., Numerical investigation of the Fredholm integral equations with oscillatory kernels based on compactly supported radial basis functions, Symmetry, 14 (2022), 1–23. https://doi.org/10.3390/sym14081527 doi: 10.3390/sym14081527
    [24] R. Katani, F. Pourahmad, A collocation method for a class of Fredholm integral equations with highly oscillatory kernels, Asian Eur. J. Math., 11 (2018), 1850076. https://doi.org/10.1142/S1793557118500766 doi: 10.1142/S1793557118500766
    [25] S. K. Abbas, S. Sohrabi, H. Ranjbar, Approximate solution of a class of highly oscillatory integral equations using an exponential fitting collocation method, J. Math., 2023 (2023), 9220664. https://doi.org/10.1155/2023/9220664 doi: 10.1155/2023/9220664
    [26] D. Levin, Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations, Math. Comp., 38 (1982), 531–538.
    [27] D. Levin, Fast integration of rapidly oscillatory functions, J. Comput. Appl. Math., 67 (1996), 95–101. https://doi.org/10.1016/0377-0427(94)00118-9 doi: 10.1016/0377-0427(94)00118-9
    [28] P. Linz, Analytical and numerical methods for Volterra equations, Philadelphia: SIAM, 1985. https://doi.org/10.1137/1.9781611970852
    [29] X. J. Li, T. Tang, Convergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kind, Front. Math. China, 7 (2012), 69–84. https://doi.org/10.1007/s11464-012-0170-0 doi: 10.1007/s11464-012-0170-0
    [30] J. B. Li, X. S. Wang, S. P. Xiao, T. Wang, A rapid solution of a kind of 1D Fredhalm oscillatory integral equation, J. Comput. Appl. Math., 236 (2012), 2696–2705. https://doi.org/10.1016/j.cam.2012.01.007 doi: 10.1016/j.cam.2012.01.007
    [31] B. Paternoster, Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday, Comput. Phys. Commun., 183 (2012), 2499–2512. https://doi.org/10.1016/j.cpc.2012.06.013 doi: 10.1016/j.cpc.2012.06.013
    [32] H. Ranjbar, F. Ghoreishi, A Gaussian quadrature rule for Fourier-type highly oscillatory integrals in the presence of stationary points, J. Comput. Appl. Math., 395 (2021), 113592. https://doi.org/10.1016/j.cam.2021.113592 doi: 10.1016/j.cam.2021.113592
    [33] H. Ranjbar, F. Ghoreishi, A Hermite collocation method for approximating a class of highly oscillatory integral equations using new Gaussian radial basis functions, Calcolo, 58 (2021), 21. https://doi.org/10.1007/s10092-021-00416-7 doi: 10.1007/s10092-021-00416-7
    [34] F. Ursell, Integral equations with a rapidly oscillating kernel, J. Lond. Math. Soc., s1-44 (1969), 449–459. https://doi.org/10.1112/jlms/s1-44.1.449 doi: 10.1112/jlms/s1-44.1.449
    [35] A. M. Wazwaz, Linear and nonlinear integral equations: methods and applications, Berlin, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-21449-3
    [36] H. Y. Wang, S. H. Xiang, Asymptotic expansion and Filon-type methods for a Volterra integral equation with a highly oscillatory kernel, IMA J. Numer. Anal., 31 (2011), 469–490. https://doi.org/10.1093/imanum/drp048 doi: 10.1093/imanum/drp048
    [37] Y. K. Wang, Y. S. Xu, Oscillation preserving Galerkin methods for Fredholm integral equations of the second kind with oscillatory kernels, 2015, arXiv: 1507.01156. https://doi.org/10.48550/arXiv.1507.01156
    [38] M. H. Wu, H. Y. Wang, Gaussian quadrature rules for composite highly oscillatory integrals, Math. Comp., 93 (2024), 729–746. https://doi.org/10.1090/mcom/3670 doi: 10.1090/mcom/3670
    [39] S. H. Xiang, H. Brunner, Efficient methods for Volterra integral equations with highly oscillatory Bessel kernels, BIT Numer. Math., 53 (2013), 241–263. https://doi.org/10.1007/s10543-012-0399-8 doi: 10.1007/s10543-012-0399-8
    [40] S. H. Xiang, Y. J. Cho, H. Y. Wang, H. Brunner, Clenshaw-Curtis-Filon-type methods for highly oscillatory Bessel transforms and applications, IMA J. Numer. Anal., 31 (2011), 1281–1314. https://doi.org/10.1093/imanum/drq035 doi: 10.1093/imanum/drq035
    [41] Z. H. Xu, G. D. Liu, Efficient computation of highly oscillatory finite-part integrals, J. Math. Anal. Appl., 541 (2025), 128668. https://doi.org/10.1016/j.jmaa.2024.128668 doi: 10.1016/j.jmaa.2024.128668
    [42] L. B. Zhao, Q. Q. Fan, S. Wang, High asymptotic order methods for highly oscillatory integral equations with trigonometric kernels, J. Comput. Appl. Math., 416 (2022), 114549. https://doi.org/10.1016/j.cam.2022.114549 doi: 10.1016/j.cam.2022.114549
    [43] L. B. Zhao, C. M. Huang, Numerical methods for highly oscillatory Volterra integral equations with general oscillators, J. Comput. Appl. Math., 449 (2024), 115967. https://doi.org/10.1016/j.cam.2024.115967 doi: 10.1016/j.cam.2024.115967
    [44] L. B. Zhao, C. M. Huang, The generalized quadrature method for a class of highly oscillatory Volterra integral equations, Numer. Algor., 92 (2023), 1503–1516. https://doi.org/10.1007/s11075-022-01350-7 doi: 10.1007/s11075-022-01350-7
    [45] S. Zaman, S. U. Islam, Reproducing kernel function-based formulation for highly oscillatory integrals, J. Comput. Appl. Math., 463 (2025), 116507. https://doi.org/10.1016/j.cam.2025.116507 doi: 10.1016/j.cam.2025.116507
    [46] S. H. Zhang, Y. P. Lin, M. Rao, Numerical solutions for second-kind Volterra integral equations by Galerkin methods, Appl. Math., 45 (2000), 19–39. https://doi.org/10.1023/A:1022284616125 doi: 10.1023/A:1022284616125
    [47] L. B. Zhao, P. D. Wang, Q. Q. Fan, A quadrature method for Volterra integral equations with highly oscillatory Bessel kernel, Math. Comput. Simul., 228 (2025), 202–210. https://doi.org/10.1016/j.matcom.2024.09.002 doi: 10.1016/j.matcom.2024.09.002
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(32) PDF downloads(14) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog