This paper reports a modified F-iterative process for finding the fixed points of three generalized $ \alpha $-nonexpansive mappings. We assume certain assumptions to establish the weak and strong convergence of the scheme in the context of a Banach space. We suggest a numerical example of generalized $ \alpha $-nonexpansive mappings which exceeds, properly, the category of functions furnished with a condition (C). After that, we show that our modified F-iterative scheme of this example converges to a common fixed point of three generalized $ \alpha $-nonexpansive mappings. As an application of our main findings, we suggest a new projection-type iterative scheme to solve variational inequality problems in the setting of generalized $ \alpha $-nonexpansive mappings. The main finding of the paper is new and extends many known results of the literature.
Citation: Shahram Rezapour, Maryam Iqbal, Afshan Batool, Sina Etemad, Thongchai Botmart. A new modified iterative scheme for finding common fixed points in Banach spaces: application in variational inequality problems[J]. AIMS Mathematics, 2023, 8(3): 5980-5997. doi: 10.3934/math.2023301
This paper reports a modified F-iterative process for finding the fixed points of three generalized $ \alpha $-nonexpansive mappings. We assume certain assumptions to establish the weak and strong convergence of the scheme in the context of a Banach space. We suggest a numerical example of generalized $ \alpha $-nonexpansive mappings which exceeds, properly, the category of functions furnished with a condition (C). After that, we show that our modified F-iterative scheme of this example converges to a common fixed point of three generalized $ \alpha $-nonexpansive mappings. As an application of our main findings, we suggest a new projection-type iterative scheme to solve variational inequality problems in the setting of generalized $ \alpha $-nonexpansive mappings. The main finding of the paper is new and extends many known results of the literature.
[1] | W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Mon., 72 (1965), 1004–1006. https://doi.org/10.2307/2313345 doi: 10.2307/2313345 |
[2] | F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci., 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041 doi: 10.1073/pnas.54.4.1041 |
[3] | D. Göhde, Zum prinzip der kontraktiven abbildung, Math. Nachr., 30 (1965), 251–258. https://doi.org/10.1002/mana.19650300312 doi: 10.1002/mana.19650300312 |
[4] | K. Goebel, An elementary proof of the fixed-point theorem of Browder and Kirk, Michigan Math. J., 16 (1969), 381–383. https://doi.org/10.1307/mmj/1029000322 doi: 10.1307/mmj/1029000322 |
[5] | C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2004), 103–120. https://doi.org/10.1088/0266-5611/20/1/006 doi: 10.1088/0266-5611/20/1/006 |
[6] | M. Feng, L. Shi, R. Chen, A new three-step iterative algorithm for solving the split feasibility problem, U.P.B. Sci. Bull., Ser. A, 81 (2019), 93–102. |
[7] | H. K. Xu, Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces, Inverse Probl., 26 (2010), 105018. https://doi.org/10.1088/0266-5611/26/10/105018 doi: 10.1088/0266-5611/26/10/105018 |
[8] | T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340 (2008), 1088–1095. https://doi.org/10.1016/j.jmaa.2007.09.023 doi: 10.1016/j.jmaa.2007.09.023 |
[9] | K. Aoyama, F. Kohsaka, Fixed point theorem for $\alpha$-nonexpansive mappings in Banach spaces, Nonlinear Anal.: Theory Methods Appl., 74 (2011), 4387–4391. https://doi.org/10.1016/j.na.2011.03.057 doi: 10.1016/j.na.2011.03.057 |
[10] | R. Pant, R. Shukla, Approximating fixed points of generalized $\alpha$-nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim., 38 (2017), 248–266. https://doi.org/10.1080/01630563.2016.1276075 doi: 10.1080/01630563.2016.1276075 |
[11] | G. I. Usurelu, M. Postolache, Convergence analysis for a three-step Thakur iteration for Suzuki-type nonexpansive mappings with visualization, Symmetry, 11 (2019), 1441. https://doi.org/10.3390/sym11121441 doi: 10.3390/sym11121441 |
[12] | E. Picard, Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives, J. Math. Pures Appl., 6 (1890), 145–210. |
[13] | S. Etemad, S. K. Ntouyas, Application of the fixed point theorems on the existence of solutions for $q$-fractional boundary value problems, AIMS Math., 4 (2019), 997–1018. https://doi.org/10.3934/math.2019.3.997 doi: 10.3934/math.2019.3.997 |
[14] | S. Etemad, S. Rezapour, M. E. Samei, On a fractional Caputo-Hadamard inclusion problem with sum boundary value conditions by using approximate endpoint property, Math. Methods Appl. Sci., 43 (2020), 9719–9734. https://doi.org/10.1002/mma.6644 doi: 10.1002/mma.6644 |
[15] | L. Guran, Z. D. Mitrovic, G. S. M. Reddy, A. Belhenniche, S. Radenović, Applications of a fixed point result for solving nonlinear fractional and integral differential equations, Fractal Fract., 5 (2021), 211. https://doi.org/10.3390/fractalfract5040211 doi: 10.3390/fractalfract5040211 |
[16] | D. Paesano, C. Vetro, Multi-valued F-contractions in o-complete partial metric spaces with application to Voltera type integral equation, RACSAM, 108 (2014), 1005–1020. https://doi.org/10.1007/s13398-013-0157-z doi: 10.1007/s13398-013-0157-z |
[17] | S. Rezapour, A. Imran, A. Hussain, F. Martinez, S. Etemad, M. K. A. Kaabar, Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs, Symmetry, 13 (2021), 469. https://doi.org/10.3390/sym13030469 doi: 10.3390/sym13030469 |
[18] | S. Chandok, R. K. Sharma, S. Radenović, Multivalued problems via orthogonal contraction mappings with application to fractional differential equation, J. Fixed Point Theory Appl., 23 (2021), 14. https://doi.org/10.1007/s11784-021-00850-8 doi: 10.1007/s11784-021-00850-8 |
[19] | S. Etemad, M. M. Matar, M. A. Ragusa, S. Rezapour, Tripled fixed points and existence study to a tripled impulsive fractional differential system via measures of noncompactness, Mathematics, 10 (2022), 25. https://doi.org/10.3390/math10010025 doi: 10.3390/math10010025 |
[20] | S. Etemad, S. Rezapour, M. E. Samei, $\alpha$-$\psi$-contractions and solutions of a $q$-fractional differential inclusion with three-point boundary value conditions via computational results, Adv. Differ. Equ., 2020 (2020), 218. https://doi.org/10.1186/s13662-020-02679-w doi: 10.1186/s13662-020-02679-w |
[21] | S. K. Ntouyas, S. Etemad, J. Tariboon, Existence of solutions for fractional differential inclusions with integral boundary conditions, Bound. Value Probl., 2015 (2015), 92. https://doi.org/10.1186/s13661-015-0356-y doi: 10.1186/s13661-015-0356-y |
[22] | T. O. Alakoya, O. T. Mewomo, Viscosity S-iteration method with inertial technique and self-adaptive step size for split variational inclusion, equilibrium and fixed point problems, Comput. Appl. Math., 41 (2022), 39. https://doi.org/10.1007/s40314-021-01749-3 doi: 10.1007/s40314-021-01749-3 |
[23] | E. C. Godwin, T. O. Alakoya, O. T. Mewomo, J. C. Yao, Relaxed inertial Tseng extragradient method for variational inequality and fixed point problems, Appl. Anal., 2022. https://doi.org/10.1080/00036811.2022.2107913 doi: 10.1080/00036811.2022.2107913 |
[24] | P. Debnath, Banach, Kannan, Chatterjea, and Reich-type contractive inequalities for multivalued mappings and their common fixed points, Math. Methods Appl. Sci., 45 (2022), 1587–1596. https://doi.org/10.1002/mma.7875 doi: 10.1002/mma.7875 |
[25] | P. Debnath, Common fixed-point and fixed-circle results for a class of discontinuous F-contractive mappings, Mathematics, 10 (2022), 1605. https://doi.org/10.3390/math10091605 doi: 10.3390/math10091605 |
[26] | L. Shanjit, Y. Rohen, S. Chandok, M. B. Devi, Some results on iterative proximal convergence and Chebyshev center, J. Funct. Spaces, 2021 (2021), 8863325. https://doi.org/10.1155/2021/8863325 doi: 10.1155/2021/8863325 |
[27] | L. Shanjit, Y. Rohen, K. A. Singh, Cyclic relatively nonexpansive mappings with respect to orbits and best proximity point theorems, J. Math., 2021 (2021), 6676660. https://doi.org/10.1155/2021/6676660 doi: 10.1155/2021/6676660 |
[28] | L. Shanjit, Y. Rohen, Non-convex proximal pair and relatively nonexpansive maps with respect to orbits, J. Inequal. Appl., 2021 (2021), 124. https://doi.org/10.1186/s13660-021-02660-5 doi: 10.1186/s13660-021-02660-5 |
[29] | W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. https://doi.org/10.1090/S0002-9939-1953-0054846-3 doi: 10.1090/S0002-9939-1953-0054846-3 |
[30] | S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150. https://doi.org/10.1090/S0002-9939-1974-0336469-5 doi: 10.1090/S0002-9939-1974-0336469-5 |
[31] | M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042 |
[32] | R. P. Agarwal, D. O'Regon, D. R. Sahu, Iterative construction of fixed points of nearly asymtotically nonexpansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61–79. |
[33] | M. Abbas, T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Math. Vesnik, 66 (2014), 223–234. |
[34] | B. S. Thakur, D. Thakur, M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings, Appl. Math. Comput., 275 (2016), 147–155. https://doi.org/10.1016/j.amc.2015.11.065 doi: 10.1016/j.amc.2015.11.065 |
[35] | K. Ullah, M. Arshad, Numerical reckoning fixed points for Suzuki's generalized nonexpansive mappings via new iteration process, Filomat, 32 (2008), 187–196. https://doi.org/10.2298/FIL1801187U doi: 10.2298/FIL1801187U |
[36] | J. Ali, F. Ali, A new iterative scheme to approximating fixed points and the solution of a delay differential equation, J. Nonlinear Convex Anal., 21 (2020), 2151–2163. |
[37] | J. Ahmad, K. Ullah, M. Arshad, M. de la Sen, Iterative approximation of fixed points by using F iteration process in Banach spaces, J. Funct. Spaces, 2021 (2021), 6994660. https://doi.org/10.1155/2021/6994660 doi: 10.1155/2021/6994660 |
[38] | W. Takahashi, Nonlinear functional analysis, Yokohoma: Yokohoma Publishers, 2000. |
[39] | D. R. Sahu, D. O'Regan, R. P. Agarwal, Fixed point theory for Lipschitzian-type mappings with applications, Topological Fixed Point Theory and Its Applications, Vol. 6, Springer, 2009. https://doi.org/10.1007/978-0-387-75818-3 |
[40] | H. F. Senter, W. G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44 (1974), 375–380. https://doi.org/10.1090/S0002-9939-1974-0346608-8 doi: 10.1090/S0002-9939-1974-0346608-8 |
[41] | Z. Opial, Weak and strong convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591–597. |
[42] | J. Schu, Weak and strong convergence to fixed points of asymtotically nonexpansive mappings, Bull. Aust. Math. Soc., 43 (1991), 153–159. https://doi.org/10.1017/S0004972700028884 doi: 10.1017/S0004972700028884 |
[43] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations integrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181 |