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Abstract: This work accomplished a novel approximate solution of the time-fractional regularized long-
wave (TFRLW) equation. This equation is an appropriate mathematical model in physical sciences that 
designates the nature of ion acoustic waves in plasma and waves of shallow water. A cubic B-spline 
(CBS) collocation procedure was used for the spatial discretization, offering greater flexibility and 
accuracy compared to traditional spline methods. For time discretization, the finite difference method 
was used, ensuring computational efficiency, while the time-fractional derivative was settled by Caputo’s 
definition. The Rubin-Graves linearization procedure was involved to handle the nonlinear term. To 
demonstrate the possessions of different constraints and variables on the displacement, the approximate 
solutions were shown in tabular as well as graphical forms. The method’s unconditional stability was 
confirmed through a detailed von Neumann stability analysis, making it particularly robust for long-term 
simulations. The order of convergence was also estimated numerically. Three invariant capacities 
analogous to mass, momentum, and energy were assessed for further justification. Obtained solutions 
established the exactitude and efficiency of the anticipated method. Furthermore, unlike many existing 
methods, this approach can be tailored to handle the complexity of higher-order equations while 
maintaining stability and accuracy over large-scale problems. 
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1. Introduction  

First, Peregrine [1] promulgated the regularized long-wave (RLW) equation to describe the 
propagation of unidirectional weakly nonlinear dispersive water waves. Furthermore, the authors 
of [2,3] engaged this equation to illuminate an enormous class of real-world problems as a substitute 
of the well-known Korteweg–De Vries (KdV) equation. These studies revealed that the RLW equation 
is more impressive than the latter one. The RLW equation takes part as a fundamental role in the study 
of the non-linear dispersive waves that have a lot of norms in various precise areas, e.g., 
magnetohydrodynamic waves as well as ion acoustic plasma waves, longitudinal dispersive and 
pressure waves in elastic rods and liquid-gas bubble mixtures, and rotating flow down a tube. Bona et 
al. [4] proposed an integer-ordered formulation of the RLW equation for describing the surface water 
wave’s propagation in a channel.  

The RLW equation has been studied by means of numerous procedures. For instance, this equation 
has been approximated, numerically, by the Galerkin finite element method (FEM) [15,16,34], Petrov-
Galerkin FEM [17], least squares FEM [18], CBS and least squares CBS finite element methods (FEMs) 
[19,25], respectively, least squares quadratic B-spline (QdBS) FEM [20], splitting methods with CBS and 
QdBS FEMs [21,22], respectively, quintic B-spline Galerkin finite element method (QBS-GFEM) [23], 
linearized implicit finite difference method (FDM) [24], splitting-up technique with CBS and QdBS [26], 
quartic B-spline, QBS, and fourth-order CBS collocation techniques [27–29], respectively, CBS 
differential quadrature method [30], and lumped Galerkin QdBS FEM [33]. 

It is generally recognized that the trajectory’s characteristic of the fractional derivatives is non-
local as the remembrance outcome [5]. Many researchers prove that fractional differential equations 
(FDEs) are more appropriate than integer-order ones, as fractional derivatives demonstrate the memory 
and inherited possessions of several materials and processes [6–9].  

Furthermore, the time-fractional partial differential equations (TFDEs) have generated further 
consideration for a number of real-life applications such as signal processing, electrical network 
systems, optics, financial estimation and forecast, mathematical biology, electromagnetic control 
theory, fluid flows in multi-dimension, material science, acoustics, biological systems associated with 
predator-prey models, etc. [10–13]. The application of fractional models is rising for enhanced 
precision in real-life models, and points out substantial necessities for improved fractional 
mathematical models. In [14], the author implemented Caputo’s fractional derivative for dynamical 
investigation of a generalized tumor model. This derivative is being used for modeling of biological 
systems, comprising tumor growth. In biomedical research, tumor growth models have been 
expansively used to examine the dynamics of tumor expansion and estimating possible treatments.  

Recently, the TFRLW equation was approximated by some analytical and numerical methods. 
For instant, the authors of [8] applied a method based on the q-homotopy analysis transform for 
approximating the TFRLW equation, while in [9], they presented a new fractional extension of the 
RLW equation. Besides, they used the fixed-point theorem to prove the existence and uniqueness of 
the solutions. Nikan et al. [35] obtained the traveling-wave solutions of the TFRLW equation using 
the radial basis function (RBF) collocation technique. Maarouf et al. [38] systematically examined the 
Lie group analysis technique of the TFRLW equation with the Riemann-Liouville fractional derivative. 
Naeem et al. [39] developed numerical methodologies that use the Yang transform, the homotopy 
perturbation method (HPM), and the Adomian decomposition method (ADM) to analyze this equation. 

The TFRLW equation is one of the most substantial nonlinear evolution equations used to model 
various physical phenomena such as ion-acoustic plasma waves, shallow water waves, and 
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longitudinal waves in elastic rods. Hossain et al. [40] used a modified simple equation integral 
technique in the TFRLW equation to create kink waves, anti-kink waves, brilliant and dark bell waves, 
double periodic waves, and combinations of solitons and periodic waves. The fractional RLW 
equations were used to mathematically model the nonlinear waves in the ocean, and similarly, the 
fractional RLW equations are used to describe the huge ocean waves known as tsunamis [41]. 
According to [42], the TFRLW equation can be used to study many phenomena such as plasma waves 
in complex media, water wave propagation in shallow water, and long-wave occupancy dynamics in 
the ocean, including tsunamis and tidal waves. Results in [43] can aid in understanding ion-acoustic 
waves in plasma, shallow water waves in oceans, and the development of a three-dimensional wave 
packet with finite depth on water under weak nonlinearity using the TFRLW. In [44], the authors 
obtained the soliton and periodic wave solutions for the TFRLW, which is the first step toward 
understanding ocean models' structural and physical behavior and coastal and harbor regions of the 
oceans. The Kudryashov approach was used to investigate the TFRLW problem in [45], which has 
prospective applications in applied science, nonlinear dynamics, mathematical physics, and 
engineering and is also important in biosciences, neurosciences, plasma physics, geochemistry, and 
fluid mechanics. 

The most important part of this work is that the Caputo fractional derivative is used in the RLW 
equation for analyzing the nature of the displacement of shallow-water waves and ion acoustic plasma 
waves. It takes a broad view of the RLW equation for interpretation of the water waves. In 
interpretation of the excessive significance of fractional derivatives, we consider a TFRLW equation 
emerging in ion acoustic plasma waves (1). We use the cubic CBS collocation procedure to discretize 
the spatial derivatives. The Caputo’s definition is used for time-fractional derivative. 

3
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and 
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2. Discretization of the TFRLW equation 

This part implements the discretization process of the TFRLW equation by means of the CBS 

collocation procedure. First, we fix an identical partition of  0,  T  with size 
T

N
  , where N  

is the partition’s number of the time variable. Now, we discretize the fractional derivative 
w





 for 

0 1   at 1j    by the 1L  formula [20,30,31] as follows: 
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Next, the CBS collocation procedure is used to discretize derivatives of the spatial variable. The 
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where  0 1 1, ,..., ,M M      are preferred so that they form a basis over  ,a b . The ( )i  , ( )i  , 

and ( )i   at knot points are valued by the subsequent table (see Table 1). 
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Table 1. The values of ( )i  , ( )i  , and ( )i   at knots.
 

 2i   1i   i  1i   2i   

( )i   0 1  2  1  0 

( )i   0 3  0 3  0 

( )i   0 4  42  
4  0 

where 1 1  , 2 4  , 3
1
h

  , and 4 2
6
h

  . We define the approximate solutions as  
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where  i jC   are unknown extents. The variation of  , jw    is defined by 
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Using Eq (8), we approximate w  and its first-and second-order derivatives w   and w  , 

respectively, with respect to   as 

1 1 2 1 1
j j j j

i i i iC C Cw       ,         (9) 

3 1 3 1
( ) j j j

i i i
C Cw  

 
  ,        (10) 

and 

4 1 4 4 12( ) j j j j
i i i iC C Cw      .        (11) 

At 1j   , using the Eq (5) for 
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 and the   scheme, we discretize problem (1) as 
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Now, to linearize the nonlinear term   1jp

i
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
, we use the Rubin-Graves procedure as: 
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Taking 
1

2
   and using Eq (13) in (12) with some manipulation, we have 
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   1 11 ,  0,1,..., ,  1,2,...,
j jj j j j

i i i ii i
A w B w D w R i M j N 
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Next, using the CBS collocation technique, we get 
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The Eq (15) forms a linear system with 1M   equations and 3M  unknowns. For making it 
uniquely solvable, we use the boundary conditions    1,w a     and    2,w b     as 

   1 1 2 0 1 1 1
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      31 13 4
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Equations (19), (15) and (20) form the following system of linear equations: 
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0
11 3 1 1 1 3 1

0
3

2 0 0 0

0 0

0 0

0 0

0 0 0 2

j j

j j j j j

j j j j j

j j j j j
MM M M M M

j j
MM M

CA B

CB B D B B

CB B D B B

CB B D B B

CB A


 

 

 


    

   
       
    
   
   
    
   

      

 
   

   
     

  


= 

 

 

1
0 0 3 0 1

1

1

2

1

1
3 2

1

1

1

j j j j

j

j

j
M

j j j j
M M M

R A B

R

R

R

R A B

 


 








   
 
 
 
 
 
 
 
 

  
  

 ,       (21) 

where 2 3 2
0 0 0 0

1 1

j j j jA B A B
  
 

    , 1 4
j j

i iB A D    , 2 42j j
i iD A D    , and 

2 3 2

1 1

j j j j
M M M MA B A B

  
 

    . 

To solve the system (21), it is necessary to define the initial vector  0 0 0 0
0 1 1, , ..., ,M MC C C C  from 

( ,0) ( )w      which provides 1M    equations with 3M    unknowns. To take out 0
1C   and 

0
1MC  , we use ( ,0) ( )w a a   and ( ,0) ( )w b b   which gives 

0 0
1 1

3

( )a
C C 

    and 0 0
1 1

3

( )
M M

b
C C 

   .     (22) 

Now using Eq (22) and the initial condition, we have the subsequent system of linear equations: 
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 

 

0
0 0 1 302 1
0
11 2 1 1
0

1 2 1 22

01 2 1 11

01 2 1 3

2 0 0 0

0 0

0 0

0 0

0 0 0 2
MM

M MM

C

C

C

C

C





    
   

   

   
     



                                                    





      



.    (23) 

3. Stability analysis 

This section establishes the stability for the discretized system of the TFRLW equation using the 
von Neumann scheme [32]. According to Duhamels’ principle [36], the stability of an inhomogeneous 
system is the same as the stability of the corresponding homogeneous system. Therefore, we choose 0f  , 

and taking   1̂

p pw k   as locally constant to linearize pw w , and 
1

2
  , the Eq (12) can be written as 

       
1

1 11 0
0 1 0 1

0

ˆ1 ˆˆˆ   
2

j
j jpj j k

i k k i j ii i
k

a w k w w a w w 
    


  



     

   

     1
ˆ1 ˆˆˆ ,  0,1,..., ,  0,1,...,

2

j jp

i i
k w w i M j N 

 


    


.   (25) 

With the help of Eqs (10)–(12), we get 

       
1

* * 1 * 1 * * 1
0 1 1 2 11 1 1 1

0

 
j

j j j j k j k j k
i k k ii i i i

k

A E C B C A E C a C C C    


     
   


         

     0 0 0 * *
1 1 2 1 1 3 4 4 3 41 12j j j

j i i i ii iC C C E D C DC E D C                    , (26) 

where  * * *
0 1 4 0 2 4 1

ˆ 1 ˆˆˆ,  2 ,  ,  and 
2

pA a D B a D D E k
     


      


. 

Now, using the Fourier mode’s growth factor j j li h
iC e  , where 1l   ,   is the constraint 

depending on time, and we have  

      
1

* * * 1 0
0 1 1 2

0

2 cos 2 sin  2 cos
j

j j k
k k j

k

A h B lE h a h          


 



       

 *
4 4 32 2 cos 2 sin jD D h lE h        .     (27) 

Now, we define max
0
maxj i

i j
 

 
 . 

Using the Eq (27) in the Eq (26), and using the property   
1

1
0

1
j

k k j
k

  





   , we have 
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2 1

1 2 1

| |
( )

S

S S S
 

 
,         (28) 

where   22 2* 2
1 0 1 0 2 4 4 32 cos 2 2 cos 4 sinS a h a D D h E h            , and  *

2 2 cosS A h   

2 2* * 24 sinB E h . Using the values * * *, , ,  A B D E , 1 , 3 , 4 , and simplifying terms, we have 

2
2 1 2 1

4 12
1 4 sin 0

2  
S S h

h  
  

           
.     (29) 

Hence, we conclude that | | 1   . So, the discretized system of the TFRLW equation is 

unconditionally stable. 

4. Result and discussion 

This division provides an example of the TFRLW equation to investigate the efficacy and 
validation of the projected technique. For this purpose, we use 

1 2

2
2

0

| ( , ) ( , ) |
M

i i
i

L W w   



 

 
 
 , 

0
 max | |( , ) ( , ) ji i

i M
L W w   

 
  , 

and approximate error = 1

1

| ( , ) ( , ) |

| ( , ) |
j N i N

j N

w w

w

   
 





,  

where W  represents the exact solution. The ROC is analyzed by 
 

 
1 2

1 2

ln / ( )
ROC

ln

( )h err h

h h

err
 , where 

the terms 1( )herr  and 2( )herr   represents errors with 1h   and 2h  , in that order. The conservation 

possessions belonging to the TFRLW equation are measured by calculating quantities analogous to 
mass, momentum, and energy, respectively, as follows: 

1
0

b M

i
ia

I wd h W


   ,        (25) 

       2 222
2

0

ˆ ˆ
b M

i i
ia

I w w d h W W   


    ,    (26) 

       2 3 23
3

0

3 3
b M

i i
ia

I w w d h W W 


    .    (27) 

Now, we consider the TFRLW equation (1) with ˆˆ ˆ1 p        together with initial and 

boundary conditions 2( ,0) 3 sec ( )w h     and ( , ) ( , ) 0w a w b    . Here, 3   is the amplitude 

and 
1

2 1







. When  =1, the TFRLW equation has the subsequent single solitary wave solution 



5660 

AIMS Mathematics  Volume 10, Issue 3, 5651–5670. 

2
0( , ) 3 sec ( )w h         , where 

1
(1 )

2
     , 0   is an arbitrary constant, and    and 

   represent the width and velocity, respectively. For all calculations, we have chosen 0 = 0. 

Figure 1 signifies the estimated solution ( , )w    with admiration of the time  for several values 
of  . From this figure, it can be revealed that the estimated solution ( , )w    increases as the value of 
  increases. The approximate solutions with h  0.4,   0.01,  = 0.03 at times  = 5, 7, 10 and 

20 are demonstrated in Figure 2 for time-fractional orders  = 0.3, 0.5, 0.7, and 0.8. The figures show 
the influence of the Caputo order  of the fractional derivative on the evolution of the obtained solutions 
over time. An apparent dependence of   on the solutions can be seen clearly when the time is large. 
Table 2 shows the approximate errors together with an ROC for   0.9 with   0.1, h  0.2, and 

0.1   with respect to various time intervals. It can be perceived that the errors are very small and the 
projected method is linearly convergent with respect to the time variable. Table 3 shows the approximate 
errors for   0.4 with   0.03, h  0.2,   2 and 4 for various time intervals at   1 while Table 4 
illustrates the approximate errors with   0.1, h  0.2 for fractional orders   0.5, and 0.7 at times 

  5 and 10. It can be noticed from these tables that the approximate errors are small which confirms 
the accuracy of the proposed technique.  

 

Figure 1. The approximate solutions comportment for distinctive values of   with h 
0.1,   0.01 for   0.9 (left) and   0.5 (right) of Example 1. 

Table 2. The approximate errors for    0.9 with    0.1, h   0.2, and 0.1    for 

various time intervals. 

 
 
 
 
 

 

 

    2 ROC   4 ROC 

0.05 2.08570e-04 -- 4.03268e-04 -- 
0.001 1.04198e-04 1.0010 2.01542e-04 1.0006 
0.0005 5.20759e-05 1.0006 1.00746e-04 1.0004 
0.00025 2.60318e-05 1.0003 5.03664e-05 1.0002 
0.0002 2.08245e-05 1.0002 4.02919e-05 1.0001 
0.000125 1.30143e-05 1.0001 2.51814e-05 1.000 
0.00001 1.04112e-05 1.0001 2.01448e-05 1.000 
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(a) (b) 

  

  

(c) (d) 

Figure 2. The approximate solutions with h  0.4,   0.01,  = 0.03 at times (a)  = 

5, (b)  = 7, (c)  = 10, and (d)  = 20 (right) for different values of fractional order   
for Example 1. 
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Table 3. The approximate errors for    0.4 with    0.03, h   0.2, and    1 for 

various time intervals. 

Table 4. The approximate errors with   0.1, h  0.2, and   10 at   4 for various 

time intervals. 

Table 5 shows the ROC with respect to the space variable including errors in invariants for   1 
with    0.1,    0.01 at    1. It can be noticed from this table that the projected method is 

second-order convergent in space as well as that the small difference among the numerical and 
analytical values of 1I , 2I , and 3I  that extends in the invariants remains almost inconsistent for the 

duration of the computer run.  

Table 5. The order of convergence including errors on invariants for   1 with   0.1, 

  0.01, at   1. 

Table 6 demonstrates a comparison between the projected method and those available in refs. 
[18,19,33,34] in terms of 2L  and L  errors. The values of the single solitary wave’s invariants 

are also compared for    1 with    0.1, h   0.125,   = 0.1, and  [ 40,60]     at various 

times. It is observed from Table 6 that the magnitudes in the invariants keep almost insistent in the 
course of the computer run. At  =16, the difference among the numerical and analytical values 
of the conservation constants are 1I = 4.815941e-05, 2I = 1.856193e-06, 3I = 2.651635e-08. It 

    2 ROC   4 ROC 

0.05 3.126e-05 -- 7.786e-04 -- 
0.025 1.181e-05 1.40 3.791e-04 1.04 
0.0125 5.020e-06 1.23 1.870e-04 1.02 
0.01 3.879e-06 1.56 1.493e-04 1.01 
0.008 3.017e-06 1.13 1.192e-04 1.01 
0.00625 2.299e-06 1.10 9.295e-05 1.01 

    0.5,   5   0.5,   10   0.7,   5   0.7,   10 
0.05 3.0576e-04 5.9194e-04 1.1811e-03 2.0957e-03 
0.025 1.5319e-04 2.9497e-04 5.9586e-04 1.0434e-03 
0.0125 7.6638e-05 1.4723e-04 2.9914e-04 5.2055e-04 
0.01 6.1314e-05 1.1775e-04 2.3950e-04 4.1626e-04 
0.008 4.9054e-05 9.4173e-05 1.9171e-04 3.3289e-04 
0.001 3.0660e-05 5.8834e-05 1.1992e-04 2.0794e-04 

h  2L  ROC L  ROC 1I  2I  3I  

0.8 1.232e-04 -- 5.282e-05 -- 1.324e-05 4.253e-07 1.982e-09 
0.5 4.675e-05 2.06 2.023e-05 2.04 1.358e-05 3.550e-08 1.253e-10 
0.4 2.976e-05 2.02 1.295e-05 2.00 1.369e-05 3.645e-09 3.864e-11 
0.25 1.166e-05 1.99 5.050e-06 2.00 1.389e-05 5.448e-09 2.081e-12 
0.2 7.558e-06 1.94 3.235e-06 1.99 1.389e-05 5.448e-09 2.081e-12 
0.125 3.290e-06 1.77 1.725e-06 1.34 1.397e-05 2.662e-09 1.059e-12 
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is obvious from the table that the L  error norms at each time achieved by the projected method are 

much lower than those given in refs. [18,19,33,34], However, the 2L  error norm is only higher than 

in [18] and is lower than the others. Also, the 2L  and L  errors in [33] are slightly smaller than those 

achieved by the projected method.  

Table 6. Invariants with 2L  and L  errors for the single solitary wave for   1 with 

  0.1, h  0.125,  = 0.1,  [ 40,60]    at various times. 

Time Methods 2L  L  1I  2I  3I  

 
 
 = 4 

Present 5.279e-05 2.118e-05 3.979955 0.810463 2.579007 

Ref. [33] 4.8e-05 1.9e-05 3.97993 0.810465 2.57901 

Ref. [19] 1.09e-03 4.87e-04 3.98041 0.810111 2.57785 

Ref. [18] 1.00e-05 1.46e-04 3.97709 0.809641 2.57630 

Ref. [34] 1.16e-04 5.4e-05 3.98039 0.810610 2.57950 

 
 
 
 = 8 

Present  1.05e-04 4.252e-05 3.979976 0.810463 2.579007 

Ref. [33] 9.4e-05 3.8e-05 3.97993 0.810465 2.57901 

Ref. [19] 2.109e-03  8.92e-04 3.98085  0.809749 2.57666 

Ref. [18] 3.0e-06  5.79e-04 3.97332  0.808320  2.57194 

Ref. [34] 2.24e-04  1.00e-04 3.98083  0.810752  2.57996 

 
 
 =12 

Present 1.5395e-04 6.216e-05 3.9799927 0.810463 2.579007 

Ref. [33] 1.38e-04 5.6e-05 3.97992  0.810465  2.57901 

Ref. [19] 3.049e-03 1.224e-03 3.98128  0.809390  2.57547 

Ref. [18] 6.0e-06 9.22e-04 3.97911  0.806774  2.56684 

Ref. [34] 3.25e-04  1.39e-04 3.98125  0.810884  2.58041 

 
 
 =16 

Present 2.012e-04 7.994e-05 3.979997 0.810464 2.579007 

Ref. [33] 1.80e-04  7.1e-05 3.97991  0.810465  2.57901 

Ref. [19] 3.905e-03 1.510e-03 3.98169  0.809030  2.57428 

Ref. [18] 1.2e-05 1.215e-03 3.96534  0.805461  2.56251 

Ref. [34] 4.17e-04 1.71e-04 3.98165  0.811014  2.58083 

Table 7 compares the projected method and existing methods refs. [19,23,33,34,37] in terms of 

2L   and L   errors as well as invariants for    1 with    0.1, h   0.125,   = 0.1, and 

[ 40,60]     at time  = 20. It can be perceived from this table that the 2L   and L   error norms 

achieved by the projected method are very much smaller than those obtained in [19,23,33,34,37], 
whereas, the errors obtained by the QBGM1 are almost similar to the projected method. The 
magnitudes in the invariants keep on nearly consistent in the course of the computer run. It is found 
that the difference among the numerical and analytical values of 1I , 2I , and 3I  are 1I = 2.496862e-
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05, 2I = 2.642822e-06, and 3I = 3.886086e-08. Table 8 compares the invariants obtained by the 

projected method with ref. [37] and analytical quantities for   0.5 with   0.03, h  0.1,  = 

0.0001 at various times  . It can be remarked from this table that the obtained invariant quantities are 
very close to analytical values and are much better than what is presented in ref. [37]. Table 9 shows 
the absolute errors in the invariants obtained by the projected method and analytical quantities for  
0.6 with   0.03, h  0.2,  = 0.001 at various times  . It can be seen that the invariant quantities 

are nearly 310 accurate. 

Table 7. The comparison of 2L   and L   errors and invariants obtained by the projected 

method and existing methods for   1 with   0.1, h  0.125,  = 0.1,  [ 40,60]    

at  = 20. 

Methods 2L  L  1I  2I  3I  

Present 2.4627e-04 9.6078e-05 3.979975 0.810465 2.579007 
Ref. [19] 4.688e-03 1.755e-03 3.98203 0.808650 2.57302 
Ref. [37]  2.20e-04 8.60e-05 3.97989 0.810467 2.57902 
Ref. [33] 2.19e-04 8.60e-05 3.97988 0.810465 2.57901 
QBGM1 (Ref. [23]) 1.9215e-04 7.337e-05  3.9798832  0.8104612  2.5790031 
QBGM2 (Ref. [23]) 3.5489e-04 1.2848e-04  3.9798830  0.8104616  2.5790043 
Ref. [34] 5.11e-04  1.98e-04 3.98206  0.811164  2.58133 

Table 8. The comparison of invariants obtained by the projected method with ref. [37] and 
analytical quantities for   0.5 with   0.03, h  0.1,  = 0.0001 at various times  . 

  Methods 1I  2I  3I  

 
0.01 

Present 2.104795105493023 0.127311100687075 0.388792279082409 

Exact values 2.109407499749634 0.127301718625667 0.388805990353852 

Ref. [37] 0.197709389335031 0.126849748687847 0.387166785333068 

 
0.02 

Present 2.104793676163467 0.127306603010193 0.388778144598822 

Exact values 2.109407499749634 0.127301718625667 0.388805990353852 

Ref. [37] 0.197709389335031 0.126832805997773 0.387113999130940 

 
0.03 

Present  2.104792339908470 0.127301823129927 0.388763112448558 

Exact values 2.109407499749634 0.127301718625667 0.388805990353852 

Ref. [37] 0.197705310408835 0.126802946718958 0.387058367254051 

 
0.04 

Present 2.104791052954834 0.127296885458673 0.388747577127724 

Exact values 2.109407499749634 0.127301718625667 0.388805990353852 

Ref. [37] 0.197698761277219 0.126780218019371 0.387001260827619 

 
0.05 

Present 2.104789799868593 0.127291842792910 0.388731706486992 

Exact values 2.109407499749634 0.127301718625667 0.388805990353852 

Ref. [37] 0.197690652584066 0.126757804752181 0.386943215828569 
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Table 9. The absolute errors in invariants obtained by the projected method and analytical 
quantities for   0.6 with   0.03, h  0.2,  = 0.001 at various times  . 

  
1I  2I  3I  

0.01 4.750272418178e-03 3.379346449474130e-04 1.087110202561e-03 

0.02 4.755032046523e-03 3.758097931880755e-04 1.206502603342e-03 

0.03 4.756680570585e-03 3.896019672482709e-04 1.249979299056e-03 

0.04 4.757509362131e-03 3.967863361757640e-04 1.272626452249e-03 

0.05 4.758004486260e-03 4.012071170268194e-04 1.286562027427e-03 

Figure 3 demonstrates the plots of the estimate solution ( , )w    contrasted with spatial as well 
as time variables   and  , respectively, for the values of   0.5 and    0.75 showing that the 

appearances of this figure are stable with ref. [35] (Figures 2 and 3). Figure 4 illustrates the 
approximate errors for   0.5 with   0.1, h  0.1 for various time interval sizes   at   0.1. 

It can be seen from this figure that the approximate errors are decreasing on increasing  . Also, it 

is observed that the approximate errors are less than  510  which shows the accuracy of the projected 
method. The 3D plot of the approximate errors for   0.9 with   0.1, h  0.2,  = 0.001, and 

[0,0.1]   is depicted in Figure 5. The depiction of single solitary wave solutions with absolute errors 
by assuming   1, h  0.3,  = 0.1 for   0.1 and   0.03 at 1   is described in Figure 6. 

      

Figure 3. The surface behaviors of the numerical ( , )w   for   0.5 (left), and   0.75 
(right) with   0.3, h  0.2, [0,0.1]  , and   0.01 for Example 1. 
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Figure 4. The approximate errors for   0.5 with   0.1, h  0.1 for various   at   0.1. 

 

Figure 5. The 3D plot of the approximate errors for   0.9 with   0.1, h  0.2, 
= 0.001, and [0,0.1]  . 
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Figure 6. The single solitary wave solutions’ performance with absolute errors with  
1, h  0.3,  = 0.1 for   0.1 (up) and   0.03 (down) at 1  . 

5. Conclusions 

The traveling-wave solutions are obtained for the TFRLW equation via a CBS collocation 
technique. The spatial derivatives are discretized by the aforesaid technique while the time-fractional 
derivative is discretized through Caputo’s definition. The nonlinear term is commenced by the Rubin-
Graves linearization procedure. The von-Neumann analysis confirms that the discretized structure of 
the TFRLW equation is enthusiastically stable. It is also established that the technique is second-order 
convergent in the spatial variable while linearly convergent in time. Three invariant capacities 
corresponding to mass, momentum, and energy are assessed for further justification. It is demonstrated 
that these invariants remain almost inconsistent for the duration of the computer run, and absolute 
errors are very small, approximately 810  to 510 . It is also observed that the obtained results by 
the projected technique are much better than the existing ones in [18,19,23,33,34,37]. 
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