Research article

Numerical approximation of the time-fractional regularized long-wave equation emerging in ion acoustic waves in plasma

  • Received: 08 November 2024 Revised: 06 February 2025 Accepted: 26 February 2025 Published: 13 March 2025
  • MSC : 35R11, 65M12

  • This work accomplished a novel approximate solution of the time-fractional regularized long-wave (TFRLW) equation. This equation is an appropriate mathematical model in physical sciences that designates the nature of ion acoustic waves in plasma and waves of shallow water. A cubic B-spline (CBS) collocation procedure was used for the spatial discretization, offering greater flexibility and accuracy compared to traditional spline methods. For time discretization, the finite difference method was used, ensuring computational efficiency, while the time-fractional derivative was settled by Caputo's definition. The Rubin-Graves linearization procedure was involved to handle the nonlinear term. To demonstrate the possessions of different constraints and variables on the displacement, the approximate solutions were shown in tabular as well as graphical forms. The method's unconditional stability was confirmed through a detailed von Neumann stability analysis, making it particularly robust for long-term simulations. The order of convergence was also estimated numerically. Three invariant capacities analogous to mass, momentum, and energy were assessed for further justification. Obtained solutions established the exactitude and efficiency of the anticipated method. Furthermore, unlike many existing methods, this approach can be tailored to handle the complexity of higher-order equations while maintaining stability and accuracy over large-scale problems.

    Citation: Hasim Khan, Mohammad Tamsir, Manoj Singh, Ahmed Hussein Msmali, Mutum Zico Meetei. Numerical approximation of the time-fractional regularized long-wave equation emerging in ion acoustic waves in plasma[J]. AIMS Mathematics, 2025, 10(3): 5651-5670. doi: 10.3934/math.2025261

    Related Papers:

  • This work accomplished a novel approximate solution of the time-fractional regularized long-wave (TFRLW) equation. This equation is an appropriate mathematical model in physical sciences that designates the nature of ion acoustic waves in plasma and waves of shallow water. A cubic B-spline (CBS) collocation procedure was used for the spatial discretization, offering greater flexibility and accuracy compared to traditional spline methods. For time discretization, the finite difference method was used, ensuring computational efficiency, while the time-fractional derivative was settled by Caputo's definition. The Rubin-Graves linearization procedure was involved to handle the nonlinear term. To demonstrate the possessions of different constraints and variables on the displacement, the approximate solutions were shown in tabular as well as graphical forms. The method's unconditional stability was confirmed through a detailed von Neumann stability analysis, making it particularly robust for long-term simulations. The order of convergence was also estimated numerically. Three invariant capacities analogous to mass, momentum, and energy were assessed for further justification. Obtained solutions established the exactitude and efficiency of the anticipated method. Furthermore, unlike many existing methods, this approach can be tailored to handle the complexity of higher-order equations while maintaining stability and accuracy over large-scale problems.



    加载中


    [1] D. H. Peregrine, Calculations of the development of an undular bore, J. Fluid Mech., 25 (1966), 321–330. https://doi.org/10.1017/S0022112066001678 doi: 10.1017/S0022112066001678
    [2] J. L. Bona, P. J. Bryant, A mathematical model for long waves generated by wave makers in non-linear dispersive systems, Math. Proc. Cambridge, 73 (1973), 391–405. https://doi.org/10.1017/S0305004100076945 doi: 10.1017/S0305004100076945
    [3] T. B. Benjamin, J. L. Bona, J. J. Mahony, Model equations for long waves in non-linear dispersive systems, Philos. T. Roy. Soc. A, 272 (972), 470–478.
    [4] J. L. Bona, W. G. Pritchard, L. R. Scott, An evaluation of a model equation for water waves, Philos. T. Roy. Soc. A, 302 (1981), 457–510. https://doi.org/10.1098/rsta.1981.0178 doi: 10.1098/rsta.1981.0178
    [5] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.
    [6] O. Nikan, J. A. T. Machado, A. Golbabai, T. Nikazad, Numerical approach for modeling fractal mobile/immobile transport model in porous and fractured media, Int. Commun. Heat Mass, 111 (2020), 104443. https://doi.org/10.1016/j.icheatmasstransfer.2019.104443 doi: 10.1016/j.icheatmasstransfer.2019.104443
    [7] A. Golbabai, O. Nikan, T. Nikazad, Numerical investigation of the time fractional mobile-immobile advection-dispersion model arising from solute transport in porous media, Int. J. Appl. Comput. Math., 5 (2019), 1–22. https://doi.org/10.1007/s40819-019-0635-x doi: 10.1007/s40819-019-0635-x
    [8] D. Kumar, J. Singh, D. Baleanu, A new analysis for fractional model of regularized long-wave equation arising in ion acoustic plasma waves, Math. Method. Appl. Sci., 40 (2017), 5642–5653. https://doi.org/10.1002/mma.4414 doi: 10.1002/mma.4414
    [9] D. Kumar, J. Singh, D. Baleanu, Sushila, Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel, Physica A, 492 (2018), 155–167. https://doi.org/10.1016/j.physa.2017.10.002 doi: 10.1016/j.physa.2017.10.002
    [10] W. Zhang, X. Cai, S. Holm, Time-fractional heat equations and negative absolute temperatures, Comput. Math. Appl., 67 (2014), 164–171. https://doi.org/10.1016/j.camwa.2013.11.007 doi: 10.1016/j.camwa.2013.11.007
    [11] F. A. Rihan, D. Baleanu, S. Lakshmanan, R. Rakkiyappan, On fractional SIRC model with salmonella bacterial infection, Abstr. Appl. Anal., 2014 (2014), 1–9. https://doi.org/10.1155/2014/136263 doi: 10.1155/2014/136263
    [12] K. Diethelm, N. J. Ford, A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29 (2002), 3–22. https://doi.org/10.1023/A:1016592219341 doi: 10.1023/A:1016592219341
    [13] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 2003 (2003), 3413–3442. https://doi.org/10.1155/S0161171203301486 doi: 10.1155/S0161171203301486
    [14] A. Padder, L. Almutairi, S. Qureshi, A. Soomro, A. Afroz, E. Hincal, et al., Dynamical analysis of generalized Tumor model with Caputo fractional-order derivative, Fractal Fract., 7 (2023), 258. https://doi.org/10.3390/fractalfract7030258 doi: 10.3390/fractalfract7030258
    [15] J. C. Eilbeck, G. R. McGuire, Numerical study of the regularized long wave equation Ⅰ: numerical methods, J. Comput. Phys., 19 (1975), 43–57. https://doi.org/10.1016/0021-9991(75)90115-1 doi: 10.1016/0021-9991(75)90115-1
    [16] P. C. Jain, R. Shankar, T. V. Singh, Numerical solutions of RLW equation, Commun. Numer. Meth. Eng., 9 (1993), 587–594. https://doi.org/10.1002/cnm.1640090705 doi: 10.1002/cnm.1640090705
    [17] P. Avilez-Valente, F. J. Seabra-Santos, A Petrov-Galerkin finite element scheme for the regularized long wave equation, Comput. Mech., 34 (2004), 256–270. https://doi.org/10.1007/s00466-004-0570-4 doi: 10.1007/s00466-004-0570-4
    [18] L. R. T. Gardner, G. A. Gardner, A. Dogan, A least-squares finite element scheme for the RLW equation, Commun. Numer. Meth. Eng., 12 (1996), 795–804. https://doi.org/10.1002/(SICI)1099-0887(199611)12:11<795::AID-CNM22>3.0.CO;2-O doi: 10.1002/(SICI)1099-0887(199611)12:11<795::AID-CNM22>3.0.CO;2-O
    [19] İ. Daǧ, M. N. Özer, Approximation of the RLW equation by the least square cubic B-spline finite element method, Appl. Math. Model., 25 (2001), 221–231. https://doi.org/10.1016/S0307-904X(00)00030-5 doi: 10.1016/S0307-904X(00)00030-5
    [20] I. Dag, Least squares quadratic B-spline finite element method for the regularized long wave equation, Comput. Method. Appl. M., 182 (2000), 205–215. https://doi.org/10.1016/S0045-7825(99)00106-1 doi: 10.1016/S0045-7825(99)00106-1
    [21] S. I. Zaki, Solitary waves of the splitted RLW equation, Comput. Phys. Commun., 138 (2001), 80–91. https://doi.org/10.1016/S0010-4655(01)00200-4 doi: 10.1016/S0010-4655(01)00200-4
    [22] B. Saka, İ. Dağ, A. Doğan, Galerkin method for the numerical solution of the RLW equation using quadratic B-splines, Int. J. Comput. Math., 81 (2004), 727–739. https://doi.org/10.1080/00207160310001650043 doi: 10.1080/00207160310001650043
    [23] İ. Dağ, B. Saka, D. Irk, Galerkin method for the numerical solution of the RLW equation using quintic B-splines, J. Comput. Appl. Math., 190 (2006), 532–547. https://doi.org/10.1016/j.cam.2005.04.026 doi: 10.1016/j.cam.2005.04.026
    [24] S. Kutluay, A. Esen, A finite difference solution of the regularized long-wave equation, Math. Prob. Eng., 2006 (2006), 1–14. https://doi.org/10.1155/MPE/2006/85743 doi: 10.1155/MPE/2006/85743
    [25] K. R. Raslan, A computational method for the regularized long wave (RLW) equation, Appl. Math. Comput., 167 (2005), 1101–1118. https://doi.org/10.1016/j.amc.2004.06.130 doi: 10.1016/j.amc.2004.06.130
    [26] İ. Dağ, A. DoĞan, B. Saka, B-Spline collocation methods for numerical solutions of the RLW equation, Int. Comput. Math., 80 (2003), 743–757. https://doi.org/10.1080/0020716021000038965 doi: 10.1080/0020716021000038965
    [27] B. Saka, İ. Dağ, Quartic B-spline collocation algorithms for numerical solution of the RLW equation, Numer. Meth. Part. D. E., 23 (2007), 731–751. https://doi.org/10.1002/num.20201 doi: 10.1002/num.20201
    [28] M. Tamsir, M. J. Huntul, N. Dhiman, S. Singh, Redefined quintic B-spline collocation technique for nonlinear higher order PDEs, Comp. Appl. Math., 41 (2022), 413. https://doi.org/10.1007/s40314-022-02127-3 doi: 10.1007/s40314-022-02127-3
    [29] R. C. Mittal, R. Rohila, A fourth order cubic B-spline collocation method for the numerical study of the RLW and MRLW equations, Wave Motion, 80 (2018), 47–68. https://doi.org/10.1016/j.wavemoti.2018.04.001 doi: 10.1016/j.wavemoti.2018.04.001
    [30] A. Korkmaz, İ. Dağ, Numerical simulations of boundary-forced RLW equation with cubic B-spline-based differential quadrature methods, Arab. J. Sci. Eng., 38 (2013), 1151–1160. https://doi.org/10.1007/s13369-012-0353-8 doi: 10.1007/s13369-012-0353-8
    [31] S. G. Rubin, R. A. Graves, Viscous flow solutions with a cubic spline approximation, Comput. Fluids, 1975. https://doi.org/10.1016/0045-7930(75)90006-7 doi: 10.1016/0045-7930(75)90006-7
    [32] P. Roul, A high accuracy numerical method and its convergence for time-fractional Black-Scholes equation governing European options, Appl. Numer. Math., 151 (2020), 472–493. https://doi.org/10.1016/j.apnum.2019.11.004 doi: 10.1016/j.apnum.2019.11.004
    [33] A. Esen, S. Kutluay, Application of a lumped Galerkin method to the regularized long wave equation, Appl. Math. Comput., 174 (2006), 833–845. https://doi.org/10.1016/j.amc.2005.05.032 doi: 10.1016/j.amc.2005.05.032
    [34] A. Dogan, Numerical solution of RLW equation using linear finite elements within Galerkin's method, Appl. Math. Model., 26 (2002), 771–783. https://doi.org/10.1016/S0307-904X(01)00084-1 doi: 10.1016/S0307-904X(01)00084-1
    [35] O. Nikan, S. M. Molavi-Arabshai, H. Jafari, Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves, Discrete Cont. Dyn.-S, 14 (2021), 3685–3701. https://doi.org/10.3934/dcdss.2020466 doi: 10.3934/dcdss.2020466
    [36] J. C. Strikwerda, Finite difference schemes and partial differential equations, 2 Eds., 2004, SIAM. https://doi.org/10.1137/1.9780898717938
    [37] L. R. T. Gardner, G. A. Gardner, I. Dag, A B-spline finite element method for the regularized long wave equation, Commun. Numer. Meth. Eng., 11 (1995), 59–68. https://doi.org/10.1002/cnm.1640110109 doi: 10.1002/cnm.1640110109
    [38] N. Maarouf, H. Maadan, K. Hilal, Lie symmetry analysis and explicit solutions for the time-fractional regularized long-wave equation, Int. J. Differ. Eq., 2021 (2021), 1–11. https://doi.org/10.1155/2021/6614231 doi: 10.1155/2021/6614231
    [39] M. Naeem, H. Yasmin, R. Shah, N. A. Shah, K. Nonlaopon, Investigation of fractional nonlinear Regularized Long-Wave models via novel techniques, Symmetry, 15 (2023), 220. https://doi.org/10.3390/sym15010220 doi: 10.3390/sym15010220
    [40] S. Hossain, M. M. Roshid, M. Uddin, A. A. Ripa, H. O. Roshid, Abundant time-wavering solutions of a modified regularized long wave model using the EMSE technique, Part. Differ. Eq. Appl. Math., 8 (2023), 100551. https://doi.org/10.1016/j.padiff.2023.100551 doi: 10.1016/j.padiff.2023.100551
    [41] A. Goswami, J. Singh, D. Kumar, S. Gupta, Sushila, An efficient analytical technique for fractional partial differential equations occurring in ion acoustic waves in plasma, J. Ocean Eng. Sci., 4 (2019), 85–99. https://doi.org/10.1016/j.joes.2019.01.003 doi: 10.1016/j.joes.2019.01.003
    [42] A. Podder, M. A. Arefin, M. A. Akbar, M. H. Uddin, A study of the wave dynamics of the space–time fractional nonlinear evolution equations of beta derivative using the improved Bernoulli sub-equation function approach, Sci. Rep., 13 (2023), 20478. https://doi.org/10.1038/s41598-023-45423-6 doi: 10.1038/s41598-023-45423-6
    [43] S. Behera, Analysis of traveling wave solutions of two space-time nonlinear fractional differential equations by the first-integral method, Mod. Phys. Lett. B, 38 (2024), 235024. https://doi.org/10.1142/S0217984923502470 doi: 10.1142/S0217984923502470
    [44] İ. Yalçınkaya, H. Ahmad, O. Tasbozan, A. Kurt, Soliton solutions for time fractional ocean engineering models with Beta derivative, J. Ocean Eng. Sci., 7 (2022), 444–448. https://doi.org/10.1016/j.joes.2021.09.015 doi: 10.1016/j.joes.2021.09.015
    [45] M. N. Alam, M. A. Rahman, Study of the parametric effect of the wave profiles of the time –space fractional soliton neuron model equation arising in the topic of neuroscience, Part. Differ. Equat. Appl. Math., 12 (2024), 100985. https://doi.org/10.1016/j.padiff.2024.100985 doi: 10.1016/j.padiff.2024.100985
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(19) PDF downloads(8) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog