
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(3): 5631–5650.
DOI: 10.3934/math.2025260
Received: 18 December 2024
Revised: 20 February 2025
Accepted: 24 February 2025
Published: 13 March 2025

Research article

On the numerical solution of highly oscillatory Fredholm integral equations
using a generalized quadrature method

Adil Owaid Jhaily, Saeed Sohrabi* and Hamid Ranjbar

Department of Mathematics, Faculty of Science, Urmia University, Urmia 57561-51818, Iran

* Correspondence: Email: s.sohrabi@urmia.ac.ir.

Abstract: In this paper, a numerical method is presented for solving Fredholm integral equations with
highly oscillatory kernels. The proposed method combined piecewise collocation with a generalized
quadrature rule in a uniform mesh. Due to the oscillatory nature of the kernels of integral equation, the
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1. Introduction

Numerous scientific and engineering problems, including those found in electric circuits and
chemical kinetics, can be mathematically expressed as differential equations. These equations
can subsequently be converted into equivalent integral equations of Volterra and Fredholm types.
Additionally, within various fields such as physics, biology, and engineering, a significant number
of phenomena–such as the propagation of stocked fish in newly established lakes, Volterra’s model of
population growth, the coexistence of biological species, as well as heat transfer and radiation–can also
be characterized by integral or integrodifferential equations [1, 35]. There has been substantial interest
in the numerical approach to solving integral equations, primarily because analytical solutions are
often unavailable. A variety of effective methods have been employed to compute numerical solutions
for these equations including the spectral method [11, 29], the collocation method [4], the iterated
collocation method [4], the Runge-Kutta type method [6], the Galerkin type method [16, 46], and the
multistep collocation method [8,10,13]. For a more comprehensive understanding of these techniques,
readers are encouraged to refer to the monographs [1, 2, 35].
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On the other hand, the mathematical modeling of oscillatory phenomena in various fields
such as electrodynamics, quantum chemistry, nonlinear optics, fluid mechanics, plasma transport,
computerized tomography, celestial mechanics, and the computation of Schrödinger spectra and
Bose-Einstein condensates results in integral equations that encompass highly oscillatory integrals,
commonly referred to as highly oscillatory integral equations (HOIEs). Preliminary investigations
conducted by numerous researchers have indicated that classical methods to HOIEs are not effective,
as the use of classical quadrature rules for calculating highly oscillatory integrals (HOIs) leads to a
significant increase in computational costs as the frequency increases. Contrary to widespread belief,
the efficient computation of HOIs is indeed feasible and notably, the accuracy of the approximation
improves with increased oscillation of the integral. Researches have illustrated that HOI operators
can be precisely approximated through various methods including the Filon-type method [20, 21],
Levin-type method [15, 26, 27], steepest descent method [12, 17], exponential fitting (EF) quadrature
rule [18, 19, 31] and Gaussian integration rule [32].

More recently, a stable and accurate algorithm based on reproducing kernel functions was
introduced for the numerical evaluation of Fourier-type HOIs [45]. Additionally, a generalized
bivariate Filon-Clenshaw-Curtis method was proposed for double HOIs on the square [14]. More
recent methods on this topic can be found in [38, 41], among others. However, these methods
each have implementation limitations. For instance, the Filon method’s moments are themselves
oscillatory integrals, and their explicit values are known only for specific, simple forms of the oscillator.
Furthermore, complex-valued Gaussian quadrature rules require the amplitude function f to be analytic
in an infinitely large region of the complex plane encompassing the integration interval. Transitioning
from HOIs to HOIEs, integral equations with oscillatory integrands can be approximated using the
quadrature rules mentioned.

In recent decades, several papers have explored the existence, uniqueness, and numerical
solutions of HOIEs. For highly oscillatory Volterra integral equations (HOVIEs), the research of
Brunner et al. [3, 7] demonstrated both the existence and uniqueness of solutions for Volterra integral
and integrodifferential equations with kernels that exhibit high oscillatory behavior. In a separate
study, Wang and Xiang [36] introduced a Filon-type method designed for addressing a Volterra
integral equation of the first kind that features a highly oscillatory Bessel kernel. Additionally, Xiang
and Brunner [40] proposed a Clenshaw-Curtis-Filon-type method aimed at solving Volterra integral
equations involving oscillatory Bessel kernels. Moreover, the study presented in [25] concentrated on
obtaining numerical solutions for a specific category of HOVIEs, employing collocation methods that
are based on the EF technique. Furthermore, Conte et al. [9] introduced effective collocation techniques
that employ the Filon-type method to address nonlinear Volterra integral equations with an oscillatory
kernel. Other new numerical methods can be found in [43, 47]. For an elaborate discussion on the
structure and numerical solutions of HOVIEs, please see Brunner’s monograph [2], which provides an
in-depth description of HOVIEs along with their numerical solutions.

In addition to HOVIEs, there are some papers which have studied the numerical solution of the
highly oscillatory Fredholm integral equations (HOFIEs). The general form of HOFIEs is given by

u(t) = f (t) +
∫ b

a
Kω(t, τ)u(τ)dτ, t ∈ I := [a, b], (1.1)

where Kω(t, τ) is the oscillatory kernel function. The computation of HOFIEs is addressed in the
literature, specifically in references [5, 30, 34]. The authors focused on analyzing the spectra problem
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associated with oscillatory Fredholm integral operators. The asymptotic properties of Fredholm
integral equations (FIEs) with an oscillatory kernel k(t, τ)eiω|t−τ| were examined in [34]. In [24], a
collocation method using Clenshaw-Curtis points was employed to solve FIEs with oscillatory kernels,
where the oscillatory integral component was computed with the efficient Filon method. The authors
of [37] developed oscillatory function spaces to address the oscillatory components of FIEs with such
kernels and applied the Galerkin method to achieve optimal convergence rates and stability. Moreover,
Li et al. [30] introduced an enhanced Levin approach to effectively tackle Fredholm oscillatory integral
equations. Some more recent methods to approximate HOFIEs can be found in [22, 23].

In this study, we consider a quadrature method for solving HOFIEs of the form

u(t) = f (t) +
∫ b

a
k(t, τ)eiω(g(t)−g(τ))u(τ)dτ, t ∈ I := [a, b], (1.2)

where the term ω ≫ 1 indicates the oscillation parameter, and u(t) refers to the unknown function that
is to be determined. The functions k(t, τ), f (t), and g(t) are considered to be sufficiently smooth within
the specified domains D := {(t, τ) : a ≤ t, τ ≤ b} and I, respectively. Under these assumptions, the
second kind FIE (1.2) has a unique solution [24]. In this paper, we are concerned with the HOFIEs in
which g′(t) , 0 for t ∈ I.

Following the strategy recommended for tackling HOVIEs, as mentioned in [9], we utilize the
traditional collocation method using predetermined collocation points for (1.2). Following this, to
effectively discretize the integrals derived from the collocation equation, we use a two-point quadrature
formula, commonly referred to as the generalized quadrature (GQ) method, as introduced in [44]. We
further examine the error associated with both exact and discrete collocation methods by employing
various auxiliary lemmas and theorems. Then, we confirm theoretical results by numerical examples.
An important remark concerning the error analysis of the proposed methods for HOIEs is their
dependence on the frequency, step size, or both factors. Some researchers analyzed the connection
between the error estimates and the frequency, i.e., the influence of frequency ω on error [39, 42].
Furthermore, some studies have investigated the relationship between error and step size, focusing on
how step size h influences error [25, 33]. Nevertheless, as far as we know, only a few studies have
addressed the dependence of error on both ω and h [9, 44]. In this paper, our error analysis illustrates
the combined impact of step size h and frequency ω on the error.

The rest of this paper is organized as follows. In Section 2, the collocation technique is utilized to
tackle HOFIE (1.2) through the application of the GQ rule. Section 3 is dedicated to the convergence
analysis. Numerical examples illustrating the performance are discussed in Section 4. Finally,
Section 5 offers the concluding remarks of the paper.

2. Description of the proposed method

In this section, we focus on analyzing piecewise polynomial collocation methods for addressing the
HOFIE specified in Eq (1.2). Since any finite interval I in Eq (1.2) can be converted to [0,T ] using a
linear transformation, we will treat the interval of integration as I = [0,T ].
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2.1. The collocation method

Considering the key prerequisites for the m-points collocation methods, we define the uniform
distribution Ih over the interval I = [0,T ] in the following manner:

Ih :=
{
tn := nh, n = 0, 1, . . . ,N, h ≥ 0, Nh = T

}
,

where h denotes the diameter associated with the uniform mesh and for each n = 0, 1, . . . ,N − 1, the
subintervals σn are defined as σn :=

(
tn, tn+1

]
.

Now, consider the following linear HOFIE:

u(t) = f (t) +
∫ T

0
k(t, τ)eiω(g(t)−g(τ))u(τ)dτ, t ∈ I := [0,T ]. (2.1)

In keeping with the principles of classical collocation methods, our primary objective is to approximate
the solution to Eq (2.1) by using a set of piecewise algebraic polynomials within a finite-dimensional
space defined by the following structure:

S (−1)
m−1(Ih) :=

{
p(s) : p(s)

∣∣∣
σn
∈ πm−1, 0 ≤ n ≤ N − 1

}
, (2.2)

where πm−1 stands for the set of all polynomials possessing degrees less than or equal to m − 1 and the
dimension of this space is Nm [1, 2].

In this position, the collocation solution uh ∈ S (−1)
m−1(Ih) for Eq (2.1) is defined by the following

collocation equation:

uh(t) = f (t) +
∫ T

0
k(t, τ)eiω(g(t)−g(τ))uh(τ)dτ, t ∈ Xh, (2.3)

where
Xh :=

{
t = tn, j := tn + c jh; j = 1, . . . ,m, 0 ≤ n ≤ N − 1

}
denotes the set of collocation points with the collocation parameters c j, which can be properly
chosen as

0 ≤ c1 < c2 < · · · < cm ≤ 1.

By the assumptions Un,i := uh(tn,i), the collocation solution uh of Eq (2.1) in subintervals σn, n =
0, . . . ,N − 1 can be expressed as follows:

uh(tn + sh) =
m∑

j=1

ℓ j(s)Un, j, s ∈ (0, 1], (2.4)

where

ℓ j(s) =
m∏

k=1
k, j

s − ck

c j − ck
.

In the sequel, inserting t = tn, j, the collocation equation (2.3) can be expressed in the form presented
below:

uh(tn, j) = f (tn, j) +
N−1∑
i=0

∫ ti+1

ti
k(tn, j, τ)eiω(g(tn, j)−g(τ))uh(τ)dτ. (2.5)
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In other words,

Un, j = f (tn, j) +
N−1∑
i=0

heiωg(tn, j)
∫ 1

0
k(tn, j, ti + sh)e−iωg(ti+sh)uh(ti + sh)ds. (2.6)

In this position, to achieve a linear collocation system for every n = 0, . . . ,N − 1, which is
predominantly linked to the unknowns Un, j, j = 1, . . . ,m, we insert the collocation polynomial (2.4)
within the collocation equation (2.6). Consequently, the attained semi-discretized system is obtained
as follows:

Un, j = f (tn, j) +
m∑

k=1

N−1∑
i=0

heiωg(tn, j)
(∫ 1

0
k(tn, j, ti + sh)e−iωg(ti+sh)ℓk(s)ds

)
Ui,k. (2.7)

The aforementioned linear system gives Nm algebraic equations in hand, with Nm unknowns to be
identified precisely.

2.2. The fully discrete collocation method

Due to the nature of HOIs, the approach outlined in the previous section may not always be reliable
in practical situations. Therefore, it is necessary to evaluate HOIs efficiently. As mentioned earlier,
several numerical techniques have been developed to approximate HOIs such as Filon-type methods,
Levin-type methods, the steepest descent method, EF, and the GQ method.

Here, in order to deal with numerical evaluation of HOIs in collocation system (2.7), we use a
GQ method similar to what is introduced in [44]. In this method, the authors proposed a two-point
quadrature rule of the form

Q1( f ; a, b) :=
∫ b

a
f (τ) cos (ωq(τ)) dτ ≈ w1 f (a) + w2 f (b), (2.8)

where q′(τ) , 0, ∀τ ∈ [a, b], the weights w1 and w2 are found by solving a linear system, and the
error of the quadrature method is given (further details can be found in [44]). A similar scheme can be
constructed for evaluating the HOIs of the form

Q2( f ; a, b) :=
∫ b

a
f (τ) sin (ωq(τ)) dτ.

Since
eiωq(τ) = cos (ωq(τ)) + i sin (ωq(τ)) ,

this technique can also be extended for numerical computation of HOIs including the term eiωq(τ). More
precisely,

Q( f ; a, b) :=
∫ b

a
f (τ)eiωq(τ)dτ ≈ w1 f (a) + w2 f (b). (2.9)

We note that the same error bound in [44] is expected for the two-point GQ method (2.9).
By using the quadrature formula (2.9) to approximate the integrals on the right side of (2.7) and

ignoring the associated quadrature errors, we derive the fully discrete version

Ûn, j = f (tn, j) +
m∑

k=1

N−1∑
i=0

heiωg(tn, j)
(
w(i)

1 k(tn, j, ti)ℓk(0) + w(i)
2 k(tn, j, ti + h)ℓk(1)

)
Ûi,k, (2.10)
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with Ûn, j := ûh(tn, j), where

ûh(tn + sh) =
m∑

j=1

ℓ j(s)Ûn, j, s ∈ (0, 1] (2.11)

is the local representation of ûh.

3. Convergence analysis

In this section, our aim is to explore the principal results of the paper, which are expressed in the
form of two theorems that provide theoretical validation for the practicality of the piecewise collocation
method.

Lemma 3.1. Suppose that the real-valued smooth function q(t) in (a, b) satisfies
∣∣∣q(k)(t) ≥ 1

∣∣∣ ,∀t ∈
(a, b). Then, ∣∣∣∣∣∣

∫ b

a
eiωq(t)dt

∣∣∣∣∣∣ ≤ c(k)ω−1/k

holds for k ≥ 2, or k = 1 and q′(t) is monotonic, such that c(k) = 5 × 2k−1 − 2.

Lemma 3.2. Given the same assumptions regarding q(t) as stated in Lemma 3.1, we achieve that∣∣∣∣∣∣
∫ b

a
eiωq(t)ϕ(t)dt

∣∣∣∣∣∣ ≤ c(k)ω−1/k
(
|ϕ(b)| +

∫ b

a
|ϕ′(t)|dt

)
.

Theorem 3.1. Let ϕ(t) ∈ C1, q(t) adhere to the conditions given in Lemma 3.2, and suppose there
exists a point t0 ∈ [a, b] for which ϕ(t0) = 0. Then, we will have the following inequality:∣∣∣∣∣∣

∫ b

a
eiωq(t)ϕ(t)dt

∣∣∣∣∣∣ ≤ 2c(k)
∥ϕ′(t)∥∞
ω1/k (b − a).

Furthermore, if ϕ(t) ∈ C2, q(t) ∈ C3 with k = 1, and given that ϕ(a) = ϕ(b) = 0, it follows that∣∣∣∣∣∣
∫ b

a
eiωq(t)ϕ(t)dt

∣∣∣∣∣∣ ≤ min
{

C1
b − a
ω2 , C2

(b − a)2

ω

}
,

where C1 = 6
∥∥∥∥( ϕ(t)q′(t)

)′′∥∥∥∥
∞

and C2 = 3 ∥ϕ′′(t)∥∞.

Following the idea in [44], the expected error estimate for the proposed GQ method can be stated
in the following theorem:

Theorem 3.2. Suppose that q(τ) belongs to C2([a, b]), q′(τ) , 0, and that q( j)(τ) ( j = 0, 1, 2) remains
uniformly bounded for eachω. Under these conditions, the error of the GQ method (2.9) is expressed as∣∣∣∣∣∣

∫ b

a
f (τ)eiωq(τ)dτ − (w1 f (a) + w2 f (b))

∣∣∣∣∣∣ ≤ min
{
C1(b − a)3,C2

b − a
ω2

}
,

in which the constants C1 and C2 are independent of ω.
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Now, we turn our attention to the convergence property of the proposed method. To do so, by
putting t = tn, j in the underlying HOFIE (2.1), we get

u(tn, j) = f (tn, j) +
∫ T

0
k(tn, j, τ)eiω(g(tn, j)−g(τ))u(τ)dτ

= f (tn, j) +
N−1∑
i=0

∫ ti+1

ti
k(tn, j, τ)eiω(g(tn, j)−g(τ))u(τ)dτ

= f (tn, j) +
N−1∑
i=0

h
( ∫ 1

0
k(tn, j, ti + sh)eiω(g(tn, j)−g(ti+sh))u(ti + sh)ds

)
.

(3.1)

Subtracting the newly obtained equation from Eq (2.6), we will have

ϵn, j =

N−1∑
i=0

heiωg(tn, j)
(∫ 1

0
k(tn, j, ti + sh)e−iωg(ti+sh)(u(ti + sh) − uh(ti + sh)

)
ds

)
, (3.2)

such that ϵn, j := u(tn, j) − Un, j. Then, as eh = u − uh, Eq (3.2) can be written as follows:

ϵn, j =

N−1∑
i=0

heiωg(tn, j)
(∫ 1

0
k(tn, j, ti + sh)e−iωg(ti+sh)eh(ti + sh)ds

)
. (3.3)

In this position, having u ∈ Cν(I), (−1 ≤ ν ≤ m), we can express the interpolation error according
to Peano’s theorem (as outlined in Corollary 1.8.2 of the monograph [1]) as

u(tn + sh) =
m∑

j=1

ℓ j(s)u(tn, j) + hνRν,n(s), s ∈ (0, 1]. (3.4)

On the one hand, according to Eqs (2.4) and (3.4), the error eh possesses a local representation in
relation to the exact collocation solution as

eh(ti + sh) = u(ti + sh) − uh(ti + sh)

=

m∑
k=1

ℓk(s)u(ti, j) + hνRν,i(s) −
m∑

k=1

ℓk(s)Ui,k

=

m∑
k=1

ℓk(s)ϵi,k + hνRν,i(s).

(3.5)

Therefore, substituting (3.5) into (3.3) gives

ϵn, j =

N−1∑
i=0

heiωg(tn, j)

∫ 1

0
k(tn, j, ti + sh)e−iωg(ti+sh)

( m∑
k=1

ℓk(s)ϵi,k + hνRν,i(s)
)
ds


=

N−1∑
i=0

heiωg(tn, j)
m∑

k=1

(∫ 1

0
k(tn, j, ti + sh)ℓk(s)e−iωg(ti+sh)ds

)
ϵi,k (3.6)

+

N−1∑
i=0

hν+1eiωg(tn, j)
(∫ 1

0
k(tn, j, ti + sh)Rν,i(s)e−iωg(ti+sh)ds

)
, n = 0, . . . ,N − 1, j = 1, . . . ,m.
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Here, in order to achieve a compact representation of the method, the following matrices must be
assumed:

A(i)
n :=

(
eiωg(tn, j)

∫ 1

0
k(tn, j, ti + sh)ℓk(s)e−iωg(ti+sh)ds

)
j,k=1,...,m

, (3.7)

B(i)
n :=

(
eiωg(tn, j)

∫ 1

0
k(tn, j, ti + sh)Rν,i(s)e−iωg(ti+sh)ds

)
j,k=1,...,m

, (3.8)

and for n = 0, . . . ,N − 1,
En :=

(
ϵn,1, . . . , ϵn,m

)T . (3.9)

Thus, Eq (3.6) can be written as

[
Im − hA(i)

n

]
En =

N−1∑
i=0

hν+1B(i)
n , n = 0, . . . ,N − 1, (3.10)

where Im denotes the m × m identity matrix.
Thanks to the continuity of the kernel function k(t, s), we conclude that the elements of the matrices

A(i)
n are bounded. Subsequently, with respect to the Neumann lemma [1], whenever h∥A(i)

n ∥ < 1 for
some matrix norm, then the matrix

(
Im − hA(i)

n

)
has an inverse. This assertion is clearly valid when h

is sufficiently small. In particular, for any mesh Ih characterized by a diameter h that lies within the
range (0, h̄), with h̄ being appropriately small, it follows that each matrix

(
Im − hA(i)

n

)
has an inverse

that is uniformly bounded. Hence, for sufficiently small values of h, we can assume the existence of a
constant D0 such that ∥∥∥Im − hA(i)

n

∥∥∥
1
≤ D0, n = 0, . . . ,N − 1.

Also, we can ensure that
∥∥∥A(i)

n

∥∥∥
1
≤ D1 for i < n ≤ N − 1, according to the continuity of the kernel

function of the integral equation, where D1 is a constant.
On the other hand, given that Rν,i(c1) = · · · = Rν,i(cm) = 0, we will have∣∣∣∣∣∣

∫ 1

0
k(tn, j, ti + sh)Rν,i(s)e−iωg(ti+sh)ds

∣∣∣∣∣∣ ≤ c
Mν
ωh
, (3.11)

thanks to Theorem 3.1, for a = 0, b = 1, where Mν :=
∥∥∥u(ν)(t)

∥∥∥
∞

.
In the continuation of this analysis, it is essential to highlight that the notation C represents a

constant that can vary in value across different inequalities, but does not rely on h and ω. In addition,
if ν ≥ 2 and c1 = 0, cm = 1 which means that Rν,i(0) = Rν,i(1) = 0, then we have∣∣∣∣∣∣

∫ 1

0
k(tn, j, ti + sh)Rν,i(s)e−iωg(ti+sh)ds

∣∣∣∣∣∣ ≤ CMνmin
{ 1
ω2h2 ,

1
ωh

}
. (3.12)

Now, according to (3.11) and (3.12), we have the following estimate:

∥∥∥B(i)
n

∥∥∥
1
≤ CMν


min

{ 1
ω2h2 ,

1
ωh

}
, if c1 = 0, cm = 1 and ν ≥ 2,

1
ωh
, otherwise.

(3.13)
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Then, Eqs (3.10) and (3.13) give

∥En∥1 ≤

N−1∑
i=0

hν+1
∥∥∥B(i)

n

∥∥∥
1

≤ CMν


hν−1

ω
min

{ 1
ωh
, 1

}
, if c1 = 0, cm = 1 and ν ≥ 2,

hν−1

ω
, otherwise.

(3.14)

On the other hand, we have∥∥∥B(i)
n

∥∥∥
1
≤

∣∣∣∣eiωg(tn, j)
∫ 1

0
k(tn, j, ti + sh)Rν,i(s)e−iωg(ti+sh)ds

∣∣∣∣
≤

∫ 1

0

∣∣∣k(tn, j, ti + sh)Rν,i(s)
∣∣∣ ds (3.15)

≤ K̄kνMν,

where K̄ := max
t∈I

∫ 1

0
|k(t, s)|ds, kν := max

s∈[0,1]

∫ 1

0
|k(s, z)|dz. Now, due to the (3.10) and (3.15), we get

∥En∥1 ≤ CMνhν. (3.16)

Therefore, combining (3.14) and (3.16) results in

max
t∈Xh
|u(t) − uh(t)| ≤ CMν


min

{
hν,

hν−1

ω
,

hν−2

ω2

}
, if c1 = 0, cm = 1 and ν ≥ 2,

min
{
hν,

hν−1

ω

}
, otherwise,

(3.17)

where Mν :=
∥∥∥u(ν)(t)

∥∥∥
∞

.

To conclude the above analysis, we summarize it in the following theorem:

Theorem 3.3. Suppose that the following are assumed for the HOFIE (2.1) with 1 ≤ ν ≤ m:

(1) f (t) ∈ Cν(I),
(2) k(t, τ) ∈ Cν(D).

Then, the error of the numerical method defined by (2.10) and (2.11) is estimated by

max
t∈Xh
|u(t) − uh(t)| ≤ CMν


min

{
hν,

hν−1

ω
,

hν−2

ω2

}
, for c1 = 0, cm = 1 and ν ≥ 2,

min
{
hν,

hν−1

ω

}
, otherwise,

where C is a constant independent of h and ω and Mν :=
∥∥∥u(ν)(t)

∥∥∥
∞

.
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We are now in a position to establish the order of the discretized collocation solution ûh(t). By
employing the triangle inequality, we are able to express it as follows:

|u(t) − ûh(t)| ≤ |u(t) − uh(t)| + |uh(t) − ûh(t)| . (3.18)

The global estimate for the exact collocation error, as previously stated, is given by Theorem 3.3. To
evaluate the perturbation error |uh(t) − ûh(t)| caused by the quadrature process, let zh(t) := uh(t) − ûh(t).
Then, on σn,

zh(tn + sh) := uh(tn + sh) − ûh(tn + sh) =
m∑

j=1

ℓ j(s)Zn, j, (3.19)

where Zn, j := Un, j − Ûn, j. According to (2.7) and (2.10), we get

Zn, j =

m∑
k=1

N−1∑
i=0

heiωg(tn, j)
( (∫ 1

0
k(tn, j, ti + sh)e−iωg(ti+sh)ℓk(s)ds

)
Ui,k

−
(
w(i)

1 k(tn, j, ti)ℓk(0) + w(i)
2 k(tn, j, ti + h)ℓk(1)

)
Ûi,k

)
. (3.20)

Define the operator F : C(I)→ C(I) by

(
F u

)
(t) :=

∫ T

0
k(t, τ)eiω(g(t)−g(τ))u(τ)dτ,

and for t = tn, j = tn + c jh ∈ σn, let

(
Q(i)

h uh
)
(t) :=

∫ 1

0
k(t, ti + sh)eiω(g(t)−g(ti+sh))uh(ti + sh)ds,(

Q̂(i)
h uh

)
(t) :=w(i)

1 k(t, ti)eiωg(t)uh(ti) + w(i)
2 k(t, ti+1)eiωg(t)uh(ti+1),

then, Eqs (2.7) and (2.10) can then be represented as the following operator equations, respectively:

uh(t) = f (t) +
(
F uh

)
(t), t ∈ Xh,

ûh(t) = f (t) +
(
Fhûh

)
(t), t ∈ Xh.

In other words,

Un, j = f (tn, j) +
N−1∑
i=0

h
(
Q(i)

h uh
)
(tn, j), n = 0, . . . ,N − 1, j = 1, . . . ,m,

Ûn, j = f (tn, j) +
N−1∑
i=0

h
(
Q̂(i)

h ûh
)
(tn, j), n = 0, . . . ,N − 1, j = 1, . . . ,m.

In this position, by taking the quadrature error as

E(i)
h (t) =

(
Q(i)

h ûh
)
(t) −

(
Q̂(i)

h ûh
)
(t),
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Equation (3.20) can be written as

Zn, j =

N−1∑
i=0

h
((

Q(i)
h uh

)
(tn, j) −

(
Q̂(i)

h ûh
)
(tn, j)

)
=

N−1∑
i=0

h
((

Q(i)
h uh

)
(tn, j) + E(i)

h (tn, j) −
(
Q(i)

h ûh
)
(tn, j)

)
=

N−1∑
i=0

heiωg(tn, j)
m∑

k=1

∫ 1

0
k(tn, j, ti + sh)ℓk(s)eiωg(ti+sh)dsZi,k +

N−1∑
i=0

hE(i)
h (tn, j).

Therefore, recalling the definition of A(i)
n , the above system can be written as[

Im − hA(i)
n

]
Zn =

N−1∑
i=0

hE(i)
h (tn, j).

Since ∣∣∣E(i)
h (t)

∣∣∣ ≤ C min
{
1,

1
ω2

}
≤

C
ω2 ,

therefore,

∥Zn∥1 ≤ D0

N−1∑
i=0

h
∥∥∥E(i)

h (tn, j)
∥∥∥

1
≤

C
ω2 .

Consequently,

|u(t) − ûh(t)| ≤ C


max

{
Mνmin

{
hν,

hν−1

ω
,

hν−2

ω2

}
,

1
ω2

}
, for ν ≥ 2 and c1 = 0, cm = 1,

max
{

Mνmin
{
hν,

hν−1

ω

}
,

1
ω2

}
, otherwise.

(3.21)

Finally, the estimation derived from Eq (3.21) indicates the convergence behavior of the collocation
solution ûh, which is further detailed in the subsequent theorem.

Theorem 3.4. Suppose that the functions f (t) and k(t, s) ∈ Cν in HOFIE (2.1) with 1 ≤ ν ≤ m. Then,
the estimation of the error associated with the numerical method outlined in Eqs (2.10) and (2.11) is
given by

max
t∈Xh
|u(t) − ûh(t)| ≤ C


max

{
Mνmin

{
hν,

hν−1

ω
,

hν−2

ω2

}
,

1
ω2

}
, for ν ≥ 2 and c1 = 0, cm = 1,

max
{

Mνmin
{
hν,

hν−1

ω

}
,

1
ω2

}
, otherwise,

where C is a constant independent of h and ω.

Remark 3.1. According to Theorem 3.4, when Mν remains bounded regardless of ω, the method under
consideration demonstrates an asymptotic order of 1, which can potentially rise to 2 when ν ≥ 2 and
c1 = 0, cm = 1. Consequently, as ω becomes larger, the GQ collocation method is likely to produce
accurate results, with improved numerical precision. Additionally, for a fixed ω, the method converges
as step length h approaches 0.
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4. Numerical illustrations

In this section, we provide numerical examples to showcase the proposed method’s efficiency and
accuracy. Our intention is to ascertain that the error eh has an asymptotic order of α, contingent upon
the absolute error being scaled by ωα, i.e., ωα|eh| remains bounded as ω ≫ 1, and the method converges
with order ν as h→ 0. For numerical comparison, we report the maximum absolute errors for different
vales of ω and N in each example.

For clarity, in the examples provided in this section, we will show the maximum absolute errors and
classical convergence orders with, respectively, ϵ and ν such that

ϵN := max |eh|, ν := log2(ϵN/ϵ2N ).

Moreover, the TQC, SQC, and GQC notations will be used to denote the trapezoidal quadrature
collocation, Simpson quadrature collocation, and the generalized quadrature collocation methods,
respectively. Mathematica software was utilized for the execution of all numerical computations.

Example 4.1. Consider the following HOFIE:

u(t) = f (t) −
1
2

∫ 1

0
eiω(t−τ)u(τ)dτ, ω ≫ 1, (4.1)

where the function f (t) is selected such that the integral equation’s exact solution is

u(t) = et.

We implemented the proposed method with m = 2 for solving (4.1). The results, including the maximum
absolute errors for different values of N and ω, for parameters c1 = 0, c2 = 1 and c1 =

1
3 , c2 = 1 are

reported in Tables 1 and 2, respectively. In order to illustrate the classical order for the parameters
c1 = 0, c2 = 1 and c1 =

1
3 , c2 = 1, we set ω = 100 and presented the maximum absolute errors for N =

64, 128, 256, 512, 1024 in Figure 1. The figures illustrate the associated classical orders, accompanied
by a slope line. For a direct observation of the asymptotic order concerning the parameters c1 =
1
3 , c2 = 1 and c1 = 0, c2 = 1, we provided a graphical representation of the absolute errors scaled by
ω and ω2, respectively, with N = 2, illustrated in Figure 2. The observations in Tables 1 and 2 and
Figures 1 and 2 confirm that the method behaves as predicted in terms of its order.

Table 1. The maximum absolute errors with c1 = 0, c2 = 1 in Example 4.1.

ω = 100 ω = 200 ω = 400
N ϵ ν ϵ ν ϵ ν

26 1.45e − 07 − 1.23e − 07 − 4.49e − 06 −

27 3.35e − 08 2.11 2.26e − 08 2.44 2.15e − 08 7.71
28 8.21e − 09 2.03 5.22e − 09 2.11 3.95e − 09 2.44
29 2.01e − 09 2.01 1.28e − 09 2.03 9.13e − 10 2.11
210 5.10e − 10 2.00 3.18e − 10 2.01 2.23e − 10 2.03
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Table 2. The maximum absolute errors with c1 =
1
3 , c2 = 1 in Example 4.1.

ω = 100 ω = 200 ω = 400
N ϵ ν ϵ ν ϵ ν

26 3.60e − 08 − 5.56e − 08 − 5.74e − 06 −

27 4.31e − 09 3.06 5.61e − 09 3.33 9.88e − 09 9.18
28 5.33e − 10 3.01 6.70e − 10 3.06 9.81e − 10 3.33
29 6.64e − 11 3.00 8.29e − 11 3.01 1.17e − 10 3.07
210 8.30e − 12 3.00 1.03e − 11 3.01 1.45e − 11 3.01
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Figure 1. The classical orders with c1 =
1
3 , c2 = 1 and c1 = 0, c2 = 1 for Example 4.1.
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Figure 2. Graph of the asymptotic order with N = 2, m = 2 in Example 4.1.
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To show the superiority, we compared the GQC developed here with the TQC given in [28]. The
results are listed in Table 3, which show that both methods converge as the step length decreases.
However, the new quadrature method yields more precise numerical results.

Table 3. Comparison of GQC and TQC with ω = 50, m = 2, and collocation parameters
c1 = 0, c2 = 1 in Example 4.1.

N
Method 26 27 28 29 210

T QC 6.07e − 04 1.51e − 04 3.76e − 05 9.40e − 06 2.35e − 06
GQC 2.47e − 07 6.05e − 08 1.50e − 08 3.76e − 09 9.39e − 10

Example 4.2. As a final example, we consider the following HOFIE:

u(t) = f (t) +
∫ 1

0
cos(ω(t + τ))u(τ)dτ, t ∈ I := [0, 1], (4.2)

where the function f (t) is chosen in such a way that the exact solution to this problem is

u(t) =
cos(ωt) + ω2t

ω2 .

This example is selected to demonstrate how the proposed method handles HOFIE with an oscillatory
solution. Similar to the previous example, we employed the proposed method for solving Eq (4.2) and
reported the errors for several values of ω and N in Tables 4 and 5. We also plotted in Figure 3
the errors embedded in Table 5. The findings validated the expected classical order for the method
discussed. In addition, to show the asymptotic order for the parameters c1 =

1
3 , c2 = 1 and c1 =

0, c2 = 1, we plotted the graph of the absolute errors multiplied by ω and ω2, respectively, with N = 2
in Figure 4.

The results obtained in this example imply that our method is also applicable for certain FIEs with
highly oscillatory solutions.

Table 4. The maximum absolute errors with c1 = 0, c2 = 1 in Example 4.2.

ω = 100 ω = 200 ω = 400
N ϵ ν ϵ ν ϵ ν

26 1.56e − 05 − 8.23e − 06 − 3.12e − 06 −

27 4.71e − 06 1.73 3.93e − 06 1.07 2.54e − 06 0.29
28 1.24e − 06 1.92 1.18e − 06 1.73 9.89e − 07 1.36
29 3.14e − 07 1.98 3.11e − 07 1.92 2.97e − 07 1.73
210 7.87e − 08 1.82 7.88e − 08 1.98 7.82e − 08 1.92
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Table 5. The maximum absolute errors with c1 =
1
3 , c2 = 1 in Example 4.2.

ω = 100 ω = 200 ω = 400
N ϵ ν ϵ ν ϵ ν

26 1.36e − 06 − 4.16e − 06 − 2.84e − 06 −

27 1.55e − 07 3.13 3.50e − 07 3.57 6.02e − 07 2.24
28 1.85e − 08 3.07 3.89e − 08 3.17 8.90e − 08 2.76
29 2.28e − 09 3.02 4.64e − 09 3.07 9.92e − 09 3.17
210 2.85e − 10 3.00 5.73e − 10 3.02 1.17e − 09 3.08
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Figure 3. The classical orders with c1 =
1
3 , c2 = 1 and c1 = 0, c2 = 1 for Example 4.2.
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Figure 4. Graph of the asymptotic order with N = 2, m = 2 in Example 4.2.
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In line with the previous example, we showed the superiority of the GQC method by comparing it
with both the TQC and SQC methods. The results are listed in Table 6. We can see that the proposed
method provides more accurate numerical results.

Table 6. Comparison of GQC, TQC, and SQC with ω = 700, m = 2, and collocation
parameters c1 = 0, c2 = 1 in Example 4.2.

N
Method 24 25 26 27 28 29

T QC 6.55e − 01 1.68e − 03 1.11e − 02 1.32e − 02 1.26e − 03 2.82e − 04
S QC 1.06e − 01 1.16e − 02 1.22e − 02 2.31e − 03 3.46e − 05 1.84e − 06
GQC 1.02e − 06 1.01e − 06 1.01e − 06 1.01e − 06 6.66e − 07 2.60e − 07

5. Conclusions

In summary, this paper presented a robust collocation method utilizing a GQ rule to address FIEs
with highly oscillatory trigonometric kernels. We analyzed the convergence of the proposed method,
showing that it achieves both a classical and an asymptotic order for high-frequency values. The
convergence rate with respect to frequency suggests that an asymptotic order of two can be attained in
some cases. In addition, the method demonstrates convergence for a fixed ω as the step length h tends
toward 0. Numerical tests confirmed the method’s efficiency and revealed that accuracy improves as
the frequency increases. As mentioned earlier, the approximation of solutions to HOFIEs has been
explored in [5, 22–24, 30, 34]. However, there are several limitations and drawbacks associated with
the proposed methods, which we summarize as follows:

• Almost all of the proposed methods address the problem in a special case where g(t) = t.
• The method presented in [22] is difficult to implement, and its convergence analysis is complex.

The numerical examples provided in [24] focus solely on problems with non-oscillatory solutions,
excluding oscillatory cases. Additionally, the method in [23] does not include an examination of
convergence or error analysis.

In contrast, the implementation of our method is straightforward and computationally efficient. It
applies to a general function g in the absence of stationary points. Furthermore, our method is both
accurate and efficient for approximating HOFIEs with both oscillatory and non-oscillatory solutions,
making it a versatile choice for all types of solutions. This technique can also be easily extended to most
classes of integral equations, including those involving functions g with stationary points. As a result,
the method proposed in this paper surpasses other methods in terms of implementation, simplicity, and
comprehensiveness.

Author contributions

Adil Owaid Jhaily: Methodology, Investigation; Saeed Sohrabi: Writing–review & editing,
Writing–original draft, Validation, Supervision, Software, Investigation; Hamid Ranjbar: Validation,
Formal analysis, Software, Investigation. All authors have read and agreed to the published version of
the manuscript.

AIMS Mathematics Volume 10, Issue 3, 5631–5650.



5647

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. H. Brunner, Collocation methods for Volterra integral and related functional equations, Cambridge
University Press, 2004. https://doi.org/10.1017/CBO9780511543234

2. H. Brunner, Volterra integral equations: an introduction to theory and applications, Cambridge
University Press, 2017. https://doi.org/10.1017/9781316162491

3. H. Brunner, On Volterra integral operators with highly oscillatory kernels, Discrete Contin. Dyn.
Syst., 34 (2014), 915–929. https://doi.org/10.3934/dcds.2014.34.915

4. J. G. Blom, H. Brunner, The numerical solution of nonlinear Volterra integral equations of the
second kind by collocation and iterated collocation methods, SIAM J. Sci. Statist. Comput., 8
(1987), 806–830. https://doi.org/10.1137/0908068

5. H. Brunner, A. Iserles, S. P. Nørsett, The computation of the spectra of highly oscillatory Fredholm
integral operators, J. Integral Equ. Appl., 23 (2011), 467–519. https://doi.org/10.1216/JIE-2011-
23-4-467

6. A. Bellen, Z. Jackiewicz, R. Vermiglio, M. Zennaro, Stability analysis of Runge-Kutta methods
for Volterra integral equations of the second kind, IMA J. Numer. Anal., 10 (1990), 103–118.
https://doi.org/10.1093/imanum/10.1.103

7. H. Brunner, Y. Y. Ma, Y. S. Xu, The oscillation of solutions of Volterra integral and integro-
differential equations with highly oscillatory kernels, J. Integral Equ. Appl., 27 (2015), 455–487.
https://doi.org/10.1216/JIE-2015-27-4-455

8. D. Conte, Z. Jackiewicz, B. Paternoster, Two-step almost collocation methods for Volterra integral
equations, Appl. Math. Comput., 204 (2008), 839–853. https://doi.org/10.1016/j.amc.2008.07.026

9. D. Conte, L. Moradi, B. Paternoster, H. Podhaisky, Collocation methods for nonlinear
Volterra integral equations with oscillatory kernel, Appl. Numer. Math., 203 (2024), 1–15.
https://doi.org/10.1016/j.apnum.2024.05.002

10. D. Conte, B. Paternoster, Multistep collocation methods for Volterra integral equations, Appl.
Numer. Math., 59 (2009), 1721–1736. https://doi.org/10.1016/j.apnum.2009.01.001

11. Y. P. Chen, T. Tang, Convergence analysis of the Jacobi spectral-collocation methods for Volterra
integral equations with a weakly singular kernel, Math. Comp., 79 (2010), 147–167.

12. A. Deaño, D. Huybrechs, Complex Gaussian quadrature of oscillatory integrals, Numer. Math., 112
(2009), 197–219. https://doi.org/10.1007/s00211-008-0209-z

13. S. Fazeli, G. Hojjati, S. Shahmorad, Multistep Hermite collocation methods for solving Volterra
integral equations, Numer. Algor., 60 (2012), 27–50. https://doi.org/10.1007/s11075-011-9510-5

AIMS Mathematics Volume 10, Issue 3, 5631–5650.

https://dx.doi.org/https://doi.org/10.1017/CBO9780511543234
https://dx.doi.org/https://doi.org/10.1017/9781316162491
https://dx.doi.org/https://doi.org/10.3934/dcds.2014.34.915
https://dx.doi.org/https://doi.org/10.1137/0908068
https://dx.doi.org/https://doi.org/10.1216/JIE-2011-23-4-467
https://dx.doi.org/https://doi.org/10.1216/JIE-2011-23-4-467
https://dx.doi.org/https://doi.org/10.1093/imanum/10.1.103
https://dx.doi.org/https://doi.org/10.1216/JIE-2015-27-4-455
https://dx.doi.org/https://doi.org/10.1016/j.amc.2008.07.026
https://dx.doi.org/https://doi.org/10.1016/j.apnum.2024.05.002
https://dx.doi.org/https://doi.org/10.1016/j.apnum.2009.01.001
https://dx.doi.org/https://doi.org/10.1007/s00211-008-0209-z
https://dx.doi.org/https://doi.org/10.1007/s11075-011-9510-5


5648

14. J. Gao, G. Q. Chang, A bivariate Filon-Clenshaw-Curtis method of the highly
oscillatory integrals on a square, J. Comput. Appl. Math., 439 (2024), 115599.
https://doi.org/10.1016/j.cam.2023.115599

15. F. Z. Geng, X. Y. Wu, Reproducing kernel function-based Filon and Levin methods
for solving highly oscillatory integral, Appl. Math. Comput., 397 (2021), 125980.
https://doi.org/10.1016/j.amc.2021.125980

16. C. Huang, M. Stynes, Spectral Galerkin methods for a weakly singular Volterra
integral equation of the second kind, IMA J. Numer. Anal., 37 (2017), 1411–1436.
https://doi.org/10.1093/imanum/drw034

17. D. Huybrechs, S. Vandewalle, On the evaluation of highly oscillatory integrals by analytic
continuation, SIAM J. Numer. Anal., 44 (2006), 1026–1048. https://doi.org/10.1137/050636814

18. L. G. Ixaru, Operations on oscillatory functions, Comput. Phys. Commun., 105 (1997), 1–19.
https://doi.org/10.1016/S0010-4655(97)00067-2

19. L. G. Ixaru, G. V. Berghe, Exponential fitting, Kluwer Academic Publishers, 2004.
https://doi.org/10.1007/978-1-4020-2100-8

20. A. Iserles, S. P. Nørsett, Efficient quadrature of highly oscillatory integrals using
derivatives, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 1383–1399.
https://doi.org/10.1098/rspa.2004.1401

21. A. Iserles, S. P. Nørsett, On quadrature methods for highly oscillatory integrals and their
implementation, BIT Numer. Math., 44 (2004), 755–772. https://doi.org/10.1007/s10543-004-
5243-3

22. J. Jiang, Y. S. Xu, Deep neural network solutions for oscillatory Fredholm integral equations, J.
Integral Equ. Appl., 36 (2024), 23–55. https://doi.org/10.1216/jie.2024.36.23

23. S. Khan, S. E. Alhazmi, A. M. Alqahtani, A. EI-Sayed Ahmed, M. F. Yaseen, E. M. Tag-
Eldin, et al., Numerical investigation of the Fredholm integral equations with oscillatory
kernels based on compactly supported radial basis functions, Symmetry, 14 (2022), 1–23.
https://doi.org/10.3390/sym14081527

24. R. Katani, F. Pourahmad, A collocation method for a class of Fredholm integral
equations with highly oscillatory kernels, Asian Eur. J. Math., 11 (2018), 1850076.
https://doi.org/10.1142/S1793557118500766

25. S. K. Abbas, S. Sohrabi, H. Ranjbar, Approximate solution of a class of highly oscillatory
integral equations using an exponential fitting collocation method, J. Math., 2023 (2023), 9220664.
https://doi.org/10.1155/2023/9220664

26. D. Levin, Procedures for computing one- and two-dimensional integrals of functions with rapid
irregular oscillations, Math. Comp., 38 (1982), 531–538.

27. D. Levin, Fast integration of rapidly oscillatory functions, J. Comput. Appl. Math., 67 (1996),
95–101. https://doi.org/10.1016/0377-0427(94)00118-9

28. P. Linz, Analytical and numerical methods for Volterra equations, Philadelphia: SIAM, 1985.
https://doi.org/10.1137/1.9781611970852

AIMS Mathematics Volume 10, Issue 3, 5631–5650.

https://dx.doi.org/https://doi.org/10.1016/j.cam.2023.115599
https://dx.doi.org/https://doi.org/10.1016/j.amc.2021.125980
https://dx.doi.org/https://doi.org/10.1093/imanum/drw034
https://dx.doi.org/https://doi.org/10.1137/050636814
https://dx.doi.org/https://doi.org/10.1016/S0010-4655(97)00067-2
https://dx.doi.org/https://doi.org/10.1007/978-1-4020-2100-8
https://dx.doi.org/https://doi.org/10.1098/rspa.2004.1401
https://dx.doi.org/https://doi.org/10.1007/s10543-004-5243-3
https://dx.doi.org/https://doi.org/10.1007/s10543-004-5243-3
https://dx.doi.org/https://doi.org/10.1216/jie.2024.36.23
https://dx.doi.org/https://doi.org/10.3390/sym14081527
https://dx.doi.org/https://doi.org/10.1142/S1793557118500766
https://dx.doi.org/https://doi.org/10.1155/2023/9220664
https://dx.doi.org/https://doi.org/10.1016/0377-0427(94)00118-9
https://dx.doi.org/https://doi.org/10.1137/1.9781611970852


5649

29. X. J. Li, T. Tang, Convergence analysis of Jacobi spectral collocation methods for
Abel-Volterra integral equations of second kind, Front. Math. China, 7 (2012), 69–84.
https://doi.org/10.1007/s11464-012-0170-0

30. J. B. Li, X. S. Wang, S. P. Xiao, T. Wang, A rapid solution of a kind of 1D
Fredhalm oscillatory integral equation, J. Comput. Appl. Math., 236 (2012), 2696–2705.
https://doi.org/10.1016/j.cam.2012.01.007

31. B. Paternoster, Present state-of-the-art in exponential fitting. A contribution dedicated to
Liviu Ixaru on his 70th birthday, Comput. Phys. Commun., 183 (2012), 2499–2512.
https://doi.org/10.1016/j.cpc.2012.06.013

32. H. Ranjbar, F. Ghoreishi, A Gaussian quadrature rule for Fourier-type highly oscillatory
integrals in the presence of stationary points, J. Comput. Appl. Math., 395 (2021), 113592.
https://doi.org/10.1016/j.cam.2021.113592

33. H. Ranjbar, F. Ghoreishi, A Hermite collocation method for approximating a class of highly
oscillatory integral equations using new Gaussian radial basis functions, Calcolo, 58 (2021), 21.
https://doi.org/10.1007/s10092-021-00416-7

34. F. Ursell, Integral equations with a rapidly oscillating kernel, J. Lond. Math. Soc., s1-44 (1969),
449–459. https://doi.org/10.1112/jlms/s1-44.1.449

35. A. M. Wazwaz, Linear and nonlinear integral equations: methods and applications, Berlin,
Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-21449-3

36. H. Y. Wang, S. H. Xiang, Asymptotic expansion and Filon-type methods for a Volterra
integral equation with a highly oscillatory kernel, IMA J. Numer. Anal., 31 (2011), 469–490.
https://doi.org/10.1093/imanum/drp048

37. Y. K. Wang, Y. S. Xu, Oscillation preserving Galerkin methods for Fredholm integral
equations of the second kind with oscillatory kernels, 2015, arXiv: 1507.01156.
https://doi.org/10.48550/arXiv.1507.01156

38. M. H. Wu, H. Y. Wang, Gaussian quadrature rules for composite highly oscillatory integrals, Math.
Comp., 93 (2024), 729–746. https://doi.org/10.1090/mcom/3670

39. S. H. Xiang, H. Brunner, Efficient methods for Volterra integral equations with highly
oscillatory Bessel kernels, BIT Numer. Math., 53 (2013), 241–263. https://doi.org/10.1007/s10543-
012-0399-8

40. S. H. Xiang, Y. J. Cho, H. Y. Wang, H. Brunner, Clenshaw-Curtis-Filon-type methods for highly
oscillatory Bessel transforms and applications, IMA J. Numer. Anal., 31 (2011), 1281–1314.
https://doi.org/10.1093/imanum/drq035

41. Z. H. Xu, G. D. Liu, Efficient computation of highly oscillatory finite-part integrals, J. Math. Anal.
Appl., 541 (2025), 128668. https://doi.org/10.1016/j.jmaa.2024.128668

42. L. B. Zhao, Q. Q. Fan, S. Wang, High asymptotic order methods for highly oscillatory
integral equations with trigonometric kernels, J. Comput. Appl. Math., 416 (2022), 114549.
https://doi.org/10.1016/j.cam.2022.114549

AIMS Mathematics Volume 10, Issue 3, 5631–5650.

https://dx.doi.org/https://doi.org/10.1007/s11464-012-0170-0
https://dx.doi.org/https://doi.org/10.1016/j.cam.2012.01.007
https://dx.doi.org/https://doi.org/10.1016/j.cpc.2012.06.013
https://dx.doi.org/https://doi.org/10.1016/j.cam.2021.113592
https://dx.doi.org/https://doi.org/10.1007/s10092-021-00416-7
https://dx.doi.org/https://doi.org/10.1112/jlms/s1-44.1.449
https://dx.doi.org/https://doi.org/10.1007/978-3-642-21449-3
https://dx.doi.org/https://doi.org/10.1093/imanum/drp048
https://dx.doi.org/https://doi.org/10.48550/arXiv.1507.01156
https://dx.doi.org/https://doi.org/10.1090/mcom/3670
https://dx.doi.org/https://doi.org/10.1007/s10543-012-0399-8
https://dx.doi.org/https://doi.org/10.1007/s10543-012-0399-8
https://dx.doi.org/https://doi.org/10.1093/imanum/drq035
https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2024.128668
https://dx.doi.org/https://doi.org/10.1016/j.cam.2022.114549


5650

43. L. B. Zhao, C. M. Huang, Numerical methods for highly oscillatory Volterra integral
equations with general oscillators, J. Comput. Appl. Math., 449 (2024), 115967.
https://doi.org/10.1016/j.cam.2024.115967

44. L. B. Zhao, C. M. Huang, The generalized quadrature method for a class of highly oscillatory
Volterra integral equations, Numer. Algor., 92 (2023), 1503–1516. https://doi.org/10.1007/s11075-
022-01350-7

45. S. Zaman, S. U. Islam, Reproducing kernel function-based formulation for highly oscillatory
integrals, J. Comput. Appl. Math., 463 (2025), 116507. https://doi.org/10.1016/j.cam.2025.116507

46. S. H. Zhang, Y. P. Lin, M. Rao, Numerical solutions for second-kind Volterra integral equations by
Galerkin methods, Appl. Math., 45 (2000), 19–39. https://doi.org/10.1023/A:1022284616125

47. L. B. Zhao, P. D. Wang, Q. Q. Fan, A quadrature method for Volterra integral
equations with highly oscillatory Bessel kernel, Math. Comput. Simul., 228 (2025), 202–210.
https://doi.org/10.1016/j.matcom.2024.09.002

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 3, 5631–5650.

https://dx.doi.org/https://doi.org/10.1016/j.cam.2024.115967
https://dx.doi.org/https://doi.org/10.1007/s11075-022-01350-7
https://dx.doi.org/https://doi.org/10.1007/s11075-022-01350-7
https://dx.doi.org/https://doi.org/10.1016/j.cam.2025.116507
https://dx.doi.org/https://doi.org/10.1023/A:1022284616125
https://dx.doi.org/https://doi.org/10.1016/j.matcom.2024.09.002
https://creativecommons.org/licenses/by/4.0

	Introduction
	Description of the proposed method
	The collocation method
	The fully discrete collocation method

	Convergence analysis
	Numerical illustrations
	Conclusions

