Herein, we discuss an optimal control problem (OC-P) of a stochastic delay differential model to describe the dynamics of tumor-immune interactions under stochastic white noises and external treatments. The required criteria for the existence of an ergodic stationary distribution and possible extinction of tumors are obtained through Lyapunov functional theory. A stochastic optimality system is developed to reduce tumor cells using some control variables. The study found that combining white noises and time delays greatly affected the dynamics of the tumor-immune interaction model. Based on numerical results, it can be shown which variables are optimal for controlling tumor growth and which controls are effective for reducing tumor growth. With some conditions, white noise reduces tumor cell growth in the optimality problem. Some numerical simulations are conducted to validate the main results.
Citation: H. J. Alsakaji, F. A. Rihan, K. Udhayakumar, F. El Ktaibi. Stochastic tumor-immune interaction model with external treatments and time delays: An optimal control problem[J]. Mathematical Biosciences and Engineering, 2023, 20(11): 19270-19299. doi: 10.3934/mbe.2023852
[1] | Haiming Liu, Jiajing Miao . Gauss-Bonnet theorem in Lorentzian Sasakian space forms. AIMS Mathematics, 2021, 6(8): 8772-8791. doi: 10.3934/math.2021509 |
[2] | Haiming Liu, Xiawei Chen, Jianyun Guan, Peifu Zu . Lorentzian approximations for a Lorentzian α-Sasakian manifold and Gauss-Bonnet theorems. AIMS Mathematics, 2023, 8(1): 501-528. doi: 10.3934/math.2023024 |
[3] | Lizhen Huang, Qunying Wu . Precise asymptotics for complete integral convergence in the law of the logarithm under the sub-linear expectations. AIMS Mathematics, 2023, 8(4): 8964-8984. doi: 10.3934/math.2023449 |
[4] | Xhevat Z. Krasniqi . Approximation of functions in a certain Banach space by some generalized singular integrals. AIMS Mathematics, 2024, 9(2): 3386-3398. doi: 10.3934/math.2024166 |
[5] | Shuyan Li, Qunying Wu . Complete integration convergence for arrays of rowwise extended negatively dependent random variables under the sub-linear expectations. AIMS Mathematics, 2021, 6(11): 12166-12181. doi: 10.3934/math.2021706 |
[6] | Najmeddine Attia, Rim Amami . On linear transformation of generalized affine fractal interpolation function. AIMS Mathematics, 2024, 9(7): 16848-16862. doi: 10.3934/math.2024817 |
[7] | Franka Baaske, Romaric Kana Nguedia, Hans-Jürgen Schmeißer . Smoothing properties of the fractional Gauss-Weierstrass semi-group in Morrey smoothness spaces. AIMS Mathematics, 2024, 9(11): 31962-31984. doi: 10.3934/math.20241536 |
[8] | Qiujin He, Chunxia Bu, Rongling Yang . A Generalization of Lieb concavity theorem. AIMS Mathematics, 2024, 9(5): 12305-12314. doi: 10.3934/math.2024601 |
[9] | Fethi Bouzeffour . Inversion formulas for space-fractional Bessel heat diffusion through Tikhonov regularization. AIMS Mathematics, 2024, 9(8): 20826-20842. doi: 10.3934/math.20241013 |
[10] | Iqra Shamas, Saif Ur Rehman, Thabet Abdeljawad, Mariyam Sattar, Sami Ullah Khan, Nabil Mlaiki . Generalized contraction theorems approach to fuzzy differential equations in fuzzy metric spaces. AIMS Mathematics, 2022, 7(6): 11243-11275. doi: 10.3934/math.2022628 |
Herein, we discuss an optimal control problem (OC-P) of a stochastic delay differential model to describe the dynamics of tumor-immune interactions under stochastic white noises and external treatments. The required criteria for the existence of an ergodic stationary distribution and possible extinction of tumors are obtained through Lyapunov functional theory. A stochastic optimality system is developed to reduce tumor cells using some control variables. The study found that combining white noises and time delays greatly affected the dynamics of the tumor-immune interaction model. Based on numerical results, it can be shown which variables are optimal for controlling tumor growth and which controls are effective for reducing tumor growth. With some conditions, white noise reduces tumor cell growth in the optimality problem. Some numerical simulations are conducted to validate the main results.
In [4], Diniz and Veloso gave the definition of Gaussian curvature for non-horizontal surfaces in sub-Riemannian Heisenberg space H1 and the proof of the Gauss-Bonnet theorem. In [1], intrinsic Gaussian curvature for a Euclidean C2-smooth surface in the Heisenberg group H1 away from characteristic points and intrinsic signed geodesic curvature for Euclidean C2-smooth curves on surfaces are defined by using a Riemannian approximation scheme. These results were then used to prove a Heisenberg version of the Gauss-Bonnet theorem. In [5], Veloso verified that Gaussian curvature of surfaces and normal curvature of curves in surfaces introduced by [4] and by [1] to prove Gauss-Bonnet theorems in Heisenberg space H1 were unequal and he applied the same formalism of [4] to get the curvatures of [1]. With the obtained formulas, the Gauss-Bonnet theorem can be proved as a straightforward application of Stokes theorem in [5].
In [1] and [2], Balogh-Tyson-Vecchi used that the Riemannian approximation scheme may depend upon the choice of the complement to the horizontal distribution in general. In the context of H1 the choice which they have adopted is rather natural. The existence of the limit defining the intrinsic curvature of a surface depends crucially on the cancellation of certain divergent quantities in the limit. Such cancellation stems from the specific choice of the adapted frame bundle on the surface, and on symmetries of the underlying left-invariant group structure on the Heisenberg group. In [1], they proposed an interesting question to understand to what extent similar phenomena hold in other sub-Riemannian geometric structures. In [6], Wang and Wei gave sub-Riemannian limits of Gaussian curvature for a Euclidean C2-smooth surface in the affine group and the group of rigid motions of the Minkowski plane away from characteristic points and signed geodesic curvature for Euclidean C2-smooth curves on surfaces. And they got Gauss-Bonnet theorems in the affine group and the group of rigid motions of the Minkowski plane. In [7], Wang and Wei gave sub-Riemannian limits of Gaussian curvature for a Euclidean C2-smooth surface in the BCV spaces and the twisted Heisenberg group away from characteristic points and signed geodesic curvature for Euclidean C2-smooth curves on surfaces. And they got Gauss-Bonnet theorems in the BCV spaces and the twisted Heisenberg group.
In this paper, we solve this problem for the generalized affine group and the generalized BCV spaces. In the case of the generalized affine group, the cancellation of certain divergent quantities in the limit happens and the limit of the Riemannian Gaussian curvature exists. In the case of the generalized BCV spaces, the result is the same as the generalized affine group. We also get Gauss-Bonnet theorems in the generalized affine group and the generalized BCV spaces.
In Section 2, we compute the sub-Riemannian limit of curvature of curves in the generalized affine group. In Section 3, we compute sub-Riemannian limits of geodesic curvature of curves on surfaces and the Riemannian Gaussian curvature of surfaces in the generalized affine group. In Section 4, we prove the Gauss-Bonnet theorem in the generalized affine group. In Section 5, we compute the sub-Riemannian limit of curvature of curves in the generalized BCV spaces. In Section 6, we compute sub-Riemannian limits of geodesic curvature of curves on surfaces and the Riemannian Gaussian curvature of surfaces in the generalized BCV spaces and get a Gauss-Bonnet theorem in the generalized BCV spaces.
When TM=H⨁H⊥ and gTM=gH⨁gH⊥, we may consider the rescaled metric gL=gH⨁LgH⊥, then we may consider the sub-Riemannian limit of some geometric objects like the Gauss curvature and the mean curvature ⋅⋅⋅, when L goes to the infinity. In this case, we call the (M,gTM) as the manifold with the splitting tangent bundle. In this paper, our main objects: the generalized affine group and the generalized BCV spaces are not sub-Riemannian manifolds (groups) in general. But they are manifolds with the splitting tangent bundle. So we can use the Riemannian approximation scheme to get the Gauss-Bonnet theorems in these spaces.
Firstly we give some notations on the generalized affine group. Let G be the generalized affine group and choose the underlying manifold G={(x1,x2,x3)∈R3∣f(x1,x2,x3)>0}. On G, we let
X1=f∂x1,X2=f∂x2+∂x3,X3=f∂x2. | (2.1) |
where f be a smooth function with respect to x1,x2,x3. Then
∂x1=1fX1,∂x2=1fX3,∂x3=X2−X3, | (2.2) |
and span{X1,X2,X3}=TG. Let H=span{X1,X2} be the horizontal distribution on G. Let ω1=1fdx1,ω2=dx3,ω=1fdx2−dx3. Then H=Kerω. For the constant L>0, let gL=ω1⊗ω1+ω2⊗ω2+Lω⊗ω,g=g1 be the Riemannian metric on G. Then X1,X2,~X3:=L−12X3 are orthonormal basis on TG with respect to gL. We have
[X1,X2]=−(f2+f3f)X1+f1X3,[X1,X3]=−f2X1+f1X3,[X2,X3]=f3fX3. | (2.3) |
where fi=∂f∂xi, for 1≤i≤3.
Let ∇L be the Levi-Civita connection on G with respect to gL. Then we have the following lemma,
Lemma 2.1. Let G be the generalized affine group, then
∇LX1X1=(f2+f3f)X2+f3L,∇LX1X2=−(f2+f3f)X1+f12X3,∇LX2X1=−f12X3,∇LX2X2=0,∇LX1X3=−f2X1−f1L2X2,∇LX3X1=−f1L2X2−f1X3,∇LX2X3=f1L2X1,∇LX3X2=f1L2X1−f3fX3,∇LX3X3=f1LX1+f3LfX2. | (2.4) |
Proof. By the Koszul formula, we have
2⟨∇LXiXj,Xk⟩L=⟨[Xi,Xj],Xk⟩L−⟨[Xj,Xk],Xi⟩L+⟨[Xk,Xi],Xj⟩L, | (2.5) |
where i,j,k=1,2,3. So lemma 2.1 holds.
Definition 2.2. Let γ:[a,b]→(G,gL) be a Euclidean C1-smooth curve. We say that γ is regular if ˙γ≠0 for every t∈[a,b]. Moreover we say that γ(t) is a horizontal point of γ if
ω(˙γ(t))=˙γ2(t)f−˙γ3(t)=0, |
where γ(t)=(γ1(t),γ2(t),γ3(t)) and ˙γi(t)=∂γi(t)∂t.
Definition 2.3. Let γ:[a,b]→(G,gL) be a Euclidean C2-smooth regular curve in the Riemannian manifold (G,gL). The curvature kLγ of γ at γ(t) is defined as
kLγ:=√||∇L˙γ˙γ||2L||˙γ||4L−⟨∇L˙γ˙γ,˙γ⟩2L||˙γ||6L. | (2.6) |
Lemma 2.4. Let γ:[a,b]→(G,gL) be a Euclidean C2-smooth regular curve in the Riemannian manifold (G,gL). Then,
kLγ={{{[¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2]+[f1L˙γ3−f2˙γ1f+f1Lω(˙γ(t))]ω(˙γ(t))}2+{[¨γ3+f2˙γ21f2+f3˙γ21f3]+[f3Lω(˙γ(t))f−f1L˙γ1f]ω(˙γ(t))}2+L{f2˙γ21f2L−[f1˙γ1f+f3˙γ3f]ω(˙γ(t))+ddtω(˙γ(t))}2}⋅[(˙γ1f)2+˙γ23+L(ω(˙γ(t)))2]−2−{[˙γ1¨γ1f2−f′˙γ21f3+˙γ3¨γ3]+Ldω(˙γ(t))dtω(˙γ(t))}2⋅[(˙γ1f)2+˙γ23+L(ω(˙γ(t)))2]−3}12 | (2.7) |
In particular, if γ(t) is a horizontal point of γ,
kLγ={{[¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2]2+[¨γ3+f2˙γ21f2+f3˙γ21f3]2+L[f2˙γ21f2L+ddtω(˙γ(t))]2}⋅[(˙γ1f)2+˙γ23]−2−[˙γ1¨γ1f2−f′˙γ21f3+˙γ3¨γ3]2⋅[(˙γ1f)2+˙γ23]−3}12 | (2.8) |
where f′=˙γ(f)=ddtf(γ(t)).
Proof. By (2.2), we have
˙γ(t)=˙γ1fX1+˙γ3X2+ω(˙γ(t))X3. | (2.9) |
By Lemma 2.1 and (2.9), we have
∇L˙γX1=[ff2˙γ1(t)+f3˙γ1(t)f2−f1Lω(˙γ(t))2]X2+[f2˙γ1(t)fL−f1˙γ3(t)2−f1ω(˙γ(t))]X3,∇L˙γX2=[−ff2˙γ1(t)+f3˙γ1(t)f2+f1Lω(˙γ(t))2]X1+[−f3ω(˙γ(t))f+f1˙γ(t)2f]X3,∇L˙γX3=[−f2˙γ1(t)f+Lf1˙γ3(t)2+f1Lω(˙γ(t))]X1+[−f1L˙γ(t)2f+f3Lω(˙γ(t))f]X2. | (2.10) |
By (2.9) and (2.10), we have
∇L˙γ˙γ={[¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2]+[f1L˙γ3−f2˙γ1f+f1Lω(˙γ(t))]ω(˙γ(t))}X1+{[¨γ3+f2˙γ21f2+f3˙γ21f3]+[f3Lω(˙γ(t))f−f1L˙γ1f]ω(˙γ(t))}X2+{f2˙γ21f2L−(f1˙γ1f+f3˙γ3f)ω(˙γ(t))+dω(˙γ(t))dt}X3 | (2.11) |
By (2.6), (2.9) and (2.11), we get Lemma 2.4.
Definition 2.5. Let γ:[a,b]→(G,gL) be a Euclidean C2-smooth regular curve in the Riemannian manifold (G,gL). We define the intrinsic curvature k∞γ of γ at γ(t) to be
k∞γ:=limL→+∞kLγ, |
if the limit exists.
We introduce the following notation: for continuous functions f1,f2:(0,+∞)→R,
f1(L)∼f2(L),asL→+∞⇔limL→+∞f1(L)f2(L)=1. | (2.12) |
Lemma 2.6. Let γ:[a,b]→(G,gL) be a Euclidean C2-smooth regular curve in the Riemannian manifold (G,gL). Then
k∞γ=√[f1˙γ1−f3˙γ2f+f3˙γ3]2+(f1˙γ2)2|f||ω(˙γ(t))|,ifω(˙γ(t))≠0, | (2.13) |
k∞γ={{[¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2]2+[¨γ3+f2˙γ21f2+f3˙γ21f3]2+(f2˙γ21f2)2}⋅[(˙γ1f)2+˙γ23]−2−[˙γ1¨γ1f2−f′˙γ21f3+˙γ3¨γ3]2⋅[(˙γ1f)2+˙γ23]−3}12ifω(˙γ(t))=0andddt(ω(˙γ(t)))=0, | (2.14) |
limL→+∞kLγ√L=|ddt(ω(˙γ(t)))|(˙γ1f)2+˙γ23,ifω(˙γ(t))=0andddt(ω(˙γ(t)))≠0. | (2.15) |
Proof. Using the notation introduced in (2.12), when ω(˙γ(t))≠0, we have
||∇L˙γ˙γ||2L∼(ω(˙γ(t))f)2{[f1˙γ1−f3˙γ2f+f3˙γ3]2+(f1˙γ2)2}L2,asL→+∞, |
||˙γ||2L∼Lω(˙γ(t))2,asL→+∞, |
⟨∇L˙γ˙γ,˙γ⟩2L∼O(L2)asL→+∞. |
Therefore
||∇L˙γ˙γ||2L||˙γ||4L→{[f1˙γ1−f3˙γ2f+f3˙γ3)]2+(f1˙γ2)2}f2ω(˙γ(t))2,asL→+∞, |
⟨∇L˙γ˙γ,˙γ⟩2L||˙γ||6L→0,asL→+∞. |
So by (2.6), we have (2.13). (2.14) comes from (2.8) and
ddt(ω(˙γ(t)))=0. |
When ω(˙γ(t))=0 and ddt(ω(˙γ(t)))≠0,
we have
||∇L˙γ˙γ||2L∼L[ddt(ω(˙γ(t)))]2,asL→+∞, |
||˙γ||2L=(˙γ1f)2+˙γ23, |
⟨∇L˙γ˙γ,˙γ⟩2L=O(1)asL→+∞. |
By (2.6), we get (2.15).
We will say that a surface Σ⊂(G,gL) is regular if Σ is a Euclidean C2-smooth compact and oriented surface. In particular we will assume that there exists a Euclidean C2-smooth function u:G→R such that
Σ={(x1,x2,x3)∈G:u(x1,x2,x3)=0} |
and ux1∂x1+ux2∂x2+ux3∂x3≠0. Let ∇Hu=X1(u)X1+X2(u)X2. A point x∈Σ is called characteristic if ∇Hu(x)=0. We define the characteristic set C(Σ):={x∈Σ|∇Hu(x)=0}. Our computations will be local and away from characteristic points of Σ. Let us define first
p:=X1u,q:=X2u,andr:=˜X3u. |
We then define
l:=√p2+q2,lL:=√p2+q2+r2,¯p:=pl,¯q:=ql,¯pL:=plL,¯qL:=qlL,¯rL:=rlL. | (3.1) |
In particular, ¯p2+¯q2=1. These functions are well defined at every non-characteristic point. Let
vL=¯pLX1+¯qLX2+¯rL~X3,e1=¯qX1−¯pX2,e2=¯rL¯pX1+¯rL¯qX2−llL~X3, | (3.2) |
then vL is the Riemannian unit normal vector to Σ and e1,e2 are the orthonormal basis of Σ. On TΣ we define a linear transformation JL:TΣ→TΣ such that
JL(e1):=e2;JL(e2):=−e1. | (3.3) |
For every U,V∈TΣ, we define ∇Σ,LUV=π∇LUV where π:TG→TΣ is the projection. Then ∇Σ,L is the Levi-Civita connection on Σ with respect to the metric gL. By (2.11), (3.2) and
∇Σ,L˙γ˙γ=⟨∇L˙γ˙γ,e1⟩Le1+⟨∇L˙γ˙γ,e2⟩Le2, | (3.4) |
we have
∇Σ,L˙γ˙γ={¯q[(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)+(f1L˙γ3−f2˙γ1f+f1Lω(˙γ(t)))ω(˙γ(t))]−¯p[(¨γ3+f2˙γ21f2+f3˙γ21f3)−(f1L˙γ1−f3Lω(˙γ(t))f)ω(˙γ(t))]}e1+{¯rL¯p[(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)+(f1L˙γ3−f2˙γ1f+f1Lω(˙γ(t)))ω(˙γ(t))]+¯rL¯q[(¨γ3+f2˙γ21f2+f3˙γ21f3)−(f1L˙γ1f−f3Lω(˙γ(t))f)ω(˙γ(t))]−llLL12[f2˙γ21f2L−(f1˙γ1f+f3˙γ3f)ω(˙γ(t))+ddt(ω(˙γ(t)))]}e2. | (3.5) |
Moreover if ω(˙γ(t))=0, then
∇Σ,L˙γ˙γ={¯q[¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2]−¯p[¨γ3+f2˙γ21f2+f3˙γ21f3]}e1+{¯rL¯p[¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2]+¯rL¯q[¨γ3+f2˙γ21f2+f3˙γ21f3]−llLL12[f2˙γ21f2L−ddt(ω(˙γ(t)))]}e2. | (3.6) |
Definition 3.1. Let Σ⊂(G,gL) be a regular surface. Let γ:[a,b]→Σ be a Euclidean C2-smooth regular curve. The geodesic curvature kLγ,Σ of γ at γ(t) is defined as
kLγ,Σ:=√||∇Σ,L˙γ˙γ||2Σ,L||˙γ||4Σ,L−⟨∇Σ,L˙γ˙γ,˙γ⟩2Σ,L||˙γ||6Σ,L. | (3.7) |
Definition 3.2. Let Σ⊂(G,gL) be a regular surface. Let γ:[a,b]→Σ be a Euclidean C2-smooth regular curve. We define the intrinsic geodesic curvature k∞γ,Σ of γ at γ(t) to be
k∞γ,Σ:=limL→+∞kLγ,Σ, |
if the limit exists.
Lemma 3.3. Let Σ⊂(G,gL) be a regular surface. Let γ:[a,b]→Σ be a Euclidean C2-smooth regular curve. Then
k∞γ,Σ=|¯p(f1˙γ1−f3˙γ2f+f3˙γ3)+¯qf1˙γ2||f||ω(˙γ(t))|,ifω(˙γ(t))≠0, | (3.8) |
k∞γ,Σ=0,ifω(˙γ(t))=0,andddt(ω(˙γ(t)))=0, |
limL→+∞kLγ,Σ√L=|ddt(ω(˙γ(t)))|(¯q˙γ1f−¯p˙γ3)2,ifω(˙γ(t))=0andddt(ω(˙γ(t)))≠0. | (3.9) |
Proof. we know ˙γ(t)=˙γ1(t)∂x1+˙γ2(t)∂x2+˙γ3(t)∂x3, then by (2.2), ˙γ(t)=˙γ1(t)γ1(t)X1+γ3(t)X2+ω(˙γ(t))X3.
Let
˙γ(t)=λ1e1+λ2e2. |
Then
{˙γ1(t)γ1(t)=λ1¯q+λ2¯rL¯p˙γ3(t)=−λ1¯p+λ2¯rL¯qω(˙γ(t))=−λ2llLL−12 | (3.10) |
We have
{λ1=¯q˙γ1(t)γ1(t)−¯p˙γ3(t)λ2=−λ2lLlL12ω(˙γ(t)) | (3.11) |
Thus ˙γ∈TΣ, we have
˙γ=(¯q˙γ1f−¯p˙γ3)e1−lLlL12ω(˙γ(t))e2. | (3.12) |
By (3.6), we have
||∇Σ,L˙γ˙γ||2L,Σ={¯q[(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)+(f1L˙γ3−f2˙γ1f+f1Lω(˙γ(t)))ω(˙γ(t))]−¯p[(¨γ3+f2˙γ21f2+f3˙γ21f3)−(f1L˙γ1−f3Lω(˙γ(t))f)ω(˙γ(t))]}2+{¯rL¯p[(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)+(f1L˙γ3−f2˙γ1f+f1Lω(˙γ(t)))ω(˙γ(t))]+¯rL¯q[(¨γ3+f2˙γ21f2+f3˙γ21f3)−(f1L˙γ1f−f3Lω(˙γ(t))f)ω(˙γ(t))]−llLL12[f2˙γ21f2L−(f1˙γ1f+f3˙γ3f)ω(˙γ(t))+ddt(ω(˙γ(t)))]}2∼L2[¯p(f1˙γ1−f3˙γ2f+f3˙γ3)+¯qf1˙γ2]2ω(˙γ(t))2f2,asL→+∞. | (3.13) |
Similarly, we have that when ω(˙γ(t))≠0,
||˙γ||Σ,L=√(¯q˙γ1f−¯p˙γ3)2+(lLl)2Lω(˙γ(t))2∼L12|ω(˙γ(t))|,asL→+∞. | (3.14) |
By (3.6) and (3.12), we have
⟨∇Σ,L˙γ˙γ,˙γ⟩Σ,L=(¯q˙γ1f−¯p˙γ3)⋅{¯q[(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)+(f1L˙γ3−f2˙γ1f+f1Lω(˙γ(t)))ω(˙γ(t))]−¯p[(¨γ3+f2˙γ21f2+f3˙γ21f3)−(f1L˙γ1−f3Lω(˙γ(t))f)ω(˙γ(t))]}−lLlL12ω(˙γ(t))⋅{¯rL¯p[(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)+(f1L˙γ3−f2˙γ1f+f1Lω(˙γ(t)))ω(˙γ(t))]+¯rL¯q[(¨γ3+f2˙γ21f2+f3˙γ21f3)−(f1L˙γ1f−f3Lω(˙γ(t))f)ω(˙γ(t))]−llLL12[f2˙γ21f2L−(f1˙γ1f+f3˙γ3f)ω(˙γ(t))+ddt(ω(˙γ(t)))]}∼M0L, | (3.15) |
where M0 does not depend on L. By (3.7), (3.13)–(3.15), we get (3.8). When ω(˙γ(t))=0 and ddt(ω(˙γ(t)))=0,
we have
||∇Σ,L˙γ˙γ||2L,Σ=[¯q(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)−¯p(¨γ3+f2˙γ21f2+f3˙γ21f3)]2+[¯rL¯p(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)+¯rL¯q(¨γ3+f2˙γ21f2+f3˙γ21f3)−llLL12f2˙γ21f2L]2∼[¯q(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)−¯p(¨γ3+f2˙γ21f2+f3˙γ21f3)]2 | (3.16) |
and
||˙γ||Σ,L=|¯q˙γ1f−¯p˙γ3|, | (3.17) |
⟨∇Σ,L˙γ˙γ,˙γ⟩Σ,L=(¯q˙γ1f−¯p˙γ3)⋅[¯q(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)−¯p(¨γ3+f2˙γ21f2+f3˙γ21f3)] | (3.18) |
By (3.16)–(3.18) and (3.7), we get k∞γ,Σ=0. When ω(˙γ(t))=0 and ddt(ω(˙γ(t)))≠0,
we have
||∇Σ,L˙γ˙γ||2L,Σ∼L[ddt(ω(˙γ(t)))]2, |
⟨∇Σ,L˙γ˙γ,˙γ⟩Σ,L=O(1), |
so we get (3.9).
Definition 3.4. Let Σ⊂(G,gL) be a regular surface. Let γ:[a,b]→Σ be a Euclidean C2-smooth regular curve. The signed geodesic curvature kL,sγ,Σ of γ at γ(t) is defined as
kL,sγ,Σ:=⟨∇Σ,L˙γ˙γ,JL(˙γ)⟩Σ,L||˙γ||3Σ,L, | (3.19) |
where JL is defined by (3.3).
Definition 3.5. Let Σ⊂(G,gL) be a regular surface. Let γ:[a,b]→Σ be a Euclidean C2-smooth regular curve. We define the intrinsic geodesic curvature k∞γ,Σ of γ at the non-characteristic point γ(t) to be
k∞,sγ,Σ:=limL→+∞kL,sγ,Σ, |
if the limit exists.
Lemma 3.6. Let Σ⊂(G,gL) be a regular surface. Let γ:[a,b]→Σ be a Euclidean C2-smooth regular curve. Then
k∞,sγ,Σ=¯p(f1˙γ1−f3˙γ2f+f3˙γ3)+¯qf1˙γ2|fω(˙γ(t))|,ifω(˙γ(t))≠0, | (3.20) |
k∞,sγ,Σ=0,ifω(˙γ(t))=0,andddt(ω(˙γ(t)))=0, |
limL→+∞kL,sγ,Σ√L=(−¯q˙γ1f+¯p˙γ3)ddt(ω(˙γ(t)))|¯q˙γ1f−¯p˙γ3|3,ifω(˙γ(t))=0andddt(ω(˙γ(t)))≠0. | (3.21) |
Proof. By (3.3) and (3.12), we have
JL(˙γ)=lLlL12ω(˙γ(t))e1+(¯q˙γ1f−¯p˙γ3)e2. | (3.22) |
By (3.5) and (3.22), we have
⟨∇Σ,L˙γ˙γ,JL(˙γ)⟩L,Σ=lLlL12ω(˙γ(t)){¯q[(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)+(f1L˙γ3−f2˙γ1f+f1Lω(˙γ(t)))ω(˙γ(t))]−¯p[(¨γ3+f2˙γ21f2+f3˙γ21f3)−(f1L˙γ1−f3Lω(˙γ(t))f)ω(˙γ(t))]}+(¯q˙γ1f−¯p˙γ3)⋅{¯rL¯p[(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)+(f1L˙γ3−f2˙γ1f+f1Lω(˙γ(t)))ω(˙γ(t))]+¯rL¯q[(¨γ3+f2˙γ21f2+f3˙γ21f3)−(f1L˙γ1f−f3Lω(˙γ(t))f)ω(˙γ(t))]−llLL12[f2˙γ21f2L−(f1˙γ1f+f3˙γ3f)ω(˙γ(t))+ddt(ω(˙γ(t)))]},∼L32ω(˙γ(t))2¯p(f1˙γ1−f3˙γ2f+f3˙γ3)+¯qf1˙γ2fasL→+∞. | (3.23) |
So we get (3.20). When ω(˙γ(t))=0 and ddt(ω(˙γ(t)))=0, we get
⟨∇Σ,L˙γ˙γ,JL(˙γ)⟩L,Σ=(¯q˙γ1f−¯p˙γ3)⋅[¯rL¯p(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)+¯rL¯q(¨γ3+f2˙γ21f2+f3˙γ21f3)−llLL−12f2˙γ21f2]∼M0L−12asL→+∞. | (3.24) |
So k∞,sγ,Σ=0. When ω(˙γ(t))=0 and ddt(ω(˙γ(t)))≠0,
we have
⟨∇Σ,L˙γ˙γ,JL(˙γ)⟩L,Σ∼L12(−¯q˙γ1f+¯p˙γ3)ddt(ω(˙γ(t)))asL→+∞. | (3.25) |
So we get (3.21).
In the following, we compute the sub-Riemannian limit of the Riemannian Gaussian curvature of surfaces in the generalized affine group. We define the second fundamental form IIL of the embedding of Σ into (G,gL):
IIL=(⟨∇Le1vL,e1⟩L,⟨∇Le1vL,e2⟩L⟨∇Le2vL,e1⟩L,⟨∇Le2vL,e2⟩L). | (3.26) |
Similarly to Theorem 4.3 in [3], we have
Theorem 3.7. The second fundamental form IIL of the embedding of Σ into (G,gL) is given by
IIL=(h11,h12h21,h22). | (3.27) |
where
h11=llL[X1(¯p)+X2(¯q)]−¯qL(f2+f3f)−¯q2f2¯rLL−12, |
h12=h21=−lLl⟨e1,∇H(¯rL)⟩L−f1√L2−¯p¯qf2L−12, |
h22=−l2l2L⟨e2,∇H(rl)⟩L+~X3(¯rL)−f1¯pL−¯qLf3f−¯rL¯P2f2L−12. |
Proof. By ei⟨VL,ej⟩L−⟨∇LeiVL,ej⟩L−⟨∇Leiej,VL⟩L=0 and ei⟨VL,ej⟩L=0, we have ⟨∇LeiVL,ej⟩L=−⟨∇Leiej,VL⟩L, i,j=1,2.
By lemma 2.1 and (3.2),
∇Le1e1=∇L(¯qX1−¯pX2)(¯qX1−¯pX2)=[¯qX1(¯q)−¯pX2(¯p)+¯p¯q(f2+f3f)]X1−[¯qX1(¯p)−¯pX2(¯p)−¯q2(f2+f3f)]X2+¯q2f3L−12~X3. | (3.28) |
Then
h11=−⟨∇Le1e1,VL⟩L=−¯pL[¯qX1(¯q)−¯pX2(¯p)]+¯qL[¯qX1(¯p)−¯pX2(¯p)]−¯qL(F2+F3¯fF)−¯pL(F1+F3fF)+¯rLL−12F3F=llL[X1(¯p)+X2(¯q)]−¯qL(F2+F3¯fF)−¯pL(F1+F3fF)+¯rLL−12F3F. | (3.29) |
Similarly,
∇Le1e2=∇L(¯qX1−¯pX2)(¯rL¯pX1+¯rL¯qX2−llL~X3)=[¯qX1(¯rL¯p)−¯pX2(¯rL¯p)+f1¯pL√L2−¯rL¯q2(f2+f3f)+¯qLf2L−12]X1+[¯qX1(¯q)−¯pX2(¯q)+f1¯qL√L2+¯rL¯pq(f2+f3f)]X2+[¯pX2(llL)−¯qX1(llL)+f1¯rL√L2+¯rL¯pqf3L−12]~X3. | (3.30) |
Then
h12=−⟨∇Le1e2,VL⟩L=−llL[¯qX1(¯rL)−¯pX2(¯rL)]+¯rL[¯qX1(llL)−¯pX2(llL)]−12L12(fF2−F1¯f+¯f′F−Ff′)=−lLl⟨e1,∇H(¯rL)⟩L−12L12(fF2−F1¯f+¯f′F−Ff′). | (3.31) |
Since
⟨∇Le2VL,e1⟩L=−⟨∇Le2e1,VL⟩L=−⟨∇Le1e2+[e2,e1],VL⟩L=−⟨∇Le1e2,VL⟩=⟨∇Le1VL,e2⟩L. | (3.32) |
Then,
h21=h12=−lLl⟨e1,∇H(¯rL)⟩L−12L12(fF2−F1¯f+¯f′F−Ff′). | (3.33) |
Since
∇Le2e2=∇L(¯rL¯pX1+¯rL¯qX2−llL~X3)(¯rL¯pX1+¯rL¯qX2−llL~X3)=[¯qX1(¯rL¯p)−¯pX2(¯rL¯p)+f1¯qL√L−¯rL2¯pq(f2+f3f)+¯rL¯pLf2L−12+(llL)2f1]X1+[¯qX1(¯q)−¯pX2(¯q)+f1¯pL√L+¯rL2¯pq(f2+f3f)+(llL)2f3fX2+[¯pX2(llL)−¯qX1(llL)+¯rL2¯pqf3fL−12+¯rL¯pLf1+¯rL¯qLf3f]~X3. | (3.34) |
Then,
h22=−⟨∇Le2e2,VL⟩L=−¯prlX1(¯rL)−¯qrlX2(¯rL)+~X3(¯rL)−¯pLfF3F−¯qL¯fF3F−¯rLF3FL−12=−l2l2L⟨e2,∇H(rl)⟩L+~X3(¯rL)−¯pLfF3F−¯qL¯fF3F−¯rLF3FL−12. | (3.35) |
The Riemannian mean curvature HL of Σ is defined by
HL:=tr(IIL). |
Let
KΣ,L(e1,e2)=−⟨RΣ,L(e1,e2)e1,e2⟩Σ,L,KL(e1,e2)=−⟨RL(e1,e2)e1,e2⟩L. | (3.36) |
By the Gauss equation, we have
KΣ,L(e1,e2)=KL(e1,e2)+det(IIL). | (3.37) |
Proposition 3.8. Away from characteristic points, the horizontal mean curvature H∞ of Σ⊂G is given by
H∞=limL→+∞HL=X1(¯p)+X2(¯q)−f1¯p−¯qf2−2¯qf3f. | (3.38) |
Proof. By
l2l2L⟨e2,∇H(rl)⟩L=¯prlX1(¯rL)+¯qrlX2(¯rL)=O(L−1) |
llL[X1(¯p)+X2(¯q)]→X1(¯p)+X2(¯q),~X3(¯rL)→0, |
¯q2f2¯rLL−12→O(L−1),¯qL→¯q, |
¯rL¯P2f2L−12→O(L−1),¯pL→¯p, |
we get (3.38).
Define the curvature of a connection ∇ by
R(X,Y)Z=∇X∇YZ−∇Y∇XZ−∇[X,Y]Z. | (3.39) |
Then by Lemma 2.1 and (3.39), we have the following lemma,
Lemma 3.9. Let G be the affine group, then
RL(X1,X2)X1=[3Lf214+(f2+f3f)2]X2+[X1(−f12)−X2(f2L)+f21+f22L+f2f3Lf]X3,RL(X1,X2)X2=[−3Lf214+X2(f2+f3f)−(f2+f3f)2]X1+f1f3fX3,RL(X1,X2)X3=[X1(f1L2)+X2(f2)−f21L−f2(f2+f3f)]X1+[X2(f1Lf)−f1f3Lf]X2,RL(X1,X3)X1=−[X1(f1L2)+X3(f2+f3f)+f2f3f−f21L−f2(f2+f3f)]X2+[−f21L4+f21+f22L−X3(f2L)−X1(f1)+f3f(f2+f3f)]X3,RL(X1,X3)X2=[X1(f1L2)−f21L−f2(f2+f3f)+X3(f2+f3f)+f2f3f]X1+[−X1(f3f)+f1f2+f1f3f−f1(f2+f3f)−X3(f12)]X3,RL(X1,X3)X3=[X1(f1L)−f3Lf(f2+f3f)+X3(f2)+f21L24−f21L−f22]X1+[f1L(f2+f3f)+X1(f3Lf)−f1f2L−f1f3Lf+X3(f1L2)]X2,RL(X2,X3)X1=[−X2(f1L2)+f1f3Lf]X2+[X3(f12)−X2(f1)+f1f3f]X3,RL(X2,X3)X2=[X2(f1L2)−f1f3Lf]X1+[f23f2−f21L4−X2(f3f)]X3,RL(X2,X3)X3=[X2(f1L)−X3(f1L2)−f1f3Lf]X1+[X2(f3Lf)−f23Lf2+f21L24]X2. | (3.40) |
Proposition 3.10. Away from characteristic points, we have
KΣ,L(e1,e2)→A0+O(L−12),asL→+∞, | (3.41) |
where
A0:=−f1⟨e1,∇H(X3u|∇Hu|)⟩−f1f2¯p¯q−¯q2f21−34(X3u)2l2f21+¯p2X2(f3f)−¯p[X1(¯p)+X2(¯q)−¯q(f2+f3f)](f1¯p+¯qf3f)+2¯qX3ulf21+2¯qX3uX1(−f12)−2¯pX3ulf1f3f+¯q2X1(f1)−¯q2(f2+f3f)−2¯q¯pX1(f3f)−2¯q¯pX3(f12)−¯p2f23f2. | (3.42) |
Proof. By (3.2), we have
⟨RL(e1,e2)e1,e2⟩L=¯rL2⟨RL(X1,X2)X1,X2⟩L−2llL¯qL−12¯rL⟨RL(X1,X2)X1,X3⟩L+2llL¯pL−12¯rL⟨RL(X1,X2)X2,X3⟩L+(llL¯q)2L−1⟨RL(X1,X3)X1,X3⟩L−2(llL)2¯p¯qL−1⟨RL(X1,X3)X2,X3⟩L+(¯pllL)2L−1⟨RL(X2,X3)X2,X3⟩L. | (3.43) |
By Lemma 3.9, we have
KL(e1,e2)=14l2l2Lf21L−34Lf21¯rL2+2llL¯qL12¯rLf21−¯q2l2l2Lf21−¯rL2(f2+f3f)2+2llL¯qL12¯rLX1(−f12)−2llL¯qL12¯rLX2(−f2L)+2llL¯qL−12¯rLf22+2llL¯qL−12¯rLf2f3f−2¯pL12¯rLf1f3f−¯q2l2l2Lf22L+¯q2l2l2LX3(f2L)+¯q2l2l2LX1(f1)−¯q2l2l2L(f2+f3f)−2¯qpl2l2LX1(f3f)+2¯qpl2l2Lf1f2+2¯qpl2l2Lf1f3f−2¯qpl2l2Lf1(f2+f3f)−2¯qpl2l2LX3(f12)−¯p2l2l2Lf23f2+¯p2l2l2LX2(f3f). | (3.44) |
By (3.35) and
∇H(¯rL)=L−12∇H(X3u|∇Hu|)+O(L−1)asL→+∞ |
we get
det(IIL)=h11h22−h12h21=−f21L4−f1⟨e1,∇H(X3u|∇Hu|)⟩−f1f2¯p¯q−¯p[X1(¯p)+X2(¯q)−¯q(f2+f3f)](f1¯p+¯qf3f)+O(L−12). | (3.45) |
By (3.38), (3.44), (3.45) we get (3.41).
Let us first consider the case of a regular curve γ:[a,b]→(G,gL). We define the Riemannian length measure
dsL=||˙γ||Ldt. |
Lemma 4.1. Let γ:[a,b]→(G,gL) be a Euclidean C2-smooth and regular curve. Let
ds:=|ω(˙γ(t))|dt,d¯s:=121|ω(˙γ(t))|(˙γ21f2+˙γ23)dt. | (4.1) |
Then
limL→+∞1√L∫γdsL=∫bads. | (4.2) |
When ω(˙γ(t))≠0, we have
1√LdsL=ds+d¯sL−1+O(L−2)asL→+∞. | (4.3) |
When ω(˙γ(t))=0, we have
1√LdsL=1√L√˙γ21f2+˙γ23dt. | (4.4) |
Proof. We know that
||˙γ(t)||L=√(˙γ1f)2+˙γ23+Lω(˙γ(t))2, |
similar to the proof of Lemma 6.1 in [1], we can prove (4.2). When ω(˙γ(t))≠0, we have
1√LdsL=√L−1((˙γ1f)2+˙γ23)+ω(˙γ(t))2dt. |
Using the Taylor expansion, we can prove (4.3). From the definition of dsL and ω(˙γ(t))=0, we get (4.4).
Let Σ⊂(G,gL) be a Euclidean C2-smooth surface and Σ={u=0}. Let dσΣ,L denote the surface measure on Σ with respect to the Riemannian metric gL. Then similai to Proposition 4.2 in [7], we have
limL→+∞1√L∫ΣdσΣ,L=dσΣ:=(¯pω2−¯qω1)∧ω. | (4.5) |
Similar to the proof of Theorem 1.1 in $ [1] $, we have
Theorem 4.2. Let Σ⊂(G,gL) be a regular surface with finitely many boundary components (∂Σ)i, i∈{1,⋯,n}, given by Euclidean C2-smooth regular and closed curves γi:[0,2π]→(∂Σ)i. Let A0 be defined by (3.42) and dσΣ,d¯σΣ be defined by (4.5) and d¯s be defined by (4.1) and k∞,sγi,Σ be the sub-Riemannian signed geodesic curvature of γi relative to Σ. Suppose that the characteristic set C(Σ) satisfies H1(C(Σ))=0 where H1(C(Σ)) denotes the Euclidean 1-dimensional Hausdorff measure of C(Σ) and that ||∇Hu||−1H is locally summable with respect to the Euclidean 2-dimensional Hausdorff measure near the characteristic set C(Σ), then
∫ΣKΣ,∞dσΣ+n∑i=1∫γik∞,sγi,Σds=0. | (4.6) |
Example 4.3. Let f=x21+1, then G=R3. Let u=x21+x22+x23−1 and ∑=S2. ∑ is a regular surface. By (2.1), we get
X1(u)=2(x21+1)x1;X2(u)=2(x21+1)x2+2x3. | (4.7) |
Solve the equations X1(u)=X2(u)=0,
then we get
C(Σ)={(0,√22,−√22),(0,−√22,√22)} |
and H1(C(Σ))=0.
A parametrization of Σ is
x1=cos(ϕ)cos(θ),x2=cos(ϕ)sin(θ),x3=sin(ϕ),forϕ∈(−π2,π2),θ∈[0,2π). | (4.8) |
Then
‖∇Hu‖2H=X1(u)2+X2(u)2=4(x21+1)2x21+4(x21+1)2x22+4x23+8(x21+1)x2x3=4(cos(ϕ)2cos(θ)2+1)2cos(ϕ)2+4sin(ϕ)2+8(cos(ϕ)2cos(θ)2+1)sin(ϕ)cos(ϕ)sin(θ). | (4.9) |
By the definitions of wj for 1≤j≤3 and (4.5), we have
dσΣ=1‖∇Hu‖H[(X1(u))dx3−(x21+1)−1(X2(u))dx1]∧((x21+1)−1dx2−dx3)=−1‖∇Hu‖H2cos(ϕ)λ0dθ∧dϕ. | (4.10) |
where
λ0=cos(ϕ)2+2(cos(ϕ)2cos(θ)2+1)−1cos(ϕ)sin(ϕ)sin(θ)+(cos(ϕ)2cos(θ)2+1)−2sin(ϕ)2 |
is a bouned smooth function on Σ. By (4.9) and (4.10), we have ‖∇Hu‖−1H is locally summable around the isolated characteristic points with respect to the measure dσΣ.
We consider some notation on the generalized BCV spaces. Let f(x2), ¯f(x1), F(x1,x2,x3) be smooth functions. The generalized BCV spaces M is the set
{(x1,x2,x3)∈R3∣F(x1,x2,x3)>0} |
Let
X1=F∂x1+f∂x3,X2=F∂x2+¯f∂x3,X3=∂x3. | (5.1) |
Then
∂x1=1F(X1−fX3),∂x2=1F(X2−¯fX3),∂x3=X3, | (5.2) |
and span{X1,X2,X3}=TM. Let H=span{X1,X2} be the horizontal distribution on M. Let ω1=1Fdx1,ω2=1Fdx2,ω=dx3−(fdx1+¯fdx2)F. Then H=Kerω. The generalized BCV spaces have some well-knowed special case. When F=1+λ4(x21+x22),f=−τx2,¯f=τx1, we get the BCV spaces. When F=1,f=f(x2),¯f=¯f(x1), we can the Heisenberg manifolds. When F=1,f=12x22,¯f=0, we get the Martinet distribution. When F=1x1,f=0,¯f=−2, we get the Welyczko's example (see [5]). For the constant L>0, let gL=ω1⊗ω1+ω2⊗ω2+Lω⊗ω,g=g1 be the Riemannian metric on M. Then X1,X2,~X3:=L−12X3 are orthonormal basis on TM with respect to gL. We have
[X1,X2]=−(F2+¯fF3F)X1+(F1+fF3F)X2+(F2f−F1¯f+F¯f′−Ff′)X3,[X2,X3]=−F3FX2+¯fF3FX3,[X1,X3]=−F3FX1+fF3FX3. | (5.3) |
where Fi=∂F∂xi, for 1≤i≤3, f′=∂f∂x2, ¯f′=∂¯f∂x1. Let ∇L be the Levi-Civita connection on M with respect to gL. Then we have the following lemma
Lemma 5.1. Let M be the generalized BCV spaces, then
∇LX1X1=(F2+F3¯fF)X2+F3LFX3,∇LX1X2=−(F2+F3¯fF)X1+12(fF2−F1¯f+F¯f′−Ff′)X3,∇LX1X3=−F3FX1−L2(fF2−F1¯f+F¯f′−Ff′)X2,∇LX2X1=−(F1+F3fF)X2−12(fF2−F1¯f+F¯f′−Ff′)X3,∇LX2X2=(F1+F3fF)X1+F3FLX3,∇LX2X3=L2(fF2−F1¯f+F¯f′−Ff′)X1−F3FX2,∇LX3X1=−L2(fF2−F1¯f+F¯f′−Ff′)X2−fF3FX3,∇LX3X2=L2(fF2−F1¯f+F¯f′−Ff′)X1−¯fF3FX3,∇LX3X3=LfF3FX1+L¯fF3FX2. | (5.4) |
Proof. By the Koszul formula, we have
2⟨∇LXiXj,Xk⟩L=⟨[Xi,Xj],Xk⟩L−⟨[Xj,Xk],Xi⟩L+⟨[Xk,Xi],Xj⟩L, | (5.5) |
where i,j,k=1,2,3. So lemma 5.1 holds.
Definition 5.2. Let γ:[a,b]→(M,gL) be a Euclidean C1-smooth curve. We say that γ(t) is a horizontal point of γ if
ω(˙γ(t))=−fF˙γ1(t)−¯fF˙γ2(t)+˙γ3(t)=0. |
where γ(t)=(γ1(t),γ2(t),γ3(t)) and ˙γi(t)=∂γi(t)∂t.
Similar to the definition 2.3 and definition 2.5, we can define kLγ and k∞γ for the generalized BCV spaces, we have
Lemma 5.3. Let γ:[a,b]→(M,gL) be a Euclidean C2-smooth regular curve in the Riemannian manifold (M,gL). Then
k∞γ={[−˙γ1F(F2f−F1¯f+F¯f′−Ff′)+F3¯fFω(˙γ(t))]2+[˙γ2F(F2f−F1¯f+F¯f′−Ff′)+F3fFω(˙γ(t))]2}12|ω(˙γ(t))|−1,ifω(˙γ(t))≠0. | (5.6) |
k∞γ={{[F′˙γ1−F¨γ1F2−˙γ1˙γ2F2(F2+F3¯fF)+˙γ22F2(F1+F3fF)]2+[F′˙γ2−F¨γ2F2+˙γ21F2(F2+F3¯fF)−˙γ1˙γ2F2(F1+F3fF)]2}[(˙γ21+˙γ22)F2]−2+{[F′˙γ21−F˙γ1¨γ1F3+F′˙γ22−F˙γ2¨γ2F3]2}[(˙γ21+˙γ22)F2]−3}−12ifω(˙γ(t))=0andddt(ω(˙γ(t)))=0, | (5.7) |
where F′=˙γ(F)=ddtF(γ(t)).
limL→+∞kLγ√L=|ddt(ω(˙γ(t)))|˙γ21F2+˙γ22F2,ifω(˙γ(t))=0andddt(ω(˙γ(t)))≠0. | (5.8) |
Proof. By (5.2), we have
˙γ(t)=˙γ1FX1+˙γ2FX2+ω(˙γ(t))X3. | (5.9) |
By Lemma 5.1 and (5.8), we have
∇L˙γX1=[˙γ1F(F2+F3¯fF)−˙γ2F(F1+F3fF)−L2(F2f−F1¯f+F¯f′−Ff′)ω(˙γ(t))]X2+[F3˙γ1LF2−˙γ22F(F2f−F1¯f+F¯f′−Ff′)−F3fF(ω(˙γ(t))]X3,∇L˙γX2=[−˙γ1F+(F2+F3¯fF)+˙γ2F(F1+F3fF)+L2(F2f−F1¯f+F¯f′−Ff′)ω(˙γ(t))]X1+[F3˙γ2LF2+˙γ12F(F2f−F1¯f+F¯f′−Ff′)−F3¯fF(ω(˙γ(t))]X3,∇L˙γX3=[−˙γ1F3F2+˙γ2L2F(F2f−F1¯f+F¯f′−Ff′)+LF3fFω(˙γ(t))]X1+[−˙γ1L2F(F2f−F1¯f+F¯f′−Ff′)−˙γ2F3F2+LF3¯fFω(˙γ(t))]X2. | (5.10) |
By (5.8) and (5.9), we have
∇L˙γ˙γ={F′˙γ1−F¨γ1F2−˙γ1˙γ2F2(F2+F3¯fF)+˙γ22F2(F1+F3fF)+[−F3˙γ1F2+˙γ2LF(F2f−F1¯f+F¯f′−Ff′)+fLF3Fω(˙γ(t))]ω(˙γ(t))}X1+{F′˙γ2−F¨γ2F2+˙γ21F2(F2+F3¯fF)−˙γ1˙γ2F2(F2+F3fF)+[−F3˙γ2F2−˙γ1LF(F2f−F1¯f+F¯f′−Ff′)+¯fLF3Fω(˙γ(t))]ω(˙γ(t))}X2+{(˙γ22+˙γ21)F3F3L−(F3f˙γ1+F3¯f˙γ2)F2ω(˙γ(t))+ddtω(˙γ(t))}X3. | (5.11) |
By (5.8) and (5.10), when ω(˙γ(t))≠0, we have
||∇L˙γ˙γ||2L∼{[˙γ2F(F2f−F1¯f+F¯f′−Ff′)+F3fFω(˙γ(t))]2+[−˙γ1F(F2f−F1¯f+F¯f′−Ff′)+F3¯fFω(˙γ(t))]2}ω(˙γ(t))2L2,asL→+∞,||˙γ||2L∼Lω(˙γ(t))2,asL→+∞,⟨∇L˙γ˙γ,˙γ⟩2L∼O(L2)asL→+∞. | (5.12) |
Therefore
||∇L˙γ˙γ||2L∼[˙γ2F(F2f−F1¯f+F¯f′−Ff′)+F3fFω(˙γ(t))]2ω(˙γ(t))2+[−˙γ1F(F2f−F1¯f+F¯f′−Ff′)+F3¯fFω(˙γ(t))]2ω(˙γ(t))2,asL→+∞, | (5.13) |
⟨∇L˙γ˙γ,˙γ⟩2L||˙γ||6L→0,asL→+∞. |
So by (2.6), we have (5.5). (5.6) comes from (5.8), (5.10), (2.6) and ω(˙γ(t))=0 and ddt(ω(˙γ(t)))=0. When ω(˙γ(t))=0 and ddt(ω(˙γ(t)))≠0, we have
||∇L˙γ˙γ||2L∼L[ddt(ω(˙γ(t)))]2,asL→+∞, |
||˙γ||2L=[˙γ21F2+˙γ22F2]2, |
⟨∇L˙γ˙γ,˙γ⟩2L=O(1)asL→+∞. |
By (2.6), we get (5.7).
We will consider a regular surface Σ1⊂(M,gL) and regular curve γ⊂Σ1. We will assume that there exists a Euclidean C2-smooth function u:M→R such that
Σ1={(x1,x2,x3)∈M:u(x1,x2,x3)=0}. |
Similar to Section 3, we define p,q,r,l,lL,¯p,¯q,¯pL,¯qL,¯rL,vL,e1,e2,JL,kLγ,Σ1,k∞γ,Σ1,kL,sγ,Σ1,k∞,sγ,Σ1. By (3.4) and (5.10), we have
∇Σ1,L˙γ˙γ={¯q[F′˙γ1−F¨γ1F2−˙γ1˙γ2F2(F2+F3¯fF)+˙γ22F2(F1+F3fF)]+¯q[−F3˙γ1F2+˙γ2LF(F2f−F1¯f+F¯f′−Ff′)+fLF3Fω(˙γ(t))]ω(˙γ(t))−¯p[F′˙γ2−F¨γ2F2+˙γ21F2(F2+F3¯fF)−˙γ1˙γ2F2(F2+F3fF)]+¯p[−F3˙γ2F2−˙γ1LF(F2f−F1¯f+F¯f′−Ff′)+¯fLF3Fω(˙γ(t))]ω(˙γ(t))}e1+{¯rL¯p[F′˙γ1−F¨γ1F2−˙γ1˙γ2F2(F2+F3¯fF)+˙γ22F2(F1+F3fF)]+¯rL¯p[−F3˙γ1F2+˙γ2LF(F2f−F1¯f+F¯f′−Ff′)+fLF3Fω(˙γ(t))]ω(˙γ(t))+¯rL¯q[F′˙γ2−F¨γ2F2+˙γ21F2(F2+F3¯fF)−˙γ1˙γ2F2(F2+F3fF)]+¯rL¯q[−F3˙γ2F2−˙γ1LF(F2f−F1¯f+F¯f′−Ff′)+¯fLF3Fω(˙γ(t))]ω(˙γ(t))−llLL12[(˙γ22+˙γ21)F3F3L−(f˙γ1+¯f˙γ2)F3F2ω(˙γ(t))+ddt(ω(˙γ(t)))]}e2=B1e1+B2e2. | (6.1) |
By (5.8) and ˙γ(t)∈TΣ1, we have
˙γ(t)=[¯q˙γ1F−¯p˙γ2F]e1−lLlL12ω(˙γ(t))e2. | (6.2) |
We have
Lemma 6.1. Let Σ1⊂(M,gL) be a regular surface. Let γ:[a,b]→Σ1 be a Euclidean C2-smooth regular curve. Then
k∞γ,Σ1={[q˙γ2(F2f−F1¯f+F¯f′−Ff′)+F3f¯qω(˙γ(t))]+[¯P˙γ1(F2f−F1¯f+F¯f′−Ff′)−F3f¯Pω(˙γ(t))]}|Fω(˙γ(t))|−1,ifω(˙γ(t))≠0, | (6.3) |
k∞γ,Σ1=0,ifω(˙γ(t))=0,andddt(ω(˙γ(t)))=0, |
limL→+∞kLγ,Σ1√L=|ddt(ω(˙γ(t)))|[¯q˙γ1F−¯P˙γ2F]2,ifω(˙γ(t))=0andddt(ω(˙γ(t)))≠0. | (6.4) |
Proof. By (6.1), we have
||∇Σ1,L˙γ˙γ||2L,Σ1=B21+B22∼L2ω(˙γ(t))2{[¯q˙γ2F(F2f−F1¯f+F¯f′−Ff′)+F3f¯qFω(˙γ(t))]+[¯P˙γ1F(F2f−F1¯f+F¯f′−Ff′)−F3¯f¯PFω(˙γ(t))]}2,asL→+∞. | (6.5) |
By (6.2), we have that when ω(˙γ(t))≠0,
||˙γ||Σ1,L∼L12|ω(˙γ(t))|,asL→+∞. | (6.6) |
By (6.1) and (6.2), we have
⟨∇Σ1,L˙γ˙γ,˙γ⟩Σ1,L∼M0L, | (6.7) |
where M0 does not depend on L.
By (3.7), (6.5)–(6.7), we get (6.3). When ω(˙γ(t))=0 and ddt(ω(˙γ(t)))=0, we have
||∇Σ1,L˙γ˙γ||2L,Σ1∼C0:={¯q[F′˙γ1−F¨γ1F2−˙γ1˙γ2F2(F2+F3¯fF)+˙γ22F2(F1+F3fF)]−¯p[F′˙γ2−F¨γ2F2+˙γ21F2(F2+F3¯fF)−˙γ1˙γ2F2(F2+F3fF)]}2,asL→+∞. | (6.8) |
and
||˙γ||2Σ1,L=[¯q˙γ1F−¯P˙γ2F]2, | (6.9) |
⟨∇Σ1,L˙γ˙γ,˙γ⟩Σ1,L=[¯q˙γ1F−¯P˙γ2F]C0. | (6.10) |
By (6.8)–(6.10) and (3.7), we get k∞γ,Σ1=0. When ω(˙γ(t))=0 and ddt(ω(˙γ(t)))≠0, we have
||∇Σ1,L˙γ˙γ||2L,Σ1∼L[ddt(ω(˙γ(t)))]2, |
⟨∇Σ1,L˙γ˙γ,˙γ⟩Σ1,L=O(1), |
so we get (6.4).
Lemma 6.2. Let Σ1⊂(M,gL) be a regular surface. Let γ:[a,b]→Σ1 be a Euclidean C2-smooth regular curve. Then
k∞,sγ,Σ1={[q˙γ2(F2f−F1¯f+F¯f′−Ff′)+F3f¯qω(˙γ(t))]+[¯P˙γ1(F2f−F1¯f+F¯f′−Ff′)−F3f¯Pω(˙γ(t))]}|Fω(˙γ(t))|−1,ifω(˙γ(t))≠0, | (6.11) |
k∞,sγ,Σ1=0,ifω(˙γ(t))=0,andddt(ω(˙γ(t)))=0, |
limL→+∞kL,sγ,Σ1√L=|ddt(ω(˙γ(t)))|[¯q˙γ1F−¯P˙γ2F]2,ifω(˙γ(t))=0andddt(ω(˙γ(t)))≠0. | (6.12) |
Proof. By (3.3) and (6.2), we have
JL(˙γ)=lLlL12ω(˙γ(t))e1+[¯q˙γ1F−¯p˙γ2F]e2. | (6.13) |
By (6.1) and (6.13), we have
⟨∇Σ1,L˙γ˙γ,JL(˙γ)⟩L,Σ1=lLLL12ω(˙γ(t)){¯q[F′˙γ1−F¨γ1F2−˙γ1˙γ2F2(F2+F3¯fF)+˙γ22F2(F1+F3fF)]+¯q[−F3˙γ1F2+˙γ2LF(F2f−F1¯f+F¯f′−Ff′)+fLF3Fω(˙γ(t))]ω(˙γ(t))−¯p[F′˙γ2−F¨γ2F2+˙γ21F2(F2+F3¯fF)−˙γ1˙γ2F2(F2+F3fF)]+¯p[−F3˙γ2F2−˙γ1LF(F2f−F1¯f+F¯f′−Ff′)+¯fLF3Fω(˙γ(t))]ω(˙γ(t))}+[¯q˙γ1F−¯p˙γ2F]{¯rL¯p[F′˙γ1−F¨γ1F2−˙γ1˙γ2F2(F2+F3¯fF)+˙γ22F2(F1+F3fF)]+¯rL¯p[−F3˙γ1F2+˙γ2LF(F2f−F1¯f+F¯f′−Ff′)+fLF3Fω(˙γ(t))]ω(˙γ(t))+¯rL¯q[F′˙γ2−F¨γ2F2+˙γ21F2(F2+F3¯fF)−˙γ1˙γ2F2(F2+F3fF)]+¯rL¯q[−F3˙γ2F2−˙γ1LF(F2f−F1¯f+F¯f′−Ff′)+¯fLF3Fω(˙γ(t))]ω(˙γ(t))−llLL12[(˙γ22+˙γ21)F3F3L−(f˙γ1+¯f˙γ2)F3F2ω(˙γ(t))+ddt(ω(˙γ(t)))]} | (6.14) |
So by (3.17), (6.6) and (6.14), we get (6.11). When \omega(\dot{\gamma}(t)) = 0 and \frac{d}{dt}(\omega(\dot{\gamma}(t))) = 0, we get
\begin{align} \langle \nabla^{\Sigma_1, L}_{\dot{\gamma}}\dot{\gamma}, J_L(\dot{\gamma})\rangle_{L, \Sigma_1} \sim M_0L^{-\frac{1}{2}}\; \; {\rm as}\; \; L\rightarrow +\infty. \end{align} | (6.15) |
So k^{\infty, s}_{\gamma, \Sigma_1} = 0. When \omega(\dot{\gamma}(t)) = 0 and \frac{d}{dt}(\omega(\dot{\gamma}(t)))\neq 0, we have
\begin{align} \langle \nabla^{\Sigma_1, L}_{\dot{\gamma}}\dot{\gamma}, J_L(\dot{\gamma})\rangle_{L, \Sigma_1}\sim L^{\frac{1}{2}}\left[\frac{\overline{P}\dot{\gamma}_2}{F}-\frac{\overline{q}\dot{\gamma}_1}{F}\right] \frac{d}{dt}(\omega(\dot{\gamma}(t))), \; \; {\rm as}\; \; L\rightarrow +\infty. \end{align} | (6.16) |
So we get (6.12).
In the following, we compute the sub-Riemannian limit of the Riemannian Gaussian curvature of surfaces in the generalized BCV spaces. Similarly to Theorem 4.3 in [3], we have
Theorem 6.3. The second fundamental form II^L_1 of the embedding of \Sigma_1 into (M, g_L) is given by
\begin{equation} II^L_1 = \left( \begin{array}{cc} h_{11}, & h_{12}\\ h_{21}, & h_{22}\\ \end{array} \right), \end{equation} | (6.17) |
where
h_{11} = \frac{l}{l_L}[X_1(\overline{p})+X_2(\overline{q})]-\overline{q_L}\left(F_2+\frac{F_3\overline{f}}{F}\right)-\overline{p}_L\left(F_1+\frac{F_3f}{F}\right)+\overline{r_L}L^{-\frac{1}{2}}\frac{F_3}{F}, |
h_{12} = h_{21} = -\frac{l_L}{l}\langle e_1, \nabla_H(\overline{r_L})\rangle_L-\frac{1}{2}L^\frac{1}{2}(fF_2-F_1\overline{f}+\overline{f}'F-Ff'), |
h_{22} = -\frac{l^2}{l_L^2}\langle e_2, \nabla_H(\frac{r}{l})\rangle_L+\widetilde{X_3}(\overline{r_L})-\overline{p_L}\frac{fF_3}{F}-\overline{q_L}\frac{\overline{f}F_3}{F}-\overline{r_L}\frac{F_3}{F}L^{-\frac{1}{2}} . |
Proof. By lemma 5.1 and (3.2),
\begin{align} \nabla^L_{e_1}e_1& = \nabla^L_{(\overline{q}X_1-\overline{p}X_2)}(\overline{q}X_1-\overline{p}X_2)\\ & = [\overline{q}X_1(\overline{q})-\overline{p}X_2(\overline{p})+\overline{p}\overline{q}(F_2+\frac{F_3\overline{f}}{F})+\overline{p}^2(F_1+\frac{F_3f}{F})]X_1\\ &-[\overline{q}X_1(\overline{p})-\overline{p}X_2(\overline{p})-\overline{q}^2(F_2+\frac{F_3\overline{f}}{F})-\overline{p}\overline{q}(F_2+\frac{F_3f}{F})]X_2+\frac{F_3}{F}L^{-\frac{1}{2}}\widetilde{X_3}.\\ \end{align} | (6.18) |
Then
\begin{align} h_{11}& = -\langle\nabla^L_{e_1}e_1, V_L\rangle_L\\ & = -\overline{p_L}[\overline{q}X_1(\overline{q})-\overline{p}X_2(\overline{p})]+\overline{q_L}[\overline{q}X_1(\overline{p})-\overline{p}X_2(\overline{p})]\\ &-\overline{q_L}\left(F_2+\frac{F_3\overline{f}}{F}\right)-\overline{p_L}\left(F_1+\frac{F_3f}{F}\right)+\overline{r_L}L^{-\frac{1}{2}}\frac{F_3}{F}\\ & = \frac{l}{l_L}[X_1(\overline{p})+X_2(\overline{q})]-\overline{q_L}\left(F_2+\frac{F_3\overline{f}}{F}\right)-\overline{p_L}\left(F_1+\frac{F_3f}{F}\right)+\overline{r_L}L^{-\frac{1}{2}}\frac{F_3}{F}.\\ \end{align} | (6.19) |
Similarly,
\begin{align} \nabla^L_{e_1}e_2& = \nabla^L_{(\overline{q}X_1-\overline{p}X_2)}(\overline{r_L}\overline{p}X_1+\overline{r_L}\overline{q}X_2-\frac{l}{l_L}\widetilde{X_3})\\ & = [\overline{q}X_1(\overline{r_L}\overline{p})-\overline{p}X_2(\overline{r_L}\overline{p})+\frac{(fF_2-F_1\overline{f}+F\overline{f'}-Ff')\overline{p_L}\sqrt{L}}{2}\\ &-\overline{r_L}\overline{pq}(F_1+\frac{F_3f}{F})-\overline{r_L}\overline{q}^2(F_2+\frac{F_3\overline{f}}{F})+\overline{q_L}\frac{F_3}{F}L^{-\frac{1}{2}}]X_1\\ &+[\overline{q}X_1(\overline{q})-\overline{p}X_2(\overline{q})+\frac{(fF_2-F_1\overline{f}+F\overline{f'}-Ff')\overline{q_L}\sqrt{L}}{2}\\ &-\overline{r_L}\overline{pq}(F_2+\frac{F_3\overline{f}}{F})+\overline{r_L}\overline{p}^2(F_1+\frac{F_3f}{F})+\overline{p_L}\frac{F_3}{F}L^{-\frac{1}{2}}]X_2\\ &+[\overline{p}X_2(\frac{l}{l_L})-\overline{q}X_1(\frac{l}{l_L})+\frac{(fF_2-F_1\overline{f}+F\overline{f'}-Ff')\overline{r_L}\sqrt{L}}{2}]\widetilde{X_3}.\\ \end{align} | (6.20) |
Then
\begin{align} h_{12}& = -\langle\nabla^L_{e_1}e_2, V_L\rangle_L\\ & = -\frac{l}{l_L}[\overline{q}X_1(\overline{r_L})-\overline{p}X_2(\overline{r_L})]+\overline{r_L}[\overline{q}X_1(\frac{l}{l_L})-\overline{p}X_2(\frac{l}{l_L})]-\frac{1}{2}L^\frac{1}{2}(fF_2-F_1\overline{f}+\overline{f}'F-Ff')\\ & = -\frac{l_L}{l}\langle e_1, \nabla_H(\overline{r_L})\rangle_L-\frac{1}{2}L^\frac{1}{2}(fF_2-F_1\overline{f}+\overline{f}'F-Ff').\\ \end{align} | (6.21) |
Since
\begin{align} \langle\nabla^L_{e_2}V_L, e_1\rangle_L& = -\langle\nabla^L_{e_2}e_1, V_L\rangle_L = -\langle\nabla^L_{e_1}e_2+[e_2, e_1], V_L\rangle_L\\ & = -\langle\nabla^L_{e_1}e_2, V_L\rangle = \langle\nabla^L_{e_1}V_L, e_2\rangle_L.\\ \end{align} | (6.22) |
Then,
\begin{align} h_{21} = h_{12} = -\frac{l_L}{l}\langle e_1, \nabla_H(\overline{r_L})\rangle_L-\frac{1}{2}L^\frac{1}{2}(fF_2-F_1\overline{f}+\overline{f}'F-Ff').\\ \end{align} | (6.23) |
Since
\nabla^L_{e_2}e_2 = \nabla^L_{(\overline{r_L}\overline{p}X_1+\overline{r_L}\overline{q}X_2-\frac{l}{l_L}\widetilde{X_3})}(\overline{r_L}\overline{p}X_1+\overline{r_L}\overline{q}X_2-\frac{l}{l_L}\widetilde{X_3})\\ = [\overline{q}X_1(\overline{r_L}\overline{p})-\overline{p}X_2(\overline{r_L}\overline{p})+(fF_2-F_1\overline{f}+\overline{f}'F-Ff')\overline{q_L}\sqrt{L}-\overline{r_L}^2\overline{pq}(F_2+\frac{F_3\overline{f}}{F})\\ +\overline{r_L}\overline{p_L}\frac{F_3}{F}L^{-\frac{1}{2}}+\overline{r_L}^2\overline{q}^2(F_1+\frac{F_3f}{F})+(\frac{l}{l_L})^2\frac{F_3f}{F}]X_1\\ +[\overline{q}X_1(\overline{q})-\overline{p}X_2(\overline{q})+(fF_2-F_1\overline{f}+\overline{f}'F-Ff')\overline{p_L}\sqrt{L}+\overline{r_L}^2\overline{pq}(F_2+\frac{F_3\overline{f}}{F})\\ -\overline{r_L}\overline{q_L}\frac{F_3}{F}L^{-\frac{1}{2}}-\overline{r_L}^2\overline{pq}(F_1+\frac{F_3f}{F})+(\frac{l}{l_L})^2\frac{F_3\overline{f}}{F}X_2\\ +[\overline{p}X_2(\frac{l}{l_L})-\overline{q}X_1(\frac{l}{l_L})+\overline{r_L}^2\overline{pq}\frac{F_3f}{F}L^{-\frac{1}{2}}+\overline{r_L}^2\overline{q}^2\frac{F_3}{F}L^{-\frac{1}{2}}+\overline{r_L}\overline{p_L}\frac{fF_3}{F}+\overline{r_L}\overline{q_L}\frac{\overline{f}F_3}{F}]\widetilde{X_3}. | (6.24) |
Then,
\begin{align} h_{22}& = -\langle\nabla^L_{e_2}e_2, V_L\rangle_L\\ & = -\overline{p}\frac{r}{l}X_1(\overline{r_L})-\overline{q}\frac{r}{l}X_2(\overline{r_L})+\widetilde{X_3}(\overline{r_L})-\overline{p_L}\frac{fF_3}{F}-\overline{q_L}\frac{\overline{f}F_3}{F}-\overline{r_L}\frac{F_3}{F}L^{-\frac{1}{2}}\\ & = -\frac{l^2}{l_L^2}\langle e_2, \nabla_H(\frac{r}{l})\rangle_L+\widetilde{X_3}(\overline{r_L})-\overline{p_L}\frac{fF_3}{F}-\overline{q_L}\frac{\overline{f}F_3}{F}-\overline{r_L}\frac{F_3}{F}L^{-\frac{1}{2}} .\\ \end{align} | (6.25) |
Similar to Proposition 3.8, we have
Proposition 6.4. Away from characteristic points, the horizontal mean curvature \mathcal{H}_{\infty}^1 of \Sigma_1\subset M is given by
\begin{align} \mathcal{H}_{\infty}^1& = -\left(\overline{p}\frac{fF_3}{F}+\overline{q}\frac{\overline{f}F_3}{F}\right)+X_1(\overline{p})+X_2(\overline{q})-\overline{q}\left(F_2+\frac{F_3\overline{f}}{F}\right)-\overline{p}\left(F_1+\frac{F_3f}{F}\right). \end{align} | (6.26) |
By Lemma 5.1, we have
Lemma 6.5. Let M be the the generalized BCV spaces, then
\begin{align} &R^L(X_1, X_2)X_1 = \left[-X_1(A)-X_2(B)+\frac{3L}{4}C^2+\frac{F^3}{LF^2}+A^2+B^2\right]X_2\\ &+\left[-\frac{1}{2}X_1(C)-X_2\left(\frac{F_3}{LF}\right)+\frac{F_3fC}{F}\right]X_3, \\ &R^L(X_1, X_2)X_2 = \left[X_1(A)+X_2(B)-\frac{3L}{4}C^2-\frac{F_3^2}{LF^2}-A^2-B^2\right]X_1\\ &+\left[-\frac{1}{2}X_2(C)+X_1\left(\frac{F_3}{LF}\right)+\frac{F_3\overline{f}C}{F}\right]X_3, \\ &R^L(X_1, X_2)X_3 = \left[\frac{1}{2}X_2(LC)+X_2\left(\frac{F_3}{F}\right)-\frac{F_3fCL}{F}\right]X_1\\ &+\left[\frac{1}{2}X_2(LC)-X_1\left(\frac{F_3}{F}\right)-\frac{F_3\overline{f}CL}{F}\right]X_2, \\ &R^L(X_1, X_3)X_1 = \left[-X_1(\frac{LC}{2})-X_3(B)+\frac{BF_3}{F}-\frac{F_3^2f^2}{F^2}\right]X_2\\ &+\left[-\frac{LC^2}{4}-X_1(\frac{F_3f}{F})-X_3\left(\frac{F_3}{LF}\right)+\frac{F_3\overline{f}B}{F}+\frac{F_3^2}{LF^2}+\frac{F^3f^2}{F^2}\right]X_3, \\ &R^L(X_1, X_3)X_2 = \left[X_1(\frac{LC}{2})+X_3(B)-\frac{CF_3fL}{F}+\frac{F^3\overline{f}^2}{F^2}+\frac{BF_3}{F}\right]X_1\\ &+\left[-X_1(\frac{F_3\overline{f}}{F})-\frac{1}{2}X_3(C)+\frac{F_3C}{F}-\frac{fF_3B}{F}+\frac{F^3f\overline{f}}{F^2}\right]X_3, \\ &R^L(X_1, X_3)X_3 = \left[X_1\left(\frac{LF_3f}{F}\right)+X_3\left(\frac{F_3}{F}\right)-\frac{F_3\overline{f}L}{F}B+\frac{L^2C^2}{4}-\frac{F_3^2}{F^2}-\frac{LF_3^2f^2}{F^2}\right]X_1\\ &+\left[X_1\left(\frac{LF_3\overline{f}}{F}\right)-\frac{LCF_3}{F}+X_3\left(\frac{LC}{2}\right)+\frac{F_3fL}{F}B-\frac{LF_3^2f\overline{f}}{F^2}\right]X_2, \\ &R^L(X_2, X_3)X_1 = \left[-X_2\left(\frac{LC}{2}\right)+X_3(A)+\frac{F_3\overline{f}LC}{F}+\frac{fF_3^2}{F^2}-\frac{AF_3}{F}\right]X_2\\ &+\left[-X_2\left(\frac{fF_3}{F}\right)-\frac{CF_3}{F}+X_3\left(\frac{C}{2}\right)-\frac{F_3\overline{f}A}{F}+\frac{F_3^2f\overline{f}}{F^2}\right]X_3, \\ &R^L(X_2, X_3)X_2 = \left[X_2\left(\frac{LC}{2}\right)-X_3(A)-\frac{F_3\overline{f}LC}{F}-\frac{fF_3^2}{F^2}+\frac{AF_3}{F}\right]X_1\\ &+\left[-X_2\left(\frac{\overline{f}F_3}{F}\right)+\frac{AfF_3}{F}-X_3\left(\frac{F_3}{FL}\right)-\frac{LC^2}{4}+\frac{F_3^2}{F^2L}+\frac{F_3^2\overline{f}^2}{F^2}\right]X_3, \\ &R^L(X_2, X_3)X_3 = \left[X_2\left(\frac{LF_3f}{2}\right)-X_3(\frac{LC}{2})+\frac{AF_3\overline{f}L}{F}-\frac{Lf\overline{f}F_3^2}{F^2}+\frac{LCF_3}{F}\right]X_2\\ &+\left[X_2\left(\frac{LF_3\overline{f}}{2}\right)+X_3(\frac{F_3}{F})-\frac{AF_3fL}{F}+\frac{L^2C^2}{4}+\frac{LF_3^2\overline{f}^2}{F^2}-\frac{F_3^2}{F^2}\right]X_3. \end{align} | (6.27) |
where
\left(F_1+\frac{F_3f}{F}\right) = A, \left(F_2+\frac{F_3\overline{f}}{F}\right) = B, (F_2f-F_1\overline{f}+F\overline{f}'-Ff') = C. |
Proposition 6.6. Away from characteristic points, we have
\begin{equation} \mathcal{K}^{\Sigma_1, \infty}(e_1, e_2) = -C\langle e_1, \nabla_H(\frac{X_3u}{|\nabla_Hu|})\rangle+\overline{N}+O(L^{-\frac{1}{2}}). \end{equation} | (6.28) |
where \overline{N} = N_0+N ,
N = -\left(\overline{p}\frac{fF_3}{F}+\overline{q}\frac{\overline{f}F_3}{F}\right)\left[X_1(\overline{p})+X_2(\overline{q})-\overline{q}\left(F_2+\frac{F_3\overline{f}}{F}\right)-\overline{p}\left(F_1+\frac{F_3f}{F}\right)\right], |
\begin{align*} N_0& = 2\overline{q}\left[-\frac{1}{2}X_1(C)+\frac{F_3Cf}{F}\right]-2\overline{p}\left[X_1(-\frac{1}{2}X_2(C)+\frac{F_3C\overline{f}}{F}\right]+\overline{p}^2\left[X_2(\frac{F_3\overline{f}}{F})-\frac{F_3Af}{F}-\frac{F_3^2\overline{f}^2}{F^2}\right]\\ &-2\overline{p}\overline{q}\left[X_1(\frac{F_3\overline{f}}{F})-\frac{1}{2}X_3(C)+\frac{F_3Bf}{F}-\frac{F_3C}{F}\right]+\overline{q}^2\left[X_1(\frac{F_3f}{F})-\frac{F_3B\overline{f}}{F}-\frac{F_3^2\overline{f}^2}{F^2}\right]. \end{align*} |
Proof. By (3.43) and Lemma 6.5, we have
\begin{align} \mathcal{K}^{M, L}(e_1, e_2) = &\overline{r_L}^2\left[X_1(A)+X_2(B)-\frac{3LC^2}{4}-\frac{F_3^2}{F^2L}-A^2-B^2\right]\\ &+2\frac{l}{l_L}\overline{q}\overline{r_L}L^\frac{1}{2}\left[-\frac{1}{2}X_1(C)-X_2(\frac{F_3}{FL})+\frac{F_3Cf}{F}\right]\\ &-2\frac{l}{l_L}\overline{p}\overline{r_L}L^\frac{1}{2}\left[X_1(\frac{F_3}{FL})-\frac{1}{2}X_2(C)+\frac{F_3C\overline{f}}{F}\right]\\ &-2\frac{l^2}{l_L^2}\overline{p}\overline{q}\left[X_1(\frac{F_3\overline{f}}{F})-\frac{1}{2}X_3(C)+\frac{F_3Bf}{F}-\frac{F_3C}{F}\right]\\ &+\frac{l^2}{l_L^2}\overline{q}^2\left[\frac{LC^2}{4}+X_1(\frac{F_3f}{F})-\frac{F_3B\overline{f}}{F}+X_3(\frac{F_3}{FL})-\frac{F_3^2}{F^2L}-\frac{F_3^2\overline{f}^2}{F^2}\right]\\ &+\frac{l^2}{l_L^2}\overline{p}^2\left[\frac{LC^2}{4}+X_2(\frac{F_3\overline{f}}{F})-\frac{F_3Af}{F}+X_3(\frac{F_3}{FL})-\frac{F_3^2}{F^2L}-\frac{F_3^2\overline{f}^2}{F^2}\right]\\ &\sim \frac{LC^2}{4}+N_0, \; \; \; \; {\rm as} \; \; \; \; L\rightarrow +\infty. \end{align} | (6.29) |
Similar to (3.45), we have
\begin{align} {\rm det}(II^L_1)& = h_{11}h_{22}-h_{12}h_{21}\\ & = -\frac{LC^2}{4}-C\langle e_1, \nabla_H(\frac{X_3u}{|\nabla_Hu|})\rangle+N +O(L^{-\frac{1}{2}})\; \; {\rm as}\; \; L\rightarrow +\infty. \end{align} | (6.30) |
By (6.21) and (6.22), we have (6.20).
Similar to (4.2) and (4.5), for the generalized BCV spaces, we have
\begin{equation} {\rm lim}_{L\rightarrow +\infty}\frac{1}{\sqrt{L}}ds_L = ds, \; \; \; \; {\rm lim}_{L\rightarrow +\infty}\frac{1}{\sqrt{L}}d\sigma_{\Sigma_1, L} = d\sigma_{\Sigma_1}. \end{equation} | (6.31) |
By (6.20), (6.23) and Lemma 6.2, similar to the proof of Theorem 1 in [1], we have
Theorem 6.7. Let \Sigma_1\subset (M, g_L) be a regular surface with finitely many boundary components (\partial\Sigma_1)_i, i\in\{1, \cdots, n\} , given by Euclidean C^2 -smooth regular and closed curves \gamma_i:[0, 2\pi]\rightarrow (\partial\Sigma_1)_i . Suppose that the characteristic set C(\Sigma_1) satisfies \mathcal{H}^1(C(\Sigma_1)) = 0 and that ||\nabla_Hu||_H^{-1} is locally summable with respect to the Euclidean 2 -dimensional Hausdorff measure near the characteristic set C(\Sigma_1) , then
\begin{equation} \int_{\Sigma_1}\mathcal{K}^{\Sigma_1, \infty}d\sigma_{\Sigma_1}+\sum\limits_{i = 1}^n\int_{\gamma_i}k^{\infty, s}_{\gamma_i, \Sigma_1}d{s} = 0. \end{equation} | (6.32) |
Example 6.8. Let F = 1, f = -x_2^2, \overline{f} = x_1^2. Consider M = \{(x_1, x_2, x_3)\in \mathbb{R}^3\mid F > 0\} = \mathbb{R}^3 , let u = x_1^2+x_2^2+x_3^2-1 and \sum_1 = S^2 . \sum_1 is a regular surface. By (4.1) , we get
\begin{equation} X_1(u) = 2x_1-2x_2^2x_3;\; \; \; X_2(u) = 2x_2+2x_1^2x_3. \end{equation} | (6.33) |
Solve the equations X_1(u) = X_2(u) = 0 , then we get C(\Sigma) = \{(0, 0, 1), (0, 0, -1)\} and \mathcal{H}^1(C(\Sigma_1)) = 0 . A parametrization of \Sigma is
\begin{align} &x_1 = cos(\phi)cos(\theta), \; \; x_2 = cos(\phi)sin(\theta), \\ &x_3 = sin(\phi), \; \; for \; \; \phi\in (-\frac{\pi}{2}, \; \; \frac{\pi}{2}), \; \; \theta \in[0, 2\pi). \end{align} | (6.34) |
Then
\begin{align} \|\nabla_Hu\|_H^2& = X_1(u)^2+X_2(u)^2 = 4(x_1^2+x_2^2)+4(x_1^4+x_2^4)x_3^2\\ & = 4cos(\phi)^2+4sin(\phi)^2cos(\phi)^4(cos(\theta)^4+sin(\theta)^4). \end{align} | (6.35) |
By the definitions of w_j for 1\leq j\leq3 and (6.23) , we have
\begin{align} d\sigma_{\Sigma_1}& = \frac{1}{\|\nabla_Hu\|_H}[(X_1(u))dx_2-(X_2(u))dx_1]\wedge(dx_3+x_2^2dx_1-x_1^2dx_2)\\ & = \frac{1}{\|\nabla_Hu\|_H}[2cos(\phi)^3+2sin(\phi)^2cos(\phi)^5(cos(\theta)^4+sin(\theta)^4)\\ &-4cos(\phi)^4sin(\theta)^2sin(\phi)cos(\theta)+4cos(\phi)^4sin(\theta)sin(\phi)cos(\theta)^2]d\theta\wedge d\phi. \end{align} | (6.36) |
By (6.27) and (6.28) , we have \|\nabla_Hu\|_H^{-1} is locally summable around the isolated characteristic points with respect to the measure d\sigma_{\Sigma_1}.
Firstly, We give some basic definitions of two kinds of spaces, such as 2.3, 2.4 and 2.5. By computation, we get sub-Riemannian limits of Gaussian curvature for a Euclidean C^2 -smooth surface in the generalized affine group and the generalized BCV spaces away from characteristic points and signed geodesic curvature for Euclidean C^2 -smooth curves on surfaces, respectively. Then, by the second fundamental form II^L and the Gauss equation \mathcal{K}^{\Sigma, L}(e_1, e_2) = \mathcal{K}^{L}(e_1, e_2)+{\rm det}(II^L) , we find the gauss curvature on the surface is convergent in two cases. Therefore, a good result is obtained. Finally, we give the proof of Gauss-Bonnet theorems in the generalized affine group and the generalized BCV spaces.
The second author was supported in part by NSFC No.11771070. The authors are deeply grateful to the referees for their valuable comments and helpful suggestions.
The authors declare no conflict of interest.
[1] | World Health Organization, Cancer, 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer |
[2] |
A. Desai, T. Mohammed, N. Duma, M. Garassino, L. Hicks, N. Kuderer, et al., COVID-19 and cancer: A review of the registry-based pandemic response, JAMA Oncol., 7 (2021), 1882–1890. https://doi.org/10.1001/jamaoncol.2021.4083 doi: 10.1001/jamaoncol.2021.4083
![]() |
[3] |
K. Dehingia, H. Sarmah, Y. Alharbi, K. Hosseini, Mathematical analysis of a cancer model with time-delay in tumor-immune interaction and stimulation processes, Adv. Differ. Equation, 2021 (2021), 1–27. https://doi.org/10.1186/s13662-021-03621-4 doi: 10.1186/s13662-021-03621-4
![]() |
[4] |
F. A. Rihan, K. Udhayakumar, Fractional order delay differential model of a tumor-immune system with vaccine efficacy: Stability, bifurcation and control, Chaos Solitons Fractals, 173 (2023) 113670. https://doi.org/10.1016/j.chaos.2023.113670 doi: 10.1016/j.chaos.2023.113670
![]() |
[5] |
F. A. Rihan, G. Velmurugan, Dynamics of fractional-order delay differential model for tumor-immune system, Chaos Solitons Fractals, 132 (2020), 109592. https://doi.org/10.1016/j.chaos.2019.109592 doi: 10.1016/j.chaos.2019.109592
![]() |
[6] |
V. Bitsouni, V. Tsilidis, Mathematical modeling of tumor-immune system interactions: The effect of rituximab on breast cancer immune response, J. Theor. Biol., 539 (2022), 111001. https://doi.org/10.1016/j.jtbi.2021.111001 doi: 10.1016/j.jtbi.2021.111001
![]() |
[7] |
M. Itik, S. Banks, Chaos in a three-dimensional cancer model, Int. J. Bifurcat. Chaos, 20 (2010), 71–79. https://doi.org/10.1142/S0218127410025417 doi: 10.1142/S0218127410025417
![]() |
[8] |
R. Yafia, A study of differential equation modeling malignant tumor cells in competition with immune system, Int. J. Biomath., 4 (2011), 185–206. https://doi.org/10.1142/S1793524511001404 doi: 10.1142/S1793524511001404
![]() |
[9] |
Y. Radouane, Hopf bifurcation in a delayed model for tumor-immune system competition with negative immune response, Discrete Dyn. Nat. Soc., 2006 (2006), 095296. https://doi.org/10.1155/DDNS/2006/95296 doi: 10.1155/DDNS/2006/95296
![]() |
[10] |
F. Najm, R. Yafia, M. A. Aziz-Alaoui, Hopf bifurcation in oncolytic therapeutic modeling: Viruses as anti-tumor means with viral lytic cycle, Int. J. Bifurcat. Chaos, 32 (2022), 2250171. https://doi.org/10.1142/S0218127422501711 doi: 10.1142/S0218127422501711
![]() |
[11] |
R. Brady, H. Enderling, Mathematical models of cancer: When to predict novel therapies, and when not to, Bull. Math. Biol., 81 (2019), 3722–3731. https://doi.org/10.1007/s11538-019-00640-x doi: 10.1007/s11538-019-00640-x
![]() |
[12] | T. Phan, S. Crook, A. Bryce, C. Maley, E. Kostelich, Y. Kuang, Mathematical modeling of prostate cancer and clinical application, Appl. Sci., 10 (2020), 2721. https://www.mdpi.com/2076-3417/10/8/2721 |
[13] |
O. Nave, Adding features from the mathematical model of breast cancer to predict the tumour size, Int. J. Comput. Math. Comput. Syst. Theory, 5 (2020), 159–174. https://doi.org/10.1080/23799927.2020.1792552 doi: 10.1080/23799927.2020.1792552
![]() |
[14] |
D. Kirschner, J. Panetta, Modeling immunotherapy of the tumor-immune interaction, J. Math. Biol., 37 (1998), 235–252. https://doi.org/10.1007/s002850050127 doi: 10.1007/s002850050127
![]() |
[15] |
V. Kuznetsov, L. Makalkin, M. Taylor, A. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295–321. https://doi.org/10.1016/S0092-8240(05)80260-5 doi: 10.1016/S0092-8240(05)80260-5
![]() |
[16] |
A. Omame, C. Nnanna, S. Inyama, Optimal control and cost-effectiveness analysis of an HPV-chlamydia trachomatis co-infection model, Acta Biotheor., 69 (2021), 185–223. 10.1007/s10441-020-09401-z doi: 10.1007/s10441-020-09401-z
![]() |
[17] |
U. Ijeoma, S. Inyama, A. Omame, Mathematical model and optimal control of new-castle disease (ND), Appl. Math. Comput., 9 (2020), 70–84. doi: 10.11648/j.acm.20200903.14 doi: 10.11648/j.acm.20200903.14
![]() |
[18] |
F. A. Rihan, S. Lakshmanan, H. Maurer, Optimal control of tumor-immune model with time-delay and immuno-chemotherapy, Appl. Math. Comput., 353 (2019), 147–165. https://doi.org/10.1016/j.amc.2019.02.002 doi: 10.1016/j.amc.2019.02.002
![]() |
[19] |
F. A. Rihan, H. J. Alsakaji, S. Kundu, O. Mohamed, Dynamics of a time-delay differential model for tumor-immune interactions with random noise, Alex. Eng. J., 61 (2022), 11913–11923. https://doi.org/10.1016/j.aej.2022.05.027 doi: 10.1016/j.aej.2022.05.027
![]() |
[20] |
M. Yu, Y. Dong, Y. Takeuchi, Dual role of delay effects in a tumour–immune system, J. Biol. Dyn., 11 (2017), 334–347. https://doi.org/10.1080/17513758.2016.1231347 doi: 10.1080/17513758.2016.1231347
![]() |
[21] | X. Mao, Stochastic Differential Equations and Applications, Elsevier, 2007. https://doi.org/10.1016/B978-1-904275-34-3.50014-1 |
[22] |
M. Baar, L. Coquille, H. Mayer, M. Hölzel, M. Rogava, T. Tüting, et al., A stochastic model for immunotherapy of cancer, Sci. Rep., 6 (2016), 1–10. https://doi.org/10.1038/srep24169 doi: 10.1038/srep24169
![]() |
[23] |
L. Han, C. He, Y. Kuang, Dynamics of a model of tumor-immune interaction with time delay and noise, DCDS-S, 13(2020). http://dx.doi.org/10.3934/dcdss.2020140 doi: 10.3934/dcdss.2020140
![]() |
[24] |
H. J. Alsakaji, F. A. Rihan, A. Hashish, Dynamics of a stochastic epidemic model with vaccination and multiple time-delays for COVID-19 in the UAE, Complexity, 2022 (2022), 1–15. https://doi.org/10.1155/2022/4247800 doi: 10.1155/2022/4247800
![]() |
[25] |
C. Odoux, H. Fohrer, T. Hoppo, L. Guzik, D. Stolz, D. Lewis, et al., A stochastic model for cancer stem cell origin in metastatic colon cancer, Cancer Res., 68 (2008), 6932–6941. https://doi.org/10.1158/0008-5472.CAN-07-5779 doi: 10.1158/0008-5472.CAN-07-5779
![]() |
[26] |
Y. Deng, M. Liu, Analysis of a stochastic tumor-immune model with regime switching and impulsive perturbations, Appl. Math. Model., 78 (2020), 482–504. https://doi.org/10.1016/j.apm.2019.10.010 doi: 10.1016/j.apm.2019.10.010
![]() |
[27] |
A. Raza, J. Awrejcewicz, M. Rafiq, N. Ahmed, M. Mohsin, Stochastic analysis of nonlinear cancer disease model through virotherapy and computational methods, Mathematics, 10 (2022), 368. https://doi.org/10.3390/math10030368 doi: 10.3390/math10030368
![]() |
[28] |
K. Dehingia, H. Sarmah, K. Hosseini, K. Sadri, S. Salahshour, C. Park, An optimal control problem of immuno-chemotherapy in presence of gene therapy, AIMS Math., 6 (2021), 11530–11549. https://doi.org/10.3934/math.2021669 doi: 10.3934/math.2021669
![]() |
[29] | F. A. Rihan, Delay Differential Equations and Applications to Biology, Springer, 2021. https://doi.org/10.1007/978-981-16-0626-7 |
[30] |
C. Orrieri, E. Rocca, L. Scarpa, Optimal control of stochastic phase-field models related to tumor growth, ESAIM Control Optim. Calc. Var., 26 (2020), 104. https://doi.org/10.1051/cocv/2020022 doi: 10.1051/cocv/2020022
![]() |
[31] |
M. Huang, S. Liu, X. Song, X. Zou, Control strategies for a tumor-immune system with impulsive drug delivery under a random environment, Acta Math. Sci., 42 (2022), 1141–1159. https://doi.org/10.1007/s10473-022-0319-1 doi: 10.1007/s10473-022-0319-1
![]() |
[32] | L. J. Allen, An Introduction to Stochastic Processes with Applications to Biology, CRC press, 2010. https://doi.org/10.1201/b12537 |
[33] |
F. Rihan, H. Alsakaji, Persistence and extinction for stochastic delay differential model of prey predator system with hunting cooperation in predators, Adv. Differ. Equations, 2020 (2020), 1–22 https://doi.org/10.1186/s13662-020-02579-z doi: 10.1186/s13662-020-02579-z
![]() |
[34] | X. Mao, C. Yuan, Stochastic Differential Equations with Markovian Switching, World Scientific, 2006. https://doi.org/10.1142/p473 |
[35] | R. Hasminskii, Stochastic Stability of Differential Equations, Springer-Verlag Berlin Heidelberg, 2012. https://doi.org/10.1007/978-3-642-23280-0 |
[36] |
S. Rajasekar, M. Pitchaimani, Qualitative analysis of stochastically perturbed SIRS epidemic model with two viruses, Chaos Solitons Fractals, 118 (2019), 207–221. https://doi.org/10.1016/j.chaos.2018.11.023 doi: 10.1016/j.chaos.2018.11.023
![]() |
[37] |
E. Beretta, V. Kolmanovskii, L. Shaikhet, Stability of epidemic model with time delays influenced by stochastic perturbations, Math. Comput. Simul., 45 (1998), 269–277. https://doi.org/10.1016/S0378-4754(97)00106-7 doi: 10.1016/S0378-4754(97)00106-7
![]() |
[38] | M. Kinnally, Stationary Distributions for Stochastic Delay Differential Equations with Non-negativity Constraints, University of California, San Diego, 2009. |
[39] | G. Milstein, Numerical Integration of Stochastic Differential Equations, Springer Science & Business Media, 1994. https://doi.org/10.1007/978-94-015-8455-5 |
[40] |
Q. Luo, X. Mao, Stochastic population dynamics under regime switching, J. Math. Anal. Appl., 334 (2007), 69–84. https://doi.org/10.1016/j.jmaa.2006.12.032 doi: 10.1016/j.jmaa.2006.12.032
![]() |
[41] |
Q. An, E. Beretta, Y. Kuang, C. Wang, H. Wang, Geometric stability switch criteria in delay differential equations with two delays and delay dependent parameters, J. Differ. Equation, 266 (2019), 7073–7100. https://doi.org/10.1016/j.jde.2018.11.025 doi: 10.1016/j.jde.2018.11.025
![]() |
[42] |
Q. Sun, M. Xiao, M. B. Tao, Local bifurcation analysis of a fractional-order dynamic model of genetic regulatory networks with delays, Neural Process. Lett., 47 (2018), 1285–1296. https://doi.org/10.1007/s11063-017-9690-7 doi: 10.1007/s11063-017-9690-7
![]() |
[43] |
L. Li, Z. Wang, Y. Li, H. Shen, J. Lu, Hopf bifurcation analysis of a complex-valued neural network model with discrete and distributed delays, Appl. Math. Comput., 330 (2018), 152–169. https://doi.org/10.1016/j.amc.2018.02.029 doi: 10.1016/j.amc.2018.02.029
![]() |
[44] |
C. Xu, M. Liao, P. Li, Y. Guo, Q. Xiao, S. Yuan, Influence of multiple time delays on bifurcation of fractional-order neural networks, Appl. Math. Comput., 361 (2019), 565–582. https://doi.org/10.1016/j.amc.2019.05.057 doi: 10.1016/j.amc.2019.05.057
![]() |