This paper discusses the optimal contraception control problem for vermin. The novel model consists of a first-order partial differential equation for the age-dependent density of vermin and two ordinary differential equations for the amounts of female sterilant in the environment and in an individual. We first show that the hybrid system is well-posed by applying the fixed-point theorem. Then the structure of an optimal contraception policy is established by considering the normal cone and adjoint system. Moreover, there is a unique optimal policy by employing Ekeland's variational principle and fixed-point theory. The optimal policy that we have derived offers a rational deployment strategy for the use of sterilants as a means of efficacious pest control. These criteria guarantee that during the application of sterilants, the predetermined objectives are attained while simultaneously minimizing expenditure and environmental implications. Utilizing these optimality criteria facilitates the development of streamlined and economically viable pest management protocols.
Citation: Xin Yi, Rong Liu. An age-dependent hybrid system for optimal contraception control of vermin[J]. AIMS Mathematics, 2025, 10(2): 2619-2633. doi: 10.3934/math.2025122
This paper discusses the optimal contraception control problem for vermin. The novel model consists of a first-order partial differential equation for the age-dependent density of vermin and two ordinary differential equations for the amounts of female sterilant in the environment and in an individual. We first show that the hybrid system is well-posed by applying the fixed-point theorem. Then the structure of an optimal contraception policy is established by considering the normal cone and adjoint system. Moreover, there is a unique optimal policy by employing Ekeland's variational principle and fixed-point theory. The optimal policy that we have derived offers a rational deployment strategy for the use of sterilants as a means of efficacious pest control. These criteria guarantee that during the application of sterilants, the predetermined objectives are attained while simultaneously minimizing expenditure and environmental implications. Utilizing these optimality criteria facilitates the development of streamlined and economically viable pest management protocols.
[1] | F. Zhang, H. Liu, Modeling and research on contraception control of the vermin, (in chinese), Beijing: Science Press, 2021. |
[2] |
J. Jacob, G. R. Singleton, L. A. Hinds, Fertility control of rodent pests, Wildl. Res., 35 (2008), 487–493. https://doi.org/10.1071/WR07129 doi: 10.1071/WR07129
![]() |
[3] |
J. Jacob, Rahmini, Sudarmaji, The impact of imposed female sterility on field populations of ricefield rats (Rattus argentiventer), Agr. Ecosyst. Environ., 115 (2006), 281–284. https://doi.org/10.1016/j.agee.2006.01.001 doi: 10.1016/j.agee.2006.01.001
![]() |
[4] | H. Liu, R. Wang, F. Zhang, Q. Li, Research advances of contraception control of rodent pest in China, Acta Ecol. Sinica, 31 (2011), 5484–5494. |
[5] |
A. Din, Y. Li, Controlling heroin addiction via age-structured modeling, Adv. Difference Equ., 2020 (2020), 521. https://doi.org/10.1186/s13662-020-02983-5 doi: 10.1186/s13662-020-02983-5
![]() |
[6] |
A. Din, Bifurcation analysis of a delayed stochastic HBV epidemic model: Cell-to-cell transmission, Chaos Solitons Fractals, 181 (2024), 114714. https://doi.org/10.1016/j.chaos.2024.114714 doi: 10.1016/j.chaos.2024.114714
![]() |
[7] |
A. Din, Y. Li, Ergodic stationary distribution of age-structured HBV epidemic model with standard incidence rate, Nonlinear Dyn., 112 (2024), 9657–9671. https://doi.org/10.1007/s11071-024-09537-4 doi: 10.1007/s11071-024-09537-4
![]() |
[8] | Q. T. Ain, Nonlinear stochastic cholera epidemic model under the influence of noise, J. Math. Tech. Model., 1 (2024), 52–74. |
[9] | S. M. A. Shah, H. Tahir, A. Khan, W. A. Khan, A. Arshad, Stochastic model on the transmission of worms in wireless sensor network. J. Math. Tech. Model., 1 (2024), 75–88. |
[10] |
J. Liu, Q. Wang, X. Cao, T. Yu, Bifurcation and optimal harvesting analysis of a discrete-time predator-prey model with fear and prey refuge effects, AIMS Mathematics, 9 (2024), 26283–26306. https://doi.org/10.3934/math.20241281 doi: 10.3934/math.20241281
![]() |
[11] |
P. Golubtsov, S. I. Steinshamn, Analytical and numerical investigation of optimal harvest with a continuously age-structured model, Ecol. Modell., 392 (2019), 67–81. https://doi.org/10.1016/j.ecolmodel.2018.11.010 doi: 10.1016/j.ecolmodel.2018.11.010
![]() |
[12] |
B. Skritek, V. M. Veliov, On the infinite-horizon optimal control of age-structured systems, J. Optim. Theory Appl., 167 (2015), 243–271. https://doi.org/10.1007/s10957-014-0680-x doi: 10.1007/s10957-014-0680-x
![]() |
[13] |
L. I. Aniţa, S. Aniţa, Note on some periodic optimal harvesting problems for age-structured population dynamics, Appl. Math. Comput., 276 (2016), 21–30. https://doi.org/10.1016/j.amc.2015.12.010 doi: 10.1016/j.amc.2015.12.010
![]() |
[14] |
F. Q. Zhang, R. Liu, Y. Chen, Optimal harvesting in a periodic food chain model with size structures in predators, Appl. Math. Optim., 75 (2017), 229–251. https://doi.org/10.1007/s00245-016-9331-y doi: 10.1007/s00245-016-9331-y
![]() |
[15] |
L. L. Li, C. P. Ferreira, B. Ainseba, Optimal control of an age-structured problem modelling mosquito plasticity, Nonlinear Anal. Real World Appl., 45 (2019), 157–169. https://doi.org/10.1016/j.nonrwa.2018.06.014 doi: 10.1016/j.nonrwa.2018.06.014
![]() |
[16] |
Z. He, Y. Liu, An optimal birth control problem for a dynamical population model with size-structure, Nonlinear Anal. Real World Appl., 13 (2012), 1369–1378. https://doi.org/10.1016/j.nonrwa.2011.11.001 doi: 10.1016/j.nonrwa.2011.11.001
![]() |
[17] |
Y. Li, Z. Zhang, Y. Lv, Z. Liu, Optimal harvesting for a size-stage-structured population model, Nonlinear Anal. Real World Appl., 44 (2018), 616–630. https://doi.org/10.1016/j.nonrwa.2018.06.001 doi: 10.1016/j.nonrwa.2018.06.001
![]() |
[18] |
N. P. Osmolovskii, V. M. Veliov, Optimal control of age-structured systems with mixed state-control constraints, J. Math. Anal. Appl., 455 (2017), 396–421. https://doi.org/10.1016/j.jmaa.2017.05.069 doi: 10.1016/j.jmaa.2017.05.069
![]() |
[19] |
R. Bandyopadhyay, J. Chattopadhyay, The impact of harvesting on the evolutionary dynamics of prey species in a prey-predator systems, J. Math. Biol., 89 (2024), 38. https://doi.org/10.1007/s00285-024-02137-1 doi: 10.1007/s00285-024-02137-1
![]() |
[20] |
R. Liu, G. Liu, Optimal birth control problems for a nonlinear vermin population model with size-structure, J. Math. Anal. Appl., 449 (2017), 265–291. http://dx.doi.org/10.1016/j.jmaa.2016.12.010 doi: 10.1016/j.jmaa.2016.12.010
![]() |
[21] |
R. Liu, G. Liu, Optimal contraception control for a nonlinear vermin population model with size-structure, Appl. Math. Optim., 79 (2019), 231–256. https://doi.org/10.1007/s00245-017-9428-y doi: 10.1007/s00245-017-9428-y
![]() |
[22] |
R. Liu, G. Liu, Optimal contraception control for a size-structured population model with extra mortality, Appl. Anal., 99 (2020), 658–671. https://doi.org/10.1080/00036811.2018.1506875 doi: 10.1080/00036811.2018.1506875
![]() |
[23] | S. Aniţa, Analysis and control of age-dependent population dynamics, Dordrecht: Springer, 2000. https://doi.org/10.1007/978-94-015-9436-3 |
[24] |
Z. Luo, Z. He, Optimal control for age-dependent population hybrid system in a polluted environment, Appl. Math. Comput., 228 (2014), 68–76. http://dx.doi.org/10.1016/j.amc.2013.11.070 doi: 10.1016/j.amc.2013.11.070
![]() |
[25] |
N. Kato, Maximum principle for optimal harvesting in linear size-structured population, Math. Popul. Stud., 15 (2008), 123–136. https://doi.org/10.1080/08898480802010241 doi: 10.1080/08898480802010241
![]() |
[26] |
N. Kato, Optimal harvesting for nonlinear size-structured population dynamics, J. Math. Anal. Appl., 324 (2008), 1388–1398. https://doi.org/10.1016/j.jmaa.2008.01.010 doi: 10.1016/j.jmaa.2008.01.010
![]() |
[27] | V. Barbu, Mathematical methods in optimization of differential systems, Dordrecht: Springer, 1994. https://doi.org/10.1007/978-94-011-0760-0 |
[28] |
V. Barbu, M. Iannelli, Optimal control of population dynamics, J. Optim. Theory Appl., 102 (1999), 1–14. https://doi.org/10.1023/A:1021865709529 doi: 10.1023/A:1021865709529
![]() |