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1. Introduction

Giannessi [11] defined variational inequality problems (VIPs) in vector form in 1980 and
demonstrated the connections between effective solutions to differential convex vector optimization
problems and Minty vector variational inequalities. Since then, a great deal of research has
been done on the relationships between nonsmooth vector variational inequalities and nonsmooth
vector optimization problems, see [1, 9, 19]. In 1994, Demyanov [6] proposed the concept of
convexificators in order to generalize upper convex and lower concave approximations. Later,
Demyanov and Jeyakumar [7, 8] evaluated convexificators for positively homogeneous and locally
Lipschitz functions. Furthermore, Jeyakumar and Luc [14] defined non-compact convexificators and
presented several calculus rules for calculating convexificators. For more details, one can see [6] and
the references therein. Laha et al. [16] studied the convexity for vector valued functions in terms of
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convexificators and the monotonicity of the corresponding convexificators. They [16] also formulated
the vector variational inequality problems (VVIPs) of Stampacchia [27] and Minty [18]-type using
convexificators on Euclidean spaces.

Furthermore, several authors have laid focus on the extension of the methods and techniques
developed on Euclidean spaces to Riemannian manifolds. For more details, see: [1, 2, 10, 17, 28].
And in particularly on the Hadamard manifolds, one can see [5, 22, 23, 29]. Nemeth [22] extended
the VIP on the Hadamard manifolds and studied their existence. Later, Chen et al. [5] showed
the relations between VVIPs and vector optimization problems (VOPs) on the Hadamard manifolds.
Furthermore, Chen [4] studied the existence results of VVIPs on the Hadamard manifolds and Jayswal
et al. [13] investigated it on Riemannian manifolds with some appropriate conditions. Later, Singh
et al. [26] discussed the existence of nonsmooth vector variational inequality problems (NVVIPs) on
the Hadamard manifold by using the bifunction.

Convexificators are a concept that has been utilized recently to extend a variety of findings in
nonsmooth analysis and optimization, see [6, 10–12, 16, 19]. From an optimization and application
perspective, the descriptions of the optimality conditions in terms of convexificators yield more precise
results because, in general, convexificators are closed sets, unlike the well-known subdifferentials,
which are convex and compact. This study aims to bridge these gaps by extending the theory of
convexificators to the Hadamard manifolds, deriving new versions of the mean value theorem, and
investigating the monotonicity and geodesic convexity of bounded convexificators. Furthermore, the
work provides a rigorous formulation and analysis of convexificator-based vector variational inequality
problems (VVIPs) and establishes the necessary and sufficient conditions for vector optimization
problems on the Hadamard manifolds. These results not only advance the mathematical theory but also
open new pathways for solving complex problems in applied fields where non-Euclidean geometries
are essential.

Motivated by the above work, we extend the concept of convexificators to the Hadamard manifold
and discuss several relations for the monotonicity of ∂∗∗ f and ∂∗∗-convexity. Furthermore, we prove the
mean value theorem using convexificators on the Hadamard manifold and extend the concept of VVIPs
to the Hadamard manifold. Additionally, we use it as a tool for finding the solution of VOPs.

2. Preliminaries

For the purpose of comprehending the fundamental ideas of this work, some definitions, theorems,
and results pertaining to Riemannian manifolds are reviewed in this section. For more study on
Riemannian manifolds, see [3, 24, 25, 28].

Let Rm be an m-dimensional Euclidean space and Rm
+ be its non-negative orthant.

Let p = (p1, p2, ..., pm) and q = (q1, q2, ..., qm) be the two vectors in Rm. Then,

p ≦ q⇔ pl ≤ ql for l = 1, 2, ...,m ⇔ p − q ∈ −Rm
+ ;

p ≤ q⇔ pl ≤ ql for l = 1, 2, ...,m and p , q ⇔ p − q ∈ −Rm
+ ;

p < q⇔ pl < ql for l = 1, 2, ...,m ⇔ p − q ∈ −int Rm
+ .

Definition 2.1. [14] Let Ψ : Rm −→ R ∪ {+∞} be such that for p ∈ Rm, Ψ(p) is finite. The lower and
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upper Dini derivative of Ψ at p in the given direction of w ∈ Rm are defined, respectively, as follows:

Ψ−(p,w) := lim inf
t↓0

Ψ(p + tw) − Ψ(p)
t

,

Ψ+(p,w) := lim sup
t↓0

Ψ(p + tw) − Ψ(p)
t

.

Definition 2.2. [14] Let Ψ : Rm −→ R ∪ {+∞} be such that for p ∈ Rm, Ψ(p) is finite. Then, the
function Ψ is said to have:

(1) An upper convexificator ∂∗Ψ(p) ⊂ Rm at p ∈ Rm, iff ∂∗Ψ(p) is closed and for each w ∈ Rm, one
has

Ψ−(p; w) ≤ sup
ξ∈∂∗Ψ(p)

⟨ξ,w⟩ .

(2) A lower convexificator ∂∗Ψ(p) ⊂ Rm at p ∈ Rm, iff ∂∗Ψ(p) is closed and for each w ∈ Rm, one has

Ψ+(p; w) ≥ inf
ξ∈∂∗Ψ(p)

⟨ξ,w⟩ .

(3) A convexificator ∂∗∗Ψ(p) ⊂ Rm at p ∈ Rm, iff ∂∗∗Ψ(p) is both the upper and lower convexificator of
Φ at p.

LetM be an m-dimensional Riemannian manifold with Levi-civita (or Riemannian) connection ∇. The
scalar product on TpM with the norm ∥ · ∥ is denoted by ⟨·, ·⟩.

For any p, q ∈ M, let γpq : [0, 1] −→ M be a piece-wise smooth curve joining p to q. Then the arc
length of γpq(t) is:

L(γpq) :=
∫ 1

0
∥γ̇pq(t)∥dt,

where γ̇pq(t) is the tangent vector to the curve γpq.
A smooth curve γpq satisfying the conditions γpq(0) = p , γpq(1) = q, and ∇γ̇pq γ̇pq = 0 on [0, 1] is

called a geodesic on manifold. If we take two points p,w ∈ M, Pw,p denotes the parallel transport from
TpM to TwM.

By the Hopf-Rinow theorem, we know that, if any two points on M can be joined by a minimal
geodesic, thenM is a complete Riemannian manifold and the arc-length of the geodesic is called the
Riemannian distance between p and q and it is defined as d(p, q) = infγpq L(γpq).

Now, recall that a function Ψ : M −→ R is said to be Lipschitz on the given subset K ofM if ∃
λ ≥ 0, such that

|Ψ(p) − Ψ(q)| ≤ λd(p, q), ∀ p, q ∈ K .

A function Ψ :M −→ R is said to be a locally Lipschitz function at point po ∈ M, if ∃ λ(po) ≥ 0 such
that the above inequality satisfies with λ = λ(po) for any p, q in a neighborhood of po. Let us recall
some basic definitions of the generalized derivative for locally Lipschitz function onM.
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Definition 2.3. [20] Let Ψ : M −→ R be a locally Lipschitz function. Let p, q ∈ M, the generalized
directional derivative Ψo(p; v) of Ψ at a point p in the direction v ∈ TpM defined as

Ψ◦(p; v) = lim sup
q→p,t↓0,q∈M

Ψ ◦ Φ−1(Φ(q) + tdΦ(p)(v)) − Ψ ◦ Φ−1(Φ(q))
t

,

where Φ : U ⊆ M −→ Φ(U) ⊆ Rm is a homeomarphism, that is (U,Φ) is the chart about the point p.

Definition 2.4. [20] Let Ψ :M −→ R be a locally Lipschitz function on Riemannian manifold. Then,
the generalized gradient of Ψ at the point q ∈ M is the subset ∂cΨ(q) of T ∗qM � TqM defined as

∂cΨ(q) = {ξ ∈ TqM : Ψ◦(q; v) ≥ ⟨ξ, q⟩ , ∀v ∈ TqM}.

Definition 2.5. [15] (Hadamard manifold): A complete, simply connected Riemannian manifold
which has non-positive sectional curvature is called a Hadamard manifold, and we denote it by H
throughout the paper.

Proposition 2.6. [21] Let p be any point of the Hadamard manifold H. Then, expp : TpH −→ H is a
diffeomorphism. For any p, q ∈ H, there exists a unique minimal geodesic γpq joining p to q such that

γpq(t) = expp(t exp−1
p q), ∀ t ∈ [0, 1].

Definition 2.7. [28] A set K ⊆ H is said to be geodesic convex (GC) if for any two points p, q ∈ K ,
expx(t exp−1

p q) ∈ K .

Definition 2.8. [28] Suppose K ⊆ H is a GC set. Then Ψ : K −→ R is said to be a convex function if
for every p, q ∈ K ,

Ψ(expp t exp−1
p q) ≤ tΨ(p) + (1 − t)Ψ(q), ∀ t ∈ [0, 1].

Definition 2.9. [1] Let Ψ : H −→ R̄ := R ∪ {+∞} be an extended real-valued function on H and p be
a point where Ψ is finite.

(1) The Dini-lower directional derivative at point p ∈ H in the direction v ∈ TpH is defined as

Ψ−(p; v) := lim inf
t→0+

Ψ(expp tv) − Ψ(p)

t
.

(2) The Dini-upper directional derivative at point p ∈ H in the direction v ∈ TpH is defined as

Ψ+(p; v) := lim sup
t→0+

Ψ(expp tv) − Ψ(p)

t
.

As discussed in [1], for a fixed s ∈ (0, 1), we take a point w = γpq(s) = expp(s exp−1
p q) on the

geodesic γpq : [0, 1] −→ H, which divides the geodesic into two parts. The first part can be written as

γwp(t) = γpq(−st + s) = expp(−st + s) exp−1
p q, ∀ t ∈ [0, 1],

that is,
expw(t exp−1

w p) = expp(−st + s) exp−1
p q, ∀ t ∈ [0, 1], (2.1)
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and the second part can be written as

γwq = γpq((1 − s)t + s) = expp(((1 − s)t + s) exp−1
p q), ∀ t ∈ [0, 1],

that is,
expw(t exp−1

w q) = expp(((1 − s)t + s) exp−1
p q), ∀ t ∈ [0, 1]. (2.2)

From (2.1) and (2.2), we get
exp−1

w p = −sPw,p exp−1
p q, (2.3)

exp−1
w q = (1 − s)Pw,p exp−1

p q. (2.4)

Similarly, we have
exp−1

w p = sPw,q exp−1
q p. (2.5)

3. Convexity and monotonicity of convexificators

In this section, we first prove the mean value theorem for convexificators on the Hadamard manifold.
We extend the notions of convexity and monotonicity of vector-valued functions using convexificators
to the Riemannian manifold, particularly the Hadamard manifold, and establish some relations between
them.

Definition 3.1. Let Ψ : H −→ R̄ be an extended real-valued function, p ∈ H, and Ψ(p) is finite.

(1) The function Ψ is said to have an upper convexificator ∂∗Ψ(p) ⊂ TpH at a point p ∈ H, iff ∂∗Ψ(p)
is closed and for each v ∈ TpH,

Ψ−(p; v) ≤ sup
ξ∈∂∗Ψ(x)

⟨ξ; v⟩ .

(2) The function Ψ is said to have a lower convexificator ∂∗Ψ(p) ⊂ TpH at point p ∈ H, iff ∂∗Ψ(p) is
closed and for each v ∈ TpH,

Ψ+(p; v) ≥ inf
ξ∈∂∗Ψ(p)

⟨ξ; v⟩ .

(3) The function Ψ is said to have a convexificator ∂∗∗Ψ(p) ⊂ TpH at point p ∈ H, iff ∂∗∗Ψ(p) is both
upper and lower convexificator of Ψ at p.

Theorem 3.2. [Mean value theorem] SupposeK(, ϕ) ⊆ H is a GC set. Let p, q ∈ K and letΨ : K −→
R̄ := R ∪ {−∞,+∞} be finite and continuous. Suppose that, for each t ∈ (0, 1), z(t) := expp(t exp−1

p q),
∂∗Ψ(z), and ∂∗Ψ(z) are respectively upper and lower convexificators of Ψ. Then, there exists w(t) ∈
(p, q) and a sequence {ξk} ⊂ co(∂∗Ψ(w) ∪ ∂∗Ψ(w)) such that

Ψ(q) − Ψ(p) = lim
k→∞

〈
ξk; Pw,p exp−1

p q
〉
,

or

Ψ(q) − Ψ(p) =
〈
ξ; Pw,p exp−1

p q
〉
.

AIMS Mathematics Volume 10, Issue 3, 5612–5630.



5617

Proof. Consider a function ρ : [0, 1] −→ R, such that

ρ(t) := Ψ(expp t exp−1
p q) − Ψ(p) + t(Ψ(p) − Ψ(q)).

Here, ρ is continuous on [0, 1] and ρ(0) = ρ(1) = 0. Then, ∃ µ ∈ (0, 1) such that µ is the extremum
point of ρ. Define

w(µ) = expp µ exp−1
p q.

Without loss of generality, let µ be the minimal point of ρ, then using the necessary condition of a
minimal point, for each v ∈ R,

ρ−d (µ; v) ≥ 0,

since,

ρ−d (µ; v) := lim inf
k→0+

ρ(µ + kv) − ρ(µ)
k

.

Therefore, we have

lim inf
k→0+

Ψ(expp(µ + kv) exp−1
p q) − Ψ(expp µ exp−1

p q)

k
+ v(Ψ(p) − Ψ(q)) ≥ 0,

since,

expp(µ + kv) exp−1
p q = expp

(
−µ

(
kv
−µ

)
+ µ

)
exp−1

p q. (3.1)

Now, suppose

kv
−µ
= λ (say).

Therefore, Eq (3.1) becomes

expp(µ + kv) exp−1
p q = expp (−µλ + µ) exp−1

p q = γwp(λ)
= expw λ exp−1

w p

= expw k
(

v
−µ

)
exp−1

w p.

Hence, from the above inequality

lim inf
k→0+

Ψ
(
expw k

(
v
−µ

exp−1
w p

))
− Ψ(expp µ exp−1

p q)

k
+ v (Ψ(p) − Ψ(q)) ≥ 0,

lim inf
k→0+

Ψ
(
expw kv′

)
− Ψ(w)

k
+ v (Ψ(p) − Ψ(q)) ≥ 0,

Ψ−d (w; v′) + v(Ψ(p) − Ψ(q)) ≥ 0,
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Ψ−d

(
w;

v
−µ

exp−1
w p

)
+ v(Ψ(p) − Ψ(q)) ≥ 0.

We know that

−
1
µ

exp−1
w p = Pw,p exp−1

p q.

This implies that

Ψ−d (w; vPw,p exp−1
p q) ≥ v(Ψ(q) − Ψ(p)).

Now, putting v = 1 and v = −1, respectively, we get

−Ψ−d (w; Pw,p exp−1
p q) ≤ Ψ(q) − Ψ(p) ≤ Ψ−d (w; Pw,p exp−1

p q),

since ∂∗Ψ(w) is an upper convexificator of Ψ at w, and we have

inf
ξ∈∂∗Ψ(w)

〈
ξ; Pw,p exp−1

p q
〉
≤ Ψ(q) − Ψ(p) ≤ sup

ξ∈∂∗Ψ(w)

〈
ξ; Pw,p exp−1

p q
〉
.

Then, this inequality follows that ∃ sequence {ξk} ⊂ co(∂∗Ψ) such that

Ψ(q) − Ψ(p) = lim
k→0

〈
ξk; Pw,p exp−1

p q
〉

or

Ψ(q) − Ψ(p) =
〈
ξ; Pw,p exp−1

p q
〉

holds with some ξ ∈ co(∂∗Ψ(w) ∪ ∂∗Ψ(w)).
On the other hand, if µ is the maximal point of ρ, then using the same arguments as above, we get

the conclusion. Hence,

Ψ(q) − Ψ(p) =
〈
ξ; Pw,p exp−1

p q
〉

holds with some ξ ∈ co(∂∗Ψ(w) ∪ ∂∗Ψ(w)). □

Definition 3.3. Suppose K(, ϕ) ⊆ H is a GC set and Ψ : K −→ Rm is a function such that Ψi : K −→
R are locally Lipschitz at p̄ ∈ K ⊆ H and admit a bounded convexificator ∂∗∗Ψi(p̄) at a point p̄ for all
∀ i ∈ M = {1, 2, ...m}. Then, Ψ is said to be:

(1) ∂∗∗-convex at point p̄ over K , iff for any p ∈ K and ξ∗ ∈ ∂∗∗Ψ(p̄), such that

Ψ(p) − Ψ( p̄) ≧
〈
ξ∗; exp−1

p̄ p
〉

m
,

(2) strictly ∂∗∗-convex at point p̄ over K , iff for any p ∈ K and ξ∗ ∈ ∂∗∗Ψ(p̄),

Ψ(p) − Ψ( p̄) >
〈
ξ∗; exp−1

p̄ p
〉

m
,
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where,

ξ∗ := (ξ∗1, ξ
∗
2, ..., ξ

∗),

∂∗∗Ψ( p̄) := ∂∗∗Ψ1( p̄) × ... × ∂∗∗Ψm( p̄),

〈
ξ∗; exp−1

p̄ p
〉

m
:= (

〈
ξ∗1; exp−1

p̄ p
〉
,
〈
ξ∗2; exp−1

p̄ p
〉
, ...,

〈
ξ∗m; exp−1

p̄ p
〉
).

Definition 3.4. Let Ψ := (Ψ1,Ψ2, ...,Ψm) : K −→ Rm be a vector-valued function such that Ψi : K −→
R are locally Lipschitz on K ⊆ H and admit a bounded convexificator ∂∗∗Ψi(p) for all p ∈ K and
∀ i ∈ M = {1, 2, ...m}. Then, ∂∗∗Ψ is said to be:

(1) monotone on K , iff for any p, q ∈ K , ξ ∈ ∂∗∗Ψ(p), and ζ ∈ ∂∗∗Ψ(q), one has〈
Pq,pξ − ζ; exp−1

q p
〉

m
≧ 0;

(2) strictly monotone on K , iff for any p, q ∈ K , ξ ∈ ∂∗∗Ψ(p), and ζ ∈ ∂∗∗Ψ(q), one has〈
Pq,pξ − ζ; exp−1

q q
〉

m
> 0.

In the following theorem, we discuss an important characterization of ∂∗∗-convex functions in terms of
monotonicity.

Theorem 3.5. Suppose K(, ϕ) ⊆ H is a GC set and Ψ : K −→ Rm be a function such that Ψi : K −→
R are locally Lipschitz functions on K and admit bounded convexificators ∂∗∗Ψi(p), ∀ p ∈ K and ∀ i ∈
M = {1, 2, ...m}. Then, Ψ is ∂∗∗-convex on K iff ∂∗∗Ψ is monotone on K .

Proof. Suppose that Ψ is ∂∗∗-convex on K . Then, for any p, q ∈ K , ξ ∈ ∂∗∗Ψ(p), and ζ ∈ ∂∗∗Ψ(q), one
has

Ψ(p) − Ψ(q) ≧
〈
ζ; exp−1

q p
〉

m
, (3.2)

and

Ψ(q) − Ψ(p) ≧
〈
ξ; exp−1

p q
〉

m
. (3.3)

Adding (3.2) and (3.3), we have 〈
Pq,pξ − ζ; exp−1

q p
〉

m
≧ 0.

Hence, ∂∗∗Ψ is monotone on K .
For the converse, let ∂∗∗Ψ be monotone on K and z(µ) := expq(µ exp−1

q p) ∀ µ ∈ [0, 1]. By the
geodesic convexity of K , z(µ) ∈ K , ∀ µ ∈ [0, 1]. By Theorem 3.2, for i ∈ M, and µ̂ ∈ (0, 1), ∃
µ̃i ∈ (0, µ̂) and µ̄i ∈ (µ̂, 1) such that for ξ̃i ∈ co∂∗∗Ψi(z(µ̃i)) and ξ̄i ∈ co∂∗∗Ψi(z(µ̄i)),

Ψi(z(µ̂)) − Ψi(z(0)) =
〈
ξ̃i; exp−1

z(0) z(µ̂)
〉
= µ̂

〈
ξ̃i; exp−1

y p
〉
,
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and

Ψi(z(1)) − Ψi(z(µ̂)) =
〈
ξ̄i; exp−1

z(µ̂) z(1)
〉
= (1 − µ̂)

〈
ξ̄; exp−1

q p
〉
.

By the monotonicity of ∂∗∗Ψ on K , for any i ∈ M and ζi ∈ co∂∗∗Ψi(q), it follows that

Ψi(z(µ̂)) − Ψi(z(0)) ≥ µ̂
〈
ζi; exp−1

q p
〉
,

Ψi(z(1)) − Ψi(z(µ̂)) ≥ (1 − µ̂)
〈
ζi : exp−1

q p
〉
.

By adding the above inequalities, we get

Ψi(p) − Ψi(q) ≥
〈
ζi; exp−1

q p
〉
.

=⇒ Ψ is ∂∗∗-convex on K . □

Corollary 3.6. Suppose K(, ϕ) ⊆ H is a GC set and let Ψ : K −→ Rm be a vector-valued function
such thatΨi : K −→ R are locally Lipschitz functions onK and admit bounded convexificators ∂∗∗Ψ(p)
for any p ∈ K and i ∈ M = {1, 2, ...m}. Then, Ψ is strictly ∂∗∗-convex on K iff ∂∗∗Ψ is strictly monotone
on K .

Proposition 3.7. Suppose K(, ϕ) ⊆ H is a GC set and let Ψ : K −→ Rm be a function such that
Ψi : K −→ R are locally Lipschitz functions on K and admit a bounded convexificator ∂∗∗Ψ(p) for any
p ∈ K and ∀ i ∈ M. If Ψ is ∂∗∗-convex on K , then for any p, q ∈ K and µ ∈ [0, 1],

Ψ(expq µ exp−1
q p) ≦ Ψ(q) + µ(Ψ(p) − Ψ(q)).

Proof. Let p, q ∈ K and z(µ) := expq µ exp−1
q p for any µ ∈ [0, 1]. By the geodesic convexity of K ,

z ∈ K . By the ∂∗∗-convexity of Ψ on K , for any ζ ∈ ∂∗∗Ψ(z),

Ψ(p) − Ψ(z) ≧
〈
ζ; exp−1

z p
〉

m
= (1 − µ)

〈
ζ; exp−1

q p
〉

m
, (3.4)

and
Ψ(q) − Ψ(z) ≧

〈
ζ; exp−1

z q
〉

m
= −µ

〈
ζ; exp−1

q p
〉

m
. (3.5)

From (3.4) and (3.5), we have

Ψ(z) ≦ µΨ(p) + (1 − µ)Ψ(q),

that is,

Ψ(expq µ exp−1
q p) ≦ Ψ(q) + µ(Ψ(p) − Ψ(q)).

□

Proposition 3.8. Suppose K(, ϕ) ⊆ H is a GC set and let Ψ : K −→ Rm be a function such that
Ψi : K −→ R are locally Lipschitz functions on K and for any p ∈ K admit a bounded convexificator
∂∗∗Ψ(p), ∀ i ∈ M. If Ψ is strictly ∂∗∗-convex on K , then, for any p, q ∈ K and µ ∈ [0, 1],

Ψ(expq µ exp−1
q p) < Ψ(q) + µ(Ψ(p) − Ψ(q)).

Proof. The proof is analogous to Proposition 3.7. □
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4. Vector variational inequality problems using convexificators

In this section, we consider the VVIP in terms of the convexificators on the Hadamard manifold
and construct an example in support of the definition of convexificators. Moreover, we show the
existence of Stampacchia ∂∗∗-VVI. Furthermore, we establish the relations among Stampacchia ∂∗∗-VVI,
the Minty-type ∂∗∗-VVI, and VOP.

Suppose K(, ϕ) ⊆ H is a set and let Ψ : K −→ Rm be a vector-valued function. We define:
Stampacchia ∂∗∗-VVI : Find p̄ ∈ K , such that for any q ∈ K , ∃ ξ ∈ ∂∗∗Ψ( p̄), and one has〈

ξ; exp−1
p̄ q

〉
m
< −Rm

+ \ {0},

or (〈
ξ1; exp−1

p̄ q
〉
,
〈
ξ2; exp−1

p̄ q
〉
, ...,

〈
ξm; exp−1

p̄ q
〉)
< −Rm

+ \ {0}.

Minty ∂∗∗-VVI : Find p̄ ∈ K such that for any q ∈ K and ξ ∈ ∂∗∗Ψ(q), one has〈
ξ; exp−1

q p̄
〉

m
< Rm

+ \ {0},

or (〈
ξ1; exp−1

q p̄
〉
,
〈
ξ2; exp−1

q p̄
〉
, ...,

〈
ξm; exp−1

q p̄
〉)
< Rm

+ \ {0}.

In the following example, we show the existence of convexificators for the Hadamard manifolds and
existence of a solution of the Stampacchia ∂∗∗-VVI.

Example 4.1. Let H = {(p1, p2) ∈ R2 : p1, p2 > 0} be a Hadamard manifold with the Riemannian
metric gi, j(p1, p2) = ( δi, jpi p j

) for i = 1, 2, where δi, j denotes the Kronecker delta. The geodesic passing at
moment t = 0, through the point p = (p1, p2), tangent to the vector v = (v1, v2) ∈ TpH is given by

γv(t) = (p1e
v1
p1

t
, p2e

v2
p2

t).

Consider the function Ψ : H −→ R2 such that

Ψ(p) = (Ψ1(p),Ψ2(p)) = (| ln p1| + (ln p2)2, (ln p1)2 + | ln p2|).

Since, expp(tv) = γtv(1) = γv(t) = (p1e
v1
p1

t
, p2e

v2
p2

t) with the velocity vector γ′v(0) = (v1, v2) ∈ TpH, for
any p ∈ H, v ∈ TpH, and t > 0, from the triangle inequality, one has

Ψ1(expp tv) − Ψ1(p)

t
≤
|v1|

p1
+

v2
2

p2
2

t + 2(ln p2)
v2

p2
,

Ψ1(expp tv) − Ψ1(p)

t
≥ −
|v1|

p1
+

v2
2

p2
2

t + 2(ln p2)
v2

p2
.

Taking lim inf and lim sup as t → 0, we have

Ψ−1 (p; v) = lim inf
t→0+

Ψ1(expp tv) − Ψ1(p)

t
≤
|v1|

p1
+ 2(ln p2)

v2

p2
,
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Ψ+1 (p; w) = lim sup
t→0+

Ψ1(expp tv) − Ψ1(p)

t
≥ −
|v1|

p1
+ 2(ln p2)

v2

p2
.

Hence, the convexificators of Ψ1 at p are given as follows:

∂∗∗Ψ1(p) =


{(

1
p1
, 2 (ln p2)

p2

)}
, p1 > 1,{(

1, 2 (ln p2)
p2

)
,
(
−1, 2 (ln p2)

p2

)}
, p1 = 1,{(

− 1
p1
, 2 (ln p2)

p2

)}
, 0 < p1 < 1.

Similarly, for any p ∈ H, v ∈ TpH, and t > 0, from the triangle inequality, one has

Ψ−2 (p; w) ≤ 2(ln p1)
v1

p1
+
|v2|

p2
,

Ψ+2 (p; w) ≥ 2(ln p1)
v1

p1
−
|v2|

p2
.

Hence, the convexificators of Ψ2 at p are given as follows:

∂∗∗Ψ2(p) =


{(

2 ln p1
p1
, 1

p2

)}
, p2 > 1,{(

2 ln p1
p1
, 1

)
,
(
2 ln p1

p1
,−1

)}
, p2 = 1,{(

2 ln p1
p1
,− 1

p2

)}
, 0 < p2 < 1.

For any q = (q1, q2) ∈ H and p = (1, 1), ξ11 := (1, 0), ξ12 := (−1, 0) ∈ ∂∗∗Ψ1(1, 1), and ξ21 :=
(0, 1), and ξ22 := (0,−1) ∈ ∂∗∗Ψ2(1, 1), and we have〈

ξ11; exp−1
p q

〉
= ln q1;

〈
ξ12; exp−1

p q
〉
= − ln q1,

〈
ξ21; exp−1

p q
〉
= ln q2;

〈
ξ22; exp−1

p q
〉
= − ln q2,

which implies that, for any q ∈ H, there exists ξ ∈ ∂∗∗Ψ(p) such that〈
ξ; exp−1

p q
〉

2
∈ R2

+.

Therefore, p = (1, 1) is a solution of the Stampacchia ∂∗∗-VVI.

In the following proposition, we discuss a relationship between the Stampacchia ∂∗∗-VVI and Minty
∂∗∗-VVI.

Proposition 4.2. Suppose K(, ϕ) ⊆ H is a GC set and let Ψ : K −→ Rm be a function such that
Ψi : K −→ R are locally Lipschitz functions onK and, for any p ∈ K , admit a bounded convexificator
∂∗∗Ψi(p) ∀, i ∈ M = {1, 2, ...,m}. Also, suppose that Ψ is ∂∗∗-convex on K . If p̄ ∈ K is a solution of the
Stampacchia ∂∗∗-VVIP, then p̄ is also a solution of the Minty ∂∗∗-VVIP.
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Proof. Let p̄ be a solution of the Stampacchia ∂∗∗-VVIP. Then, for any q ∈ K , ∃ ξ ∈ ∂∗∗Ψ(p̄) such that〈
ξ; exp−1

p̄ q
〉

m
< −Rm

+ \ {0}.

Since Ψ is ∂∗∗-convex on K , by Theorem 3.5, ∂∗∗Ψ is monotone over K , which implies that for any
y ∈ K and ζ ∈ ∂∗∗Ψ(y), we have 〈

ζ; exp−1
q p̄

〉
m
< Rm

+ \ {0}.

Hence, p̄ is a solution of the Minty ∂∗∗-VVIP. □

Vector optimization problem (VOP): LetK(, ϕ) ⊆ H andΨ : H −→ Rm be a vector-valued function.
We consider a vector optimization problem as follows:

min Ψ(p) = (Ψ1(p),Ψ2(x), ...,Ψm(p)),

such that p ∈ K ,

where Ψi : K −→ R are real-valued functions ∀ i ∈ M = {1, 2, ...,m}.

Definition 4.3. A point p̄ ∈ K is said to be:

(1) an efficient solution of the VOP if

Ψ(q) − Ψ( p̄) = (Ψ1(q) − Ψ1( p̄),Ψ2(q) − Ψ2(p̄), ...,Ψm(q) − Ψm( p̄)) < −Rm
+ \ {0} ∀ q ∈ K ;

(2) a weakly efficient solution of the VOP if

Ψ(q) − Ψ( p̄) = (Ψ1(q) − Ψ1(p̄),Ψ2(q) − Ψ2( p̄), ...,Ψm(q) − Ψm(p̄)) < −intRm
+ ∀ q ∈ K .

Remark: Efficient solution =⇒ Weakly efficient solution.
The following theorem discusses a relationship between the Stampacchia ∂∗∗-VVIP and efficient

solution of the VOP.

Theorem 4.4. Suppose K(, ϕ) ⊆ H is a GC set and let Ψ : K −→ Rm be a function such that
Ψi : K −→ R are locally Lipschitz functions at p̄ ∈ K and admit a bounded convexificators ∂∗∗Ψ( p̄),
∀ i ∈ M = {1, 2, ...,m}. Suppose that Ψ is ∂∗∗-convex at p̄ over K . If p̄ is a solution of the Stampacchia
∂∗∗-VVIP, then p̄ is also an efficient solution of the VOP.

Proof. On the contrary, suppose p̄ is not an efficient solution of the VOP. Then, ∃ p̃ such that

Ψ( p̃) − Ψ( p̄) ∈ −Rm
+ \ {0}.

By ∂∗∗-convexity of Ψ at p̄ over K , we have〈
ξ; exp−1

p̄ p̃
〉

m
∈ −Rm

+ \ {0}.

This contradicts the fact that p̄ is a solution of the Stampacchia ∂∗∗-VVIP. □
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In the following theorem, we study an important characterization of the Minty ∂∗∗-VVIP in terms of
the VOP.

Theorem 4.5. Suppose K(, ϕ) ⊆ H is a GC set and Ψ : K −→ Rm be a function such that Ψi : K −→
R are locally Lipschitz functions on K and for any p ∈ K admit a bounded convexificator ∂∗∗Ψ(p),
∀ i ∈ M. Suppose that Ψ is ∂∗∗-convex on K . Then, p̄ is a solution of the Minty ∂∗∗-VVIP iff p̄ ∈ K is an
efficient solution of the VOP.

Proof. On the contrary suppose that p̄ is not an efficient solution of the VOP. Then, ∃ p̃ ∈ K , such that

Ψ( p̃) − Ψ( p̄) ∈ −Rm
+ \ {0}. (4.1)

By the geodesic convexity of K , p(λ) := exp p̄ λ exp−1
p̄ p̃ ∈ K , for any λ ∈ [0, 1].

Since, Ψ is ∂∗∗-convex on K , by Proposition 3.7, we have

Ψ(exp p̄ λ exp−1
p̄ p̃) − Ψ( p̄) ≦ λ(Ψ(p̃) − Ψ(p̄)),

or equivalently, for any i ∈ M and λ ∈ (0, 1), one has

Ψi(exp p̄ λ exp−1
p̄ p̃) − Ψi( p̄) ≦ λ(Ψi( p̃) − Ψi( p̄)).

By Theorem 3.2, for any i ∈ M, ∃ λ̂i ∈ (0, λ), and ξ̂i ∈ co∂∗∗Ψ(p(λ̂i)), we have

Ψi(expp̄ λ exp−1
p̄ p̃) − Ψi( p̄) =

〈
ξ̂i; λPp(λ̂i),p̄ exp−1

p̄ p̃
〉
,

which implies that, for any i ∈ M, we have〈
ξ̂i; Pp(λ̂i), p̄ exp−1

p̄ p̃
〉
≤ Ψi( p̃) − Ψi( p̄). (4.2)

Now, there are two possible cases:
Case(1): When λ̂1 = λ̂2 = ... = λ̂m = λ̂. Multiplying both side of (4.2) by λ̂, for any i ∈ M and
ξ̂ ∈ ∂∗∗Ψ(p(λ̂)), one has 〈

ξ̂i; Pp(λ̂i),p̄ exp−1
p̄ p(λ̂)

〉
≤ λ̂(Ψi(p̃) − Ψi(p̄)).

From (4.1), some p(λ̂) ∈ K and ξ̂ ∈ co∂∗∗Ψ(p(λ̂)), one has〈
ξ̂; exp−1

p(λ̂) p̄
〉

m
∈ Rm

+ \ {0}.

This is a contradiction to the fact that p̄ is a solution of the Minty ∂∗∗-VVI.

Case(2): When λ̂1, λ̂2, ..., λ̂m are not all equal. Without loss of generality, we take λ̂1 , λ̂2. Then,
from (3.2), for some ξ̂1 ∈ co∂∗∗Ψ1(p(λ̂1)) and ξ̂2 ∈ co∂∗∗Ψ2(p(λ̂2)), one has〈

ξ̂1; Pp(λ̂1), p̄ exp−1
p̄ p̃

〉
≤ Ψ1(p̃) − Ψ1( p̄),

and 〈
ξ̂2; Pp(λ̂2), p̄ exp−1

p̄ p̃
〉
≤ Ψ2(p̃) − Ψ2( p̄).
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Since Ψ1 and Ψ2 are ∂∗∗-convex on K , by Theorem 3.5, for any ξ̂12 ∈ co∂∗∗Ψ1(p(λ̂1)) and ξ̂21 ∈

co∂∗∗Ψ2(p(λ̂2)), one has 〈
ξ̂1 − ξ̂12; exp−1

p(λ̂1) p(λ̂2)
〉
≥ 0,

and 〈
ξ̂2 − ξ̂21, exp−1

p(λ̂2) p(λ̂1)
〉
≥ 0.

If λ̂1 − λ̂2 > 0, it follows that 〈
ξ̂12; Pp(λ̂1),p̄ exp−1

p̄ p̃
〉
≤ Ψ1( p̃) − Ψ1( p̄).

If λ̂2 − λ̂1 > 0, it follows that 〈
ξ̂21; Px(λ̂2),p̄ exp−1

p̄ p̃
〉
≤ Ψ2( p̃) − Ψ2(p̄).

Therefore, for λ̂1 , λ̂2, setting λ̂ := {λ̂1, λ̂2}, for any i = 1, 2, ∃ ξ̂i ∈ co∂∗∗Ψi(p(λ̂)) such that〈
ξ̂i; Pp(λ̂),p̄ exp−1

p̄ p̃
〉
≤ Ψi(p̃) − Ψi( p̄).

Continuing the above process, we get λ̄ ∈ (0, λ) such that λ̄ := min{λ̂1, λ̂2, ..., λ̂m} and ξ̄i ∈ co∂∗∗Ψi(p(λ̄)),
such that 〈

ξ̄i; Pp(λ̄),p̄ exp−1
p̄ p̃

〉
≤ Ψi( p̃) − Ψi(p̄), ∀ i ∈ M.

Multiplying the above inequality by λ̄, one has〈
ξ̄i;− exp−1

p(λ̄) p̄
〉
≤ λ̄(Ψi( p̃) − Ψi( p̄)).

By (4.1), for some p(λ̄) ∈ K and λ̄ := (ξ̄1, ξ̄2, ..., ξ̄m) ∈ ∂∗∗Ψ(p(λ̄)), one has〈
ξ̄; exp−1

p(λ̄) p̄
〉

m
∈ Rm

+ \ {0}.

This contradicts the Minty ∂∗∗-VVI.
For the converse, suppose that x̄ is not a solution of the Minty ∂∗∗-VVI. Then, ∃ p̃ ∈ K and ξ ∈

∂∗∗Ψ( p̃) such that 〈
ξ; exp−1

p̃ p̄
〉

m
∈ Rm

+ \ {0}.

By ∂∗∗-convexity of Ψ on K , we have

Ψ( p̃) − Ψ( p̄) ∈ −Rm
+ \ {0},

a contradiction to the fact that p̄ is an efficient solution of the VOP. □
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5. Weak vector variational inequalities using convexificators

In this section, we first consider the weak formulations of the Stampacchia and Minty ∂∗∗-VVIs and
establish their relations with the weakly efficient solution of the VOP.
Stampacchia ∂∗∗-WVVI: Find p̄ ∈ K such that, for any q ∈ K , ∃ ξ ∈ ∂∗∗Ψ(p̄),〈

ξ; exp−1
p̄ q

〉
m
< −intRm

+ .

Minty ∂∗∗-WVVI: Find p̄ ∈ K such that, for any q ∈ K and ξ ∈ ∂∗∗Ψ(q),〈
ξ; exp−1

q p̄
〉

m
< intRm

+ .

The following theorem demonstrates a necessary and sufficient condition for a point to be a weakly
efficient solution of the VOP in terms of the Stampacchia ∂∗∗-WVVI.

Theorem 5.1. Suppose K(, ϕ) ⊆ H is a GC set and Ψ : K −→ Rm is a function such that Ψi :
K −→ R are locally Lipschitz at point p̄ ∈ K and admit a bounded convexificator ∂∗∗Ψi( p̄), ∀ i ∈ M =
{1, 2, ...,m}. Also suppose that Ψ is ∂∗∗-convex on K . Then, p̄ is a weakly efficient solution of the VOP
iff p̄ is a solution of the Stampacchia ∂∗∗-WVVI.

Proof. Suppose that p̄ is a weakly efficient solution of the VOP. Then, form any q ∈ K ,

Ψ(q) − Ψ(p) < −intRm
+ .

By the geodesic convexity of K , for any λ ∈ [0, 1] and y ∈ K , expx̄ λ exp−1
p̄ q ∈ K , which implies that

Ψ(exp p̄ λ exp−1
p̄ q) − Ψ( p̄)

λ
< −intRm

+ .

Taking the limit inf as λ→ 0+, we have

lim inf
λ→0+

Ψ(expp̄ λ exp−1
p̄ q) − Ψ( p̄)

λ
< −intRm

+ ,

Ψ−( p̄; exp−1
p̄ q) := (Ψ−1 ( p̄; exp−1

p̄ q),Ψ−2 ( p̄; exp−1
p̄ q), ...,Ψ−m( p̄; exp−1

p̄ q)) < −intRm
+ , ∀q ∈ K .

Since, Ψi admits a bounded convexificator ∂∗∗Ψi( p̄), ∀i ∈ M, for any q ∈ K , ∃ ξ̄ ∈ ∂∗∗Ψi( p̄), such that〈
ξ̄; exp−1

p̄ q
〉

m
< −intRm

+ .

Hence, p̄ is a solution of the Stampacchia ∂∗∗-WVVI.
For the converse, suppose p̄ is not a weakly efficient solution of the VOP. Then ∃ p̃ ∈ K , such that

Ψ( p̃) − Ψ( p̄) ∈ −intRm
+ .

By the ∂∗∗-convexity of Ψ at p̄ over K , for any ξ̄ ∈ ∂∗∗Ψ( p̄),〈
ξ̄; exp−1

p̄ p
〉

m
∈ −intRm

+ ,

which is a contradiction to the fact that p̄ is a solution of the Stampacchia ∂∗∗-WVVI. □
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The following theorem gives the condition under which the Stampacchia ∂∗∗-WVVI and Minty ∂∗∗-
WVVI become equivalent.

Theorem 5.2. Suppose K(, ϕ) ⊆ H is a GC set and let Ψ : K −→ Rm be a function such that
Ψi : K −→ R are locally Lipschitz on K and admit bounded convexificator ∂∗∗Ψi( p̄) for any p̄ ∈
K ,∀ i ∈ M = {1, 2, ...,m}. Also, suppose that Ψ is ∂∗∗-convex on K . Then, p̄ is solution of the Minty
∂∗∗-WVVI iff p̄ is a solution of the Stampacchia ∂∗∗-WVVI.

Proof. Suppose that p̄ is a solution of the Minty ∂∗∗-WVVI, and consider any sequence {λk}⊂ (0, 1]
such that λk → 0 as k → ∞. By the geodesic convexity ofK , for any q ∈ K , qk = exp p̄ λk exp−1

p̄ q ∈ K ,
since p̄ is the solution of the Minty ∂∗∗-WVVI, ∃ ξk ∈ ∂∗∗Ψ(qk) and〈

ξk; exp−1
qk

p̄
〉

m
< intRm

+ .

Since, Ψi are locally Lipschitz and admit bounded convexificators on K for all i ∈ M, there exists
d > 0 such that ∥ξk∥ ≤ d which implies that the sequence {ξki} ⊂ ∂

∗
∗Ψi(qk) converges to ξi for all i ∈ M.

For any q ∈ K , the convexificator ∂∗∗Ψi(q) is closed for all i ∈ M. It follows that qk → q and ξki →

ξi as k → ∞ with ξi ∈ ∂∗∗Ψi(p̄) for all i ∈ M. Therefore, for any y ∈ K , ∃ ξ ∈ ∂∗∗Ψi( p̄) such that〈
ξ; exp−1

p̄ q
〉

m
< −intRm

+ .

Hence, p̄ is a solution of the Stampacchia ∂∗∗-WVVI.
For the converse, suppose p̄ is a solution of the Stampacchia ∂∗∗-WVVI. Then, for any q ∈ K ,

∃ ξ̄ ∈ ∂∗∗Ψ( p̄) such that 〈
ξ̄; exp−1

p̄ q
〉

m
< −intRm

+ .

Since, Ψ is ∂∗∗-convex on K , by Theorem 3.5, we get that ∂∗∗Ψ is monotone on K , which implies〈
ξ; exp−1

q p̄
〉

m
< intRm

+

for any q ∈ K and ξ ∈ ∂∗∗Ψ(q). Hence, p̄ is a solution of the Minty ∂∗∗-WVVI. □

The following theorem gives the condition for a weakly efficient solution to be an efficient solution
of the VOP.

Theorem 5.3. SupposeK(, ϕ) ⊆ H is a GC set andΨ : K −→ Rm is a function such thatΨi : K −→ R
are local Lipschitz at p̄ ∈ K and admit the bounded convexificator ∂∗∗Ψi( p̄), ∀ i ∈ M = {1, 2, ...,m}.
Also suppose that Ψ is strictly ∂∗∗-convex at p̄ over K . Then, p̄ is an efficient solution of the VOP iff p̄
is a weakly efficient solution of the VOP.

Proof. Obviously, every efficient solution is also a weakly efficient solution of the VOP.
Conversely, suppose that p̄ is a weakly efficient solution of the VOP but not an efficient solution of

the VOP. Then, ∃ p̃ ∈ K such that

Ψ( p̃) − Ψ( p̄) ∈ −intRm
+ .

By strict ∂∗∗-convexity of Ψ at p̄ over K , for any ξ̄ ∈ ∂∗∗Ψ( p̄), we have〈
ξ̄; exp−1

p̄ p̃
〉

m
∈ −intRm

+ ,

which implies that p̄ is not a solution of the Stampacchia ∂∗∗-WVVI. By Theorem 5.1, p̄ is not a weakly
efficient solution of the VOP. This contradiction leads to the results. □
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6. Conclusions

In this paper, we have formulated the concept of convexificators for the Hadamard manifolds which
are weaker version of the notion of sub-differentials. We proved the mean value theorem for them
and discussed the characterizations of the ∂∗∗-convex functions in terms of monotonicity. Furthermore,
we defined the Stampacchia ∂∗∗-VVI and Minty-type ∂∗∗-VVI using convexificators and by a non-trivial
example showed their existence and also established the relationships between their solutions and
efficient solutions of the VOP.

The results of this research are more precise as well as comprehensive than the comparable results
previously published in the literature because convexificators were utilized. However, there is still
a difficulty with the existence results of the ∂∗∗-VVI, which can be considered in the future. The
results may be extended to Riemannian manifolds using some more assumptions. Furthermore, some
related problems like fixed point problems, complementarity problem, and equilibrium problems can
be explored in the future using the concept of convexificators.
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