Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Advanced Hardy-type inequalities with negative parameters involving monotone functions in delta calculus on time scales

  • In this study, we introduced several novel Hardy-type inequalities with negative parameters for monotone functions within the framework of delta calculus on time scales T. As an application, when T=N0, we derived discrete inequalities with negative parameters for monotone sequences, offering fundamentally new results. When T=R, we established continuous analogues of inequalities that have appeared in previous literature. Additionally, we presented inequalities for other time scales, such as T=qN0 for q>1, which, to the best of the authors' knowledge, represented largely novel contributions.

    Citation: Ahmed M. Ahmed, Ahmed I. Saied, Mohammed Zakarya, Amirah Ayidh I Al-Thaqfan, Maha Ali, Haytham M. Rezk. Advanced Hardy-type inequalities with negative parameters involving monotone functions in delta calculus on time scales[J]. AIMS Mathematics, 2024, 9(11): 31926-31946. doi: 10.3934/math.20241534

    Related Papers:

    [1] Elkhateeb S. Aly, Y. A. Madani, F. Gassem, A. I. Saied, H. M. Rezk, Wael W. Mohammed . Some dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus. AIMS Mathematics, 2024, 9(2): 5147-5170. doi: 10.3934/math.2024250
    [2] Marwa M. Ahmed, Wael S. Hassanein, Marwa Sh. Elsayed, Dumitru Baleanu, Ahmed A. El-Deeb . On Hardy-Hilbert-type inequalities with $ \alpha $-fractional derivatives. AIMS Mathematics, 2023, 8(9): 22097-22111. doi: 10.3934/math.20231126
    [3] Elkhateeb S. Aly, A. I. Saied, I. Ibedou, Mohamed S. Algolam, Wael W. Mohammed . Some new generalizations of reversed Minkowski's inequality for several functions via time scales. AIMS Mathematics, 2024, 9(5): 11156-11179. doi: 10.3934/math.2024547
    [4] M. Zakarya, Ghada AlNemer, A. I. Saied, H. M. Rezk . Novel generalized inequalities involving a general Hardy operator with multiple variables and general kernels on time scales. AIMS Mathematics, 2024, 9(8): 21414-21432. doi: 10.3934/math.20241040
    [5] Xianyong Huang, Shanhe Wu, Bicheng Yang . A Hardy-Hilbert-type inequality involving modified weight coefficients and partial sums. AIMS Mathematics, 2022, 7(4): 6294-6310. doi: 10.3934/math.2022350
    [6] Haytham M. Rezk, Mohammed Zakarya, Amirah Ayidh I Al-Thaqfan, Maha Ali, Belal A. Glalah . Unveiling new reverse Hilbert-type dynamic inequalities within the framework of Delta calculus on time scales. AIMS Mathematics, 2025, 10(2): 2254-2276. doi: 10.3934/math.2025104
    [7] Jian-Mei Shen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu . Certain novel estimates within fractional calculus theory on time scales. AIMS Mathematics, 2020, 5(6): 6073-6086. doi: 10.3934/math.2020390
    [8] Ahmed A. El-Deeb, Dumitru Baleanu, Nehad Ali Shah, Ahmed Abdeldaim . On some dynamic inequalities of Hilbert's-type on time scales. AIMS Mathematics, 2023, 8(2): 3378-3402. doi: 10.3934/math.2023174
    [9] Ahmed A. El-Deeb, Osama Moaaz, Dumitru Baleanu, Sameh S. Askar . A variety of dynamic $ \alpha $-conformable Steffensen-type inequality on a time scale measure space. AIMS Mathematics, 2022, 7(6): 11382-11398. doi: 10.3934/math.2022635
    [10] Chunhong Li, Dandan Yang, Chuanzhi Bai . Some Opial type inequalities in (p, q)-calculus. AIMS Mathematics, 2020, 5(6): 5893-5902. doi: 10.3934/math.2020377
  • In this study, we introduced several novel Hardy-type inequalities with negative parameters for monotone functions within the framework of delta calculus on time scales T. As an application, when T=N0, we derived discrete inequalities with negative parameters for monotone sequences, offering fundamentally new results. When T=R, we established continuous analogues of inequalities that have appeared in previous literature. Additionally, we presented inequalities for other time scales, such as T=qN0 for q>1, which, to the best of the authors' knowledge, represented largely novel contributions.



    In [1], Hardy established a foundational result in the theory of inequalities with positive parameters, demonstrating the discrete inequality:

    s=1(1ssκ=1E(κ))γ(γγ1)γs=1Eγ(s), (1.1)

    where γ>1, E(s)0 for s1 , and 0<s=1Eγ(s)<. Hardy [2, Theorem A] also derived the corresponding integral inequality of (1.1):

    0(1rr0(z)dz)γdr(γγ1)γ0γ(r)dr, (1.2)

    where γ>1, and (r)0 such that 0<0γ(r)dr<. The constant (γ/(γ1))γ is optimal in both inequalities.

    Since the emergence of these two inequalities (1.1) and (1.2), they have garnered significant attention from scientists and researchers, with many of them working on improving and generalizing them using various methods (see [3,4,5]). In parallel to advancements in positive parameter inequalities, there has been a growing interest in Hardy-type inequalities with negative parameters. For example, Bicheng [6] demonstrated that if γ<0, ϱR, ϱ1, (r)0, and 0<0rϱ(r(r))γdr<, then

    0rϱ(r(z)dz)γdr(γ1ϱ)γ0rϱ(r(r))γdr;ϱ>1. (1.3)

    He also established that if ϱ<1, then

    0rϱ(r0(z)dz)γdr(γϱ1)γ0rϱ(r(r))γdr, (1.4)

    where (γ/(1ϱ))γ and (γ/(ϱ1))γ is optimal in both inequalities (1.3) and (1.4).

    Further advancements are presented in [7], where the authors extended these results. They showed that if  γ<0, ϱ>1, and (r),(r)>0 such that r/(r) is a nondecreasing function, then

    0[(r)]ϱ(r(z)dz)γdr(γ1ϱ)γ0(r(r))γ[(r)]ϱdr. (1.5)

    Additionally, if 0ϱ<1, and (r),(r)>0 such that r/(r) is a nonincreasing function, then

    0[(r)]ϱ(r0(z)dz)γdr(γϱ1)γ0(r(r))γ[(r)]ϱdr. (1.6)

    Moreover, if γ<0, ϱ<0, and (r),(r)>0 such that r/(r) is a nondecreasing function, then

    0[(r)]ϱ(r0(z)dz)γdr(γϱ1)γ0(r(r))γ[(r)]ϱdr. (1.7)

    The transition from Hardy's inequalities with positive parameters to those involving negative parameters illustrates a rich field of study, revealing a deeper structure and broader applicability of these mathematical tools. These developments highlight the ongoing evolution in the theory of Hardy-type inequalities, encompassing both positive and negative parameter cases and their various generalizations.

    More recently, many scientists have used the famous theory known as time scale theory to study various classical inequalities, especially the famous Hardy inequality.

    Among these scientists was P. Řehák [8], who was able to obtain the time scale form of Hardy's inequality, making discrete inequality (1.1) and integral version (1.2) a special case of it. He proved that if T is a time scale, ϱ>1, and Ω(z)=zdξ(δ)Δδ, for z[d,)T, then

    d(Ωσ(z)σ(z)d)ϱΔz<(ϱϱ1)ϱdξϱ(z)Δz, (1.8)

    unless ξ0. If, in addition, μ(z)/z0 as z, then (ϱϱ1)ϱ is sharp. Refer to Section 2 for the notations used here and for the calculus applied in proving the main results of this paper.

    In [9], the authors presented a time scale form of (1.5)–(1.7) by using nabla calculus, respectively, as follows: Let bT, ε<0, ε=ε/(ε1), ϱ>1 thinspace and ,Cld([b,)T,R+) with (ζb)/(ζ) is nondecreasing. If

    ρ(ζ)bζb1k, such that ρ(ζ)>b and k is a positive constant, (1.9)

    then

    b[(ζ)]ϱ[G(ζ)]εζQb(ρ(ζ)b)ε[(ζ)]ε[(ζ)]ϱζ, (1.10)

    where G(ζ)=ζ(z)z and

    Q={(ε1ϱ)εkϱ1ε,1ϱε;(ε1ϱ)εkϱ,1ϱε.

    Additionally, if bT, ε<0, 0ϱ<1, and ,Cld([b,)T,R+) such that (ζb)/(ζ) is a nonincreasing function. If (1.9) holds, then

    b[(ζ)]ϱ[M(ζ)]εζDb(ρ(ζ)b)ε[(ζ)]ε[(ζ)]ϱζ, (1.11)

    where M(ζ)=ζb(z)z and

    D={(εϱ1)εkϱ1ε,(ϱ1)/ε1;(εϱ1)εkϱ,(ϱ1)/ε1.

    Moreover, if bT, ε<0, ϱ<0, and ,Cld([b,)T,R+) such that (ζb)/(ζ) is a nondecreasing function. If (1.9) holds, then

    b[(ζ)]ϱ[M(ζ)]εζAb(ρ(ζ)b)ε[(ζ)]ε[(ζ)]ϱζ, (1.12)

    where M(ζ)=ζb(z)z and

    A={(εϱ1)ε,(ϱ1)/ε1;(εϱ1)εkϱ1ε,(ϱ1)/ε1.

    Recently, new results have emerged regarding the Hardy inequality through various types of time scale calculus, such as the time scale delta integral (see [10,11,12,13]), which broadens the applications of dynamic inequalities in studying the qualitative behavior of dynamic equations, as referenced in [14,15,16].

    In fact, the study of Hardy's inequality with a negative parameter using the idea of time scale T has not been exposed to many researchers. Therefore, in this paper, we will attempt to obtain some new results in this area through time scale calculus. Specifically, we will prove a time scale version of (1.5)–(1.7) and also obtain the discrete analogues of these inequalities.

    The organization of the paper is as follows. In Section 2, we present some lemmas on time scales. In Section 3, we state and prove our results.

    In 2001, Martin and Allan [17,18] introduced the concept of a time scale T, which is defined as a nonempty closed subset of R. For any ϰ,ϱT, the forward jump operator is defined by σ(ϰ):=inf{sT:s>ϰ} and the backward jump operator by ρ(ϱ):=sup{sT:s>ϱ}. The graininess function μ for a time scale T is defined by μ(τ):=σ(τ)τ0. A point ζT is called:

    Right-dense if σ(ζ)=ζ;

    Left-dense if ρ(ζ)=ζ;

    Right-scattered if σ(ζ)>ζ;

    Left-scattered if ρ(ζ)<ζ.

    If T has a left-scattered maximum η, then Tk=T{η}; otherwise, Tk=T.

    In the following, for a function :TR, we denote (σ(τ)) as σ(τ). The notation [τ,ϱ]T is denoted as [τ,ϱ]T.

    Definitions:

    Rd-continuous function [17]:A function :TR is rd-continuous if it is continuous at right-dense points and has finite left-sided limits at left-dense points. The set of rd-continuous functions is denoted by Crd(T,R).

    Delta derivative [17]:For :TR and zT, the delta derivative Δ(z) exists if, for any ε>0, there is a neighborhood W=(zδ, z+δ)T of z for some δ>0, such that

    |σ(z)(s)Δ(z)(σ(z)s)|ε|σ(z)s|,   sU, sσ(z).

    Antiderivative and delta integral [17]:A function G:TR is a delta antiderivative of if GΔ(z)=(z), zTk. The delta integral of is given by

    τϱ(z)Δz=G(τ)G(ϱ),ϱ,τT.

    It is noted that every rd-continuous function has an antiderivative. In particular, if z0T, then

    (zz0(τ)Δτ)Δ=(z),zT.

    We now present the main lemmas on T that will be utilized to support our conclusions.

    Main lemmas:

    Chain rule [17, Theorem 1.90]: If :RR is continuous, :TR is Δdifferentiable , and :RR is continuously differentiable, then

    ()Δ(z)=f((d))Δ(z),d[z,σ(z)]. (2.1)

    Integration by Parts [19]:For ϱ,τT and ϕ,φCrd([ϱ,τ]T,R),

    τϱϕ(z)φΔ(z)Δz=[ϕ(z)φ(z)]τϱτϱϕΔ(z)φσ(z)Δz. (2.2)

    Reversed Hölder's inequality [19]: For ϱ,τT and ϕ,ωCrd([ϱ,τ]T,R+),

    τϱϕ(z)ω(z)Δz[τϱϕγ(z)Δz]1γ[τϱων(z)Δz]1ν, (2.3)

    where γ<0, and 1/γ+1/ν=1.

    In this section, we present our key results. Prior to stating the upcoming theorem, we establish a few preliminary assumptions: all integrals considered throughout the paper are assumed to exist. Additionally, we assume the presence of a positive constant 1, such that

    rbσ(r)b1,r(b,)T. (3.1)

    In the following theorem, we will present the time scale version of inequality (1.5).

    Theorem 3.1. Consider bT, γ<0, γ=γ/(γ1), ϱ>1, and ,Crd([b,)T,R+) such that (rb)/(r) is nondecreasing. If (3.1) is satisfied, then

    b[(r)]ϱ[Gσ(r)]γΔrQb(rb)γ[(r)]γ[(r)]ϱΔr, (3.2)

    where G(r)=r(z)Δz and

    Q={(γ1ϱ)γϱ1γ,1ϱγ;(γ1ϱ)γϱ,1ϱγ.

    Proof. Start with

    Gσ(r)=σ(r)(z)Δz=σ(r)(zb)1+γϱγγ[(zb)1+γϱγγ(z)]Δz. (3.3)

    Applying reversed Hölder's inequality (2.3), we obtain

    σ(r)(zb)1+γϱγγ[(zb)1+γϱγγ(z)]Δz(σ(r)(zb)1+γϱγΔz)1γ(σ(r)(zb)1+γϱγ[(z)]γΔz)1γ. (3.4)

    Applying (2.1) on (zb)ϱ1γ, we have

    γϱ1[(zb)ϱ1γ]Δ=(db)ϱ1γγ, d[z,σ(z)]. (3.5)

    Since ϱ>1, γ<0, and dz, then (ϱ1γ)/γ<0, so

    (db)ϱ1γγ(zb)ϱ1γγ. (3.6)

    Substituting (3.6) into (3.5), we find

    γϱ1[(zb)ϱ1γ]Δ(zb)ϱ1γγ. (3.7)

    Integrating (3.7) over z from σ(r) to , we observe

    σ(r)(zb)ϱ1γγΔzγϱ1σ(r)[(zb)ϱ1γ]ΔΔz=γ1ϱ(σ(r)b)ϱ1γ.

    Since γ>0, we obtain

    (σ(r)(zb)ϱ1γγΔz)1γ(γ1ϱ)1γ(σ(r)b)ϱ1γγ. (3.8)

    Substituting (3.8) into (3.4), we get

    σ(r)(zb)1+γϱγγ(zb)1+γϱγγ(z)Δz(γ1ϱ)1γ(σ(r)b)ϱ1γγ(σ(r)(zb)1+γϱγ[(z)]γΔz)1γ. (3.9)

    From (3.3) and (3.9), we have for γ<0 that

    [Gσ(r)]γ(γ1ϱ)γ1(σ(r)b)ϱ1γσ(r)(zb)1+γϱγ[(z)]γΔz. (3.10)

    Multiplying (3.10) by [(r)]ϱ and then integrating over r from b to , we get

    b[(r)]ϱ[Gσ(r)]γΔr(γ1ϱ)γ1b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)(zb)1+γϱγ[(z)]γΔz)Δr. (3.11)

    Applying (2.2) on b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)(zb)1+γϱγ[(z)]γΔz)Δr, we conclude

    b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)(zb)1+γϱγ[(z)]γΔz)Δr=u1(r)(r(zb)1+γϱγ[(z)]γΔz)|b+b(rb)1+γϱγ[(r)]γu1(r)Δr,

    where u1(r)=rb(σ(z)b)ϱ1γ[(z)]ϱΔz. Using (3.1) , we have

    b(σ(ϱ)b)ϱ1γ[(r)]ϱ(σ(r)(zb)1+γϱγ[(z)]γΔz)Δr=b(rb)1+γϱγ[(r)]γ(rb(σ(z)b)ϱ1γϱ(σ(z)b(z))ϱΔz)Δrϱb(rb)1+γϱγ[(r)]γ(rb(σ(z)b)ϱ1γϱ(zb(z))ϱΔz)Δr. (3.12)

    Since (zb)/(z) is nondecreasing and ϱ>1, we have for zr that

    rb(σ(z)b)ϱ1γϱ(zb(z))ϱΔz(rb(r))ϱrb(σ(z)b)ϱ1γϱΔz=(rb(r))ϱrb(σ(z)b)1ϱγ1Δz. (3.13)

    Substituting (3.13) into (3.12), we observe that

    b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)(zb)1+γϱγ[(z)]γΔz)Δrϱb(rb)1+γϱγ+ϱ[(r)]γ[(r)]ϱ(rb(σ(z)b)1ϱγ1Δz)Δr. (3.14)

    From (3.11) and (3.14), we get

    b[(r)]ϱ[Gσ(r)]γΔr(γ1ϱ)γ1ϱb(rb)1+γϱγ+ϱ[(r)]γ[(r)]ϱ(rb(σ(z)b)1ϱγ1Δz)Δr. (3.15)

    Applying (2.1) on (zb)1ϱγ, we observe

    γ1ϱ((zb)1ϱγ)Δ=(db)1ϱγ1, d[z,σ(z)]. (3.16)

    Now, we consider two cases:

    Case 1: For 1ϱγ, we have 1ϱγ10. From (3.16), we have (db)1ϱγ1(zb)1ϱγ1, and

    γ1ϱ((zb)1ϱγ)Δ(zb)1ϱγ1. (3.17)

    Integrating (3.17) over z from b to r, we get

    rb(zb)1ϱγ1Δzγ1ϱrb((zb)1ϱγ)ΔΔz=γ1ϱ(rb)1ϱγ. (3.18)

    Using (3.1), (3.15), and (3.18), we have

    b[(r)]ϱ[Gσ(r)]γΔr(γ1ϱ)γ11ϱγ1+ϱb(rb)1+γϱγ+ϱ[(r)]γ[(r)]ϱ(rb(zb)1ϱγ1Δz)Δr(γ1ϱ)γϱ1γb(rb)γ[(r)]γ[(r)]ϱΔr,

    which matches (3.2) with Q=(γ/(1ϱ))γϱ1γ.

    Case 2: For 1ϱγ, we have 1ϱγ10. From (3.16), we see that (db)1ϱγ1(σ(z)b)1ϱγ1,and

    γ1ϱ((zb)1ϱγ)Δ(σ(z)b)1ϱγ1. (3.19)

    Integrating (3.19) over z from b to r, we have

    rb(σ(z)b)1ϱγ1Δzγ1ϱrb((zb)1ϱγ)ΔΔz=γ1ϱ(rb)1ϱγ. (3.20)

    Substituting (3.20) into (3.15), we observe

    b[(r)]ϱ[Gσ(r)]γΔr(γ1ϱ)γϱb(rb)γ[(r)]γ[(r)]ϱΔr,

    which matches (3.2) with Q=(γ/(1ϱ))γϱ.

    Remark 3.1. In Theorem 3.1, when T=R and b=0, we have σ(r)=r. Consequently, we see that (3.1) holds with =1. As a result, (3.2) simplifies to (1.5), and for (r)=r, we obtain (1.3).

    Corollary 3.1. If T=N0, b=0, ϱ>1,γ<0 , and {sn}n=0, {tn}n=0 are positive sequences such that n/tn is nondecreasing, then

    n=0[tn]ϱ(k=n+1sk)γQn=0nγ[sn]γ[tn]ϱ,

    where

    Q={2ϱ1γ(γ1ϱ)γ,1ϱγ;2ϱ(γ1ϱ)γ,1ϱγ.

    Here,

    nbσ(n)b=nn+1=11n+1,n1.

    Since 1/(n+1)1/2, then (nb)/(σ(n)b)1/2, and (3.1) holds with =2.

    Corollary 3.2. Let T=qN0 for q>1, bT, γ<0, γ=γ/(γ1), ϱ>1, and , be posituve sequences on [b,) such that (rb)/(r) is nondecreasing. If

    rbqrb1,r(b,)T,

    then

    r=br[(r)]ϱ[G(qr)]γQr=br(rb)γ[(r)]γ[(r)]ϱ,

    where G(r)=z=r(q1)z(z) and

    Q={(γ1ϱ)γϱ1γ,1ϱγ;(γ1ϱ)γϱ,1ϱγ.

    In the following theorem, we will present the time scale version of inequality (1.6).

    Theorem 3.2. Assume bT, γ<0, γ=γ/(γ1), 0ϱ<1, and ,Crd([b,)T,R+) such that (rb)/(r) is nonincreasing. If (3.1) holds, then

    b[(r)]ϱ[Ωσ(r)]γΔrJb(rb)γ[(r)]γ[(r)]ϱΔr, (3.21)

    where Ω(r)=rb(z)Δz and

    J={ϱ1γ(γϱ1)γ,,(ϱ1)/γ1;ϱ(γϱ1)γ,(ϱ1)/γ1.

    Proof. To prove this theorem, we consider two cases:

    Case 1: For (ϱ1)/γ1. Start with

    Ωσ(r)=σ(r)b(z)Δz=σ(r)b[(σ(z)b)ϱγ1γγ][(σ(z)b)1+γϱγγ(z)]Δz. (3.22)

    Applying (2.3) on (3.22), we get

    σ(r)b[(σ(z)b)ϱγ1γγ][(σ(z)b)1+γϱγγ(z)]Δz(σ(r)b(σ(z)b)ϱγ1γΔz)1γ(σ(r)b(σ(z)b)1+γϱγ[(z)]γΔz)1γ.

    From this and the previous inequality, we have

    Ωσ(r)(σ(r)b(σ(z)b)ϱγ1γΔz)1γ(σ(r)b(σ(z)b)1+γϱγ[(z)]γΔz)1γ. (3.23)

    Applying (2.1) on (zb)ϱ1γ, we observe that

    γϱ1[(zb)ϱ1γ]Δ=(db)ϱγ1γ, d[z,σ(z)]. (3.24)

    Since (ϱ1)/γ1, then (db)ϱγ1γ(σ(z)b)ϱγ1γ, and (3.24) becomes

    γϱ1[(zb)ϱ1γ]Δ(σ(z)b)ϱγ1γ. (3.25)

    By integrating (3.25) over z from b to σ(r), we get

    σ(r)b(σ(z)b)ϱγ1γΔzγϱ1σ(r)b[(zb)ϱ1γ]ΔΔz=γϱ1(σ(r)b)ϱ1γ. (3.26)

    Substituting (3.26) into (3.23), since γ>0, we observe

    Ωσ(r)(γϱ1)1γ(σ(r)b)ϱ1γγ(σ(r)b(σ(z)b)1+γϱγ[(z)]γΔz)1γ.

    For γ<0, this yields

    [Ωσ(r)]γ(γϱ1)γ1(σ(r)b)ϱ1γσ(r)b(σ(z)b)1+γϱγ[(z)]γΔz. (3.27)

    Multiplying (3.27) by [(r)]ϱ and then integrating over r from b to , we find

    b[(r)]ϱ[Ωσ(r)]γΔr(γϱ1)γ1b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(σ(z)b)1+γϱγ[(z)]γΔz)Δr. (3.28)

    Applying (2.2) on

    b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(σ(z)b)1+γϱγ[(z)]γΔz)Δr,

    we obtain

    b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(σ(z)b)1+γϱγ[(z)]γΔz)Δr=u3(r)(rb(σ(z)b)1+γϱγ[(z)]γΔz)|bbu3(r)(σ(r)b)1+γϱγ[(r)]γΔr,

    where

    u3(r)=r(σ(z)b)ϱ1γ[(z)]ϱΔz.

    Using (3.1) , we have

    b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(σ(z)b)1+γϱγ[(z)]γΔz)Δr=b[r(σ(z)b)ϱ1γ[(z)]ϱΔz](σ(r)b)1+γϱγ[(r)]γΔr=b[r(σ(z)b)ϱ1γϱ(σ(z)b(z))ϱΔz](σ(r)b)1+γϱγ[(r)]γΔrϱb[r(σ(z)b)ϱ1γϱ(zb(z))ϱΔz](σ(r)b)1+γϱγ[(r)]γΔr. (3.29)

    Since (zb)/(z) is nonincreasing and 0ϱ<1, we have for zr that ((zb)/(z))ϱ((rb)/(r))ϱ, and then (3.29) becomes

    b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(σ(z)b)1+γϱγ[(z)]γΔz)Δrϱb[r(σ(z)b)ϱ1γϱΔz](σ(r)b)1+γϱγ(rb)ϱ[(r)]γ[(r)]ϱΔr. (3.30)

    From (3.16), since (1ϱ)/γ<0, we have (db)1ϱγ1(σ(z)b)1ϱγ1 and

    γ1ϱ[(zb)1ϱγ]Δ(σ(z)b)1ϱγ1=(σ(z)b)ϱ1γϱ,

    thus,

    r(σ(z)b)ϱ1γϱΔzγ1ϱr[(zb)1ϱγ]ΔΔz=γϱ1(rb)1ϱγ. (3.31)

    Substituting (3.31) into (3.30) and using (3.1), since (1ϱ)/γ1>0, we observe

    b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(σ(z)b)1+γϱγ[(z)]γΔz)Δrϱ(γϱ1)b(σ(r)b)γ(σ(r)b)1ϱγ1(rb)ϱ+1ϱγ[(r)]γ[(r)]ϱΔrϱ(γϱ1)b(σ(r)b)1ϱγ1(rb)γ+ϱ+1ϱγ[(r)]γ[(r)]ϱΔrϱ1γ(γϱ1)b(rb)γ[(r)]γ[(r)]ϱΔr. (3.32)

    Substituting (3.32) into (3.28), we have

    b[(r)]ϱ[Ωσ(r)]γΔrϱ1γ(γϱ1)γb(rb)γ[(r)]γ[(r)]ϱΔr,

    which matches (3.21) with J=ϱ1γ(γ/(ϱ1))γ.

    Case 2: For (ϱ1)/γ1. We have

    Ωσ(r)=σ(r)b(z)Δz=σ(r)b(zb)ϱγ1γγ[(zb)1+γϱγγ(z)]Δz. (3.33)

    Applying (2.3) on σ(r)b(zb)ϱγ1γγ[(zb)1+γϱγγ(z)]Δz,we find

    σ(r)b(zb)ϱγ1γγ[(zb)1+γϱγγ(z)]Δz(σ(r)b(zb)ϱγ1γΔz)1γ(σ(r)b(zb)1+γϱγ[(z)]γΔz)1γ. (3.34)

    From (3.33) and (3.34), we have

    Ωσ(r)(σ(r)b(zb)ϱγ1γΔz)1γ(σ(r)b(zb)1+γϱγ[(z)]γΔz)1γ. (3.35)

    Using (3.5), since 0<(ϱ1)/γ1, we have (db)ϱγ1γ(zb)ϱγ1γ and

    γϱ1[(zb)ϱ1γ]Δ(zb)ϱγ1γ,

    and then

    σ(r)b(zb)ϱγ1γΔzγϱ1σ(r)b[(zb)ϱ1γ]ΔΔz=γϱ1(σ(r)b)ϱ1γ. (3.36)

    Substituting (3.36) into (3.35), since γ>0, we conclude

    Ωσ(r)(γϱ1)1γ(σ(r)b)ϱ1γγ(σ(r)b(zb)1+γϱγ[(z)]γΔz)1γ.

    For γ<0, this yields

    [Ωσ(r)]γ(γϱ1)γ1(σ(r)b)ϱ1γσ(r)b(zb)1+γϱγ[(z)]γΔz.

    Multiplying the last inequality by [(r)]ϱ and then integrating over r from b to , we observe

    b[(r)]ϱ[Ωσ(r)]γΔr(γϱ1)γ1b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(zb)1+γϱγ[(z)]γΔz)Δr. (3.37)

    Applying (2.2) on b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(zb)1+γϱγ[(z)]γΔz)Δr, we obtain

    b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(zb)1+γϱγ[(z)]γΔz)Δr=u4(r)(rb(zb)1+γϱγ[(z)]γΔz)|bbu4(r)(rb)1+γϱγ[(r)]γΔr,

    where

    u4(r)=r(σ(z)b)ϱ1γ[(z)]ϱΔz.

    With (3.1), (zb)/(z) is nonincreasing, and ϱ>0, we have for zr that

    b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(zb)1+γϱγ[(z)]γΔz)Δr=b(rb)1+γϱγ[(r)]γ[r(σ(z)b)ϱ1γ[(z)]ϱΔz]Δr=b(rb)1+γϱγ[(r)]γ[r[σ(z)b(z)]ϱ(σ(z)b)ϱ1γϱΔz]Δrϱb(rb)1+γϱγ[(r)]γ[r[zb(z)]ϱ(σ(z)b)ϱ1γϱΔz]Δrϱb(rb)1+γϱγ+ϱ[(r)]γ[(r)]ϱ[r(σ(z)b)1ϱγ1Δz]Δr. (3.38)

    Since (1ϱ)/γ<0, then by using (3.16), we have

    γ1ϱ[(zb)1ϱγ]Δ(σ(z)b)1ϱγ1,

    therefore,

    r(σ(z)b)1ϱγ1Δzγ1ϱr[(zb)1ϱγ]ΔΔz=γϱ1(rb)1ϱγ. (3.39)

    Substituting (3.39) into (3.38), we obtain

    b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(zb)1+γϱγ[(z)]γΔz)Δrϱ(γϱ1)b(rb)γ[(r)]γ[(r)]ϱΔr. (3.40)

    Substituting (3.40) into (3.37), we get

    b[(r)]ϱ[Ωσ(r)]γΔrϱ(γϱ1)γb(rb)γ[(r)]γ[(r)]ϱΔr,

    which matches (3.21) with J=ϱ(γ/(ϱ1))γ.

    Remark 3.2. In Theorem 3.2, when T=R and b=0, we have σ(r)=r. Consequently, we see that (3.1) holds with =1. As a result, (3.21) simplifies to (1.6), and for (r)=r, we get (1.4).

    Corollary 3.3. If T=N0, b=0 and {sn}n=0, {tn}n=0  are positive sequences with the property that n/tn is nonincreasing, then

    n=0[tn]ϱ[nk=0sk]γJn=0nγ[sn]γ[tn]ϱ, (3.41)

    where

    J={2ϱ1γ(γϱ1)γ,(ϱ1)/γ1;2ϱ(γϱ1)γ,(ϱ1)/γ1.

    Here, the inequality (3.1) holds with =2.

    Corollary 3.4. Let T=qN0 for q>1, bT, γ<0, γ=γ/(γ1), 0ϱ<1, and , be posituve sequences on [b,) such that (rb)/(r) is nonincreasing. If

    rbqrb1,r(b,)

    holds, then

    r=br[(r)]ϱ[Ω(qr)]γJr=br(rb)γ[(r)]γ[(r)]ϱ,

    where Ω(r)=r/qz=b(q1)z(z) and

    J={ϱ1γ(γϱ1)γ,(ϱ1)/γ1;ϱ(γϱ1)γ,(ϱ1)/γ1.

    In the following theorem, we will present the time scale version of inequality (1.7).

    Theorem 3.3. Assume bT, γ<0, γ=γ/(γ1), ϱ<0 , and ,Crd([b,)T,R+) such that (rb)/(r) is nondecreasing. If (3.1) holds, then

    b[(r)]ϱ[Ωσ(r)]γΔrMb(rb)γ[(r)]γ[(r)]ϱΔr, (3.42)

    where Ω(r)=rb(z)Δz and

    M={(γϱ1)γ,(ϱ1)/γ1;(γϱ1)γϱ1γϱ,(ϱ1)/γ1.

    Proof. We consider the following two cases to prove this theorem.

    Case 1: For (ϱ1)/γ1. Start with

    Ωσ(r)=σ(r)b(z)Δz=σ(r)b(zb)ϱγ1γγ[(zb)1+γϱγγ(z)]Δz. (3.43)

    Applying (2.3) on σ(r)b(zb)ϱγ1γγ[(zb)1+γϱγγ(z)]Δz, we get

    σ(r)b(zb)ϱγ1γγ[(zb)1+γϱγγ(z)]Δz(σ(r)b(zb)ϱγ1γΔz)1γ(σ(r)b(zb)1+γϱγ[(z)]γΔz)1γ. (3.44)

    From (3.43) and (3.44), we have

    Ωσ(r)(σ(r)b(zb)ϱγ1γΔz)1γ(σ(r)b(zb)1+γϱγ[(z)]γΔz)1γ. (3.45)

    Since 0<(ϱ1)/γ1, and by using (3.5), we find

    γϱ1[(zb)ϱ1γ]Δ(zb)ϱγ1γ,

    thus,

    σ(r)b(zb)ϱγ1γΔzγϱ1σ(r)b[(zb)ϱ1γ]ΔΔz=γϱ1(σ(r)b)ϱ1γ. (3.46)

    Substituting (3.46) into (3.45), we conclude

    Ωσ(r)(γϱ1)1γ(σ(r)b)ϱ1γγ(σ(r)b(zb)1+γϱγ[(z)]γΔz)1γ.

    For γ<0, we have

    [Ωσ(r)]γ(γϱ1)γ1(σ(r)b)ϱ1γσ(r)b(zb)1+γϱγ[(z)]γΔz.

    Multiplying the last inequality by [(r)]ϱ and then integrating over r from b to , we observe

    b[(r)]ϱ[Ωσ(r)]γΔr(γϱ1)γ1b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(zb)1+γϱγ[(z)]γΔz)Δr. (3.47)

    Applying (2.2) on

    b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(zb)1+γϱγ[(z)]γΔz)Δr,

    we observe that

    b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(zb)1+γϱγ[(z)]γΔz)Δr=u5(r)(rb(zb)1+γϱγ[(z)]γΔz)|bb(rb)1+γϱγu5(r)[(r)]γΔr,

    where

    u5(r)=r(σ(z)b)ϱ1γ[(z)]ϱΔz.

    Since σ(z)z and ϱ<0, we get

    b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(zb)1+γϱγ[(z)]γΔz)Δr=b(rb)1+γϱγ[(r)]γ[r(σ(z)b)ϱ1γ[(z)]ϱΔz]Δr=b(rb)1+γϱγ[(r)]γ[r[σ(z)b(z)]ϱ(σ(z)b)ϱ1γϱΔz]Δrb(rb)1+γϱγ[(r)]γ[r[zb(z)]ϱ(σ(z)b)ϱ1γϱΔz]Δr. (3.48)

    Since (zb)/(z) is nondecreasing and ϱ<0, (3.48) becomes

    b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(zb)1+γϱγ[(z)]γΔz)Δrb(rb)1+γϱγ+ϱ[(r)]γ[(r)]ϱ[r(σ(z)b)ϱ1γϱΔz]Δr=b(rb)1+γϱγ+ϱ[(r)]γ[(r)]ϱ[r(σ(z)b)1ϱγ1Δz]Δr. (3.49)

    Since ϱ<0 and γ<0, by using (3.16), we get

    γ1ϱ[(zb)1ϱγ]Δ(σ(z)b)1ϱγ1,

    and then

    r(σ(z)b)1ϱγ1Δzγ1ϱr[(zb)1ϱγ]ΔΔz=γϱ1(rb)1ϱγ. (3.50)

    Substituting (3.50) into (3.49), we obtain

    b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(zb)1+γϱγ[(z)]γΔz)Δrγϱ1b(rb)γ[(r)]γ[(r)]ϱΔr. (3.51)

    Substituting (3.51) into (3.47), we observe

    b[(r)]ϱ[Ωσ(r)]γΔr(γϱ1)γb(rb)γ[(r)]γ[(r)]ϱΔr,

    which is (3.42) with M=(γ/(ϱ1))γ.

    Case 2: For (ϱ1)/γ1. We have

    Ωσ(r)=σ(r)b(z)Δz=σ(r)b(σ(z)b)ϱγ1γγ[(σ(z)b)1+γϱγγ(z)]Δz. (3.52)

    Applying (2.3), we get

    σ(r)b(σ(z)b)ϱγ1γγ[(σ(z)b)1+γϱγγ(z)]Δz(σ(r)b(σ(z)b)ϱγ1γΔz)1γ(σ(r)b(σ(z)b)1+γϱγ[(z)]γΔz)1γ. (3.53)

    Substituting (3.53) into (3.52), we obtain

    Ωσ(r)(σ(r)b(σ(z)b)ϱγ1γΔz)1γ(σ(r)b(σ(z)b)1+γϱγ[(z)]γΔz)1γ. (3.54)

    Since (ϱ1)/γ1, then by using (3.5), we have

    γϱ1[(zb)ϱ1γ]Δ(σ(z)b)ϱγ1γ. (3.55)

    By integrating (3.55) over z from b to σ(r), we get

    σ(r)b(σ(z)b)ϱγ1γΔzγϱ1σ(r)b[(zb)ϱ1γ]ΔΔz=γϱ1(σ(r)b)ϱ1γ. (3.56)

    Substituting (3.56) into (3.54), since γ>0, we observe

    Ωσ(r)(γϱ1)1γ(σ(r)b)ϱ1γγ(σ(r)b(σ(z)b)1+γϱγ[(z)]γΔz)1γ.

    For γ<0, this yields

    [Ωσ(r)]γ(γϱ1)γ1(σ(r)b)ϱ1γσ(r)b(σ(z)b)1+γϱγ[(z)]γΔz. (3.57)

    Multiplying (3.57) with [(r)]ϱ and then integrating over r from b to , we see

    b[(r)]ϱ[Ωσ(r)]γΔr(γϱ1)γ1b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(σ(z)b)1+γϱγ[(z)]γΔz)Δr. (3.58)

    Applying (2.2) on b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(σ(z)b)1+γϱγ[(z)]γΔz)Δr, we get

    b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(σ(z)b)1+γϱγ[(z)]γΔz)Δr=u6(r)(rb(σ(z)b)1+γϱγ[(z)]γΔz)|bb(σ(r)b)1+γϱγ[(r)]γu6(r)Δr,

    where

    u6(r)=r(σ(z)b)ϱ1γ[(z)]ϱΔz.

    Since σ(z)z, and ϱ<0, we find

    b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(σ(z)b)1+γϱγ[(z)]γΔz)Δr=b(σ(r)b)1+γϱγ[(r)]γ[r(σ(z)b)ϱ1γ[(z)]ϱΔz]Δrb(σ(r)b)1+γϱγ[(r)]γ[r(σ(z)b)ϱ1γϱ(zb(z))ϱΔz]Δr. (3.59)

    Since (zb)/(z) is nondecreasing, ϱ<0 and zr, (3.59) becomes

    b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(σ(z)b)1+γϱγ[(z)]γΔz)Δrb(σ(r)b)1+γϱγ(rb)ϱ[(r)]γ[(r)]ϱ[r(σ(z)b)ϱ1γϱΔz]Δr=b(σ(r)b)1+γϱγ(rb)ϱ[(r)]γ[(r)]ϱ[r(σ(z)b)1ϱγ1Δz]Δr. (3.60)

    Since ϱ<0 and γ<0, then by using (3.16), we have

    γ1ϱ[(zb)1ϱγ]Δ(σ(z)b)1ϱγ1,

    and then

    r(σ(z)b)1ϱγ1Δzγ1ϱr[(zb)1ϱγ]ΔΔz=γϱ1(rb)1ϱγ. (3.61)

    Substituting (3.61) into (3.60) and using (3.1) (note that ϱ1γϱ0), we observe that

    b(σ(r)b)ϱ1γ[(r)]ϱ(σ(r)b(σ(z)b)1+γϱγ[(z)]γΔz)Δrγϱ1b(σ(r)b)1ϱγ1+γ(rb)ϱ+1ϱγ[(r)]γ[(r)]ϱΔrγϱ1b(σ(r)b)1ϱγ1(rb)ϱ+γ+1ϱγ[(r)]γ[(r)]ϱΔrγϱ1b(σ(r)b)ϱ1γϱ(rb)ϱ+γ+1ϱγ[(r)]γ[(r)]ϱΔrγϱ1ϱ1γϱb(rb)γ[(r)]γ[(r)]ϱΔr. (3.62)

    Substituting (3.62) into (3.58), we obtain

    b[(r)]ϱ[Ωσ(r)]γΔr(γϱ1)γϱ1γϱb(rb)γ[(r)]γ[(r)]ϱΔr,

    which is (3.42) with M=(γ/(ϱ1))γϱ1γϱ.

    Remark 3.3. In Theorem 3.3, if T=R, and b=0, then (3.1) holds with =1, and (3.42) reduces to (1.7). In addition, for (r)=r, we get (1.4).

    Corollary 3.5. If T=N0, b=0, ϱ, γ<0, and {sn}n=0, {tn}n=0  are positive sequences with the property n/tn bing nondecreasing , then (3.1) holds with =2. Consequently, the following inequality holds:

    n=0[tn]ϱ[nk=0sk]γMn=0nγ[sn]γ[tn]ϱ,

    where

    M={(γϱ1)γ,(ϱ1)/γ1;2ϱ1γϱ(γϱ1)γ,(ϱ1)/γ1.

    Corollary 3.6. Let T=qN0 for q>1, bT, γ, γ=γ/(γ1), ϱ<0 , and , be positive sequences on [b,) such that (rb)/(r) is nondecreasing. If

    rbqrb1,r(b,)

    holds, then

    r=br[(r)]ϱ[Ω(qr)]γMr=br(rb)γ[(r)]γ[(r)]ϱ,

    where Ω(r)=r/qz=b(q1)z(z) and

    M={(γϱ1)γ,(ϱ1)/γ1;(γϱ1)γϱ1γϱ,(ϱ1)/γ1.

    This work extends Hardy's foundational inequalities by exploring their generalizations with negative parameters within the framework of time scale theory. We have derived new results by providing time scale versions of previously established inequalities, along with their discrete analogues. These contributions offer a more comprehensive perspective on Hardy-type inequalities, demonstrating their flexibility and potential for further research. Our findings underscore the importance of integrating time scale calculus into classical inequality theory, unveiling promising directions for future investigations.

    Looking ahead, we plan to expand on these results by applying alpha-conformable fractional derivatives on time scales, facilitating a deeper exploration of fractional calculus in this setting. Additionally, we aim to broaden our findings by examining their application within the framework of diamond-alpha calculus, which we believe will offer fresh insights into this developing field.

    A. M. Ahmed, A. I. Saied and H. M. Rezk: Investigation, Software, Supervision, Writing-original draft; M. Zakarya, A. A. I Al-Thaqfan and M. Ali: Writing-review editing, Funding. All authors have read and approved the final version of the manuscript for publication.

    The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through large Research Project under grant number RGP 2/190/45.

    The authors declare that there are no conflict of interests in this paper.



    [1] G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317. https://doi.org/10.1007/BF01199965 doi: 10.1007/BF01199965
    [2] G. H. Hardy, Notes on some points in the integral calculus, LX. An inequality between integrals, Messenger Math., 54 (1925), 150–156.
    [3] P. Khajeh-Khalili, Generalization of a Hardy-Littlewood-Polya inequality, J. Approx. Theory, 66 (1991), 115–124. https://doi.org/10.1016/0021-9045(91)90116-R doi: 10.1016/0021-9045(91)90116-R
    [4] G. J. Sinnamon, Weighted Hardy and Opial-type inequalities, J. Math. Anal. Appl., 160 (1991), 434–445. https://doi.org/10.1016/0022-247X(91)90316-R doi: 10.1016/0022-247X(91)90316-R
    [5] V. D. Stepanov, Boundedness of linear integral operators on a class of monotone functions, Sib. Math. J., 32 (1991), 540–542. https://doi.org/10.1007/BF00970496 doi: 10.1007/BF00970496
    [6] Y. Bicheng, On a new Hardy type integral inequalities, Int. Math. Forum., 2 (2007), 3317–3322.
    [7] B. Benaissa, M. Z. Sarikaya, Generalization of some Hardy-type integral inequality with negative parameter, Bull. Transilv. Univ. Bras. III, 13 (2020), 69–76. https://doi.org/10.31926/but.mif.2020.13.62.1.6 doi: 10.31926/but.mif.2020.13.62.1.6
    [8] P. Řehák, Hardy inequality on time scales and its application to half-linear dynamic equations, J. Inequal. Appl., 2005 (2005), 1–13. https://doi.org/10.1155/JIA.2005.495 doi: 10.1155/JIA.2005.495
    [9] E. S. Aly, Y. A. Madani, F. Gassem, A. I. Saied, H. M. Rezk, W. W. Mohammed, Some dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus, AIMS Math., 9 (2024), 5147–5170. https://doi.org/10.3934/math.2024250 doi: 10.3934/math.2024250
    [10] G. AlNemer, A. I. Saied, A. M. Hassan, C. Cesarano, H. M. Rezk, M. Zakarya, On some new dynamic inequalities involving C-monotonic functions on time scales, Axioms, 11 (2022), 1–13. https://doi.org/10.3390/axioms11110644 doi: 10.3390/axioms11110644
    [11] D. O'Regan, H. M. Rezk, S. H. Saker, Some dynamic inequalities involving Hilbert and Hardy-Hilbert operators with kernels, Results Math., 73 (2018), 1–22. https://doi.org/10.1007/s00025-018-0908-4 doi: 10.1007/s00025-018-0908-4
    [12] H. M. Rezk, A. I. Saied, G. AlNemer, M. Zakarya, On Hardy-Knopp type inequalities with kernels via time scale calculus, J. Math., 2022 (2022), 7997299. https://doi.org/10.1155/2022/7997299 doi: 10.1155/2022/7997299
    [13] S. H. Saker, H. M. Rezk, I. Abohela, D. Baleanu, Refinement multidimensional dynamic inequalities with general kernels and measures, J. Inequal. Appl., 2019 (2019), 306. https://doi.org/10.1186/s13660-019-2255-8 doi: 10.1186/s13660-019-2255-8
    [14] M. Bohner, S. G. Georgiev, Multivariable dynamic calculus on time scales, Cham: Springer, 2016. http://dx.doi.org/10.1007/978-3-319-47620-9
    [15] M. Zakarya, G. AlNemer, A. I. Saied, H. M. Rezk, Novel generalized inequalities involving a general Hardy operator with multiple variables and general kernels on time scales, AIMS Math., 9 (2024), 21414–21432. https://doi.org/10.3934/math.20241040 doi: 10.3934/math.20241040
    [16] S. H. Saker, R. R. Mahmoud, A. Peterson, Weighted Hardy-type inequalities on time scales with applications, Mediterr. J. Math., 13 (2016), 585–606. https://doi.org/10.1007/s00009-014-0514-y doi: 10.1007/s00009-014-0514-y
    [17] M. Bohner, A. Peterson, Dynamic equations on time scales: an introduction with applications, Boston: Birkhäuser, 2001. https://doi.org/10.1007/978-1-4612-0201-1
    [18] M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Boston: Birkhäuser, 2003. https://doi.org/10.1007/978-0-8176-8230-9
    [19] R. P. Agarwal, D. O'Regan, S. H. Saker, Hardy type inequalities on time scales, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-44299-0
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(646) PDF downloads(32) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog