Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

Mathematical analysis and numerical simulation for fractal-fractional cancer model


  • The mathematical oncology has received a lot of interest in recent years since it helps illuminate pathways and provides valuable quantitative predictions, which will shape more effective and focused future therapies. We discuss a new fractal-fractional-order model of the interaction among tumor cells, healthy host cells and immune cells. The subject of this work appears to show the relevance and ramifications of the fractal-fractional order cancer mathematical model. We use fractal-fractional derivatives in the Caputo senses to increase the accuracy of the cancer and give a mathematical analysis of the proposed model. First, we obtain a general requirement for the existence and uniqueness of exact solutions via Perov's fixed point theorem. The numerical approaches used in this paper are based on the Grünwald-Letnikov nonstandard finite difference method due to its usefulness to discretize the derivative of the fractal-fractional order. Then, two types of stabilities, Lyapunov's and Ulam-Hyers' stabilities, are established for the Incommensurate fractional-order and the Incommensurate fractal-fractional, respectively. The numerical results of this study are compatible with the theoretical analysis. Our approaches generalize some published ones because we employ the fractal-fractional derivative in the Caputo sense, which is more suitable for considering biological phenomena due to the significant memory impact of these processes. Aside from that, our findings are new in that we use Perov's fixed point result to demonstrate the existence and uniqueness of the solutions. The way of expressing the Ulam-Hyers' stabilities by utilizing the matrices that converge to zero is also novel in this area.

    Citation: Noura Laksaci, Ahmed Boudaoui, Seham Mahyoub Al-Mekhlafi, Abdon Atangana. Mathematical analysis and numerical simulation for fractal-fractional cancer model[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 18083-18103. doi: 10.3934/mbe.2023803

    Related Papers:

    [1] Jutarat Kongson, Chatthai Thaiprayoon, Apichat Neamvonk, Jehad Alzabut, Weerawat Sudsutad . Investigation of fractal-fractional HIV infection by evaluating the drug therapy effect in the Atangana-Baleanu sense. Mathematical Biosciences and Engineering, 2022, 19(11): 10762-10808. doi: 10.3934/mbe.2022504
    [2] Alia M. Alzubaidi, Hakeem A. Othman, Saif Ullah, Nisar Ahmad, Mohammad Mahtab Alam . Analysis of Monkeypox viral infection with human to animal transmission via a fractional and Fractal-fractional operators with power law kernel. Mathematical Biosciences and Engineering, 2023, 20(4): 6666-6690. doi: 10.3934/mbe.2023287
    [3] Adnan Sami, Amir Ali, Ramsha Shafqat, Nuttapol Pakkaranang, Mati ur Rahmamn . Analysis of food chain mathematical model under fractal fractional Caputo derivative. Mathematical Biosciences and Engineering, 2023, 20(2): 2094-2109. doi: 10.3934/mbe.2023097
    [4] Maysaa Al Qurashi, Saima Rashid, Fahd Jarad . A computational study of a stochastic fractal-fractional hepatitis B virus infection incorporating delayed immune reactions via the exponential decay. Mathematical Biosciences and Engineering, 2022, 19(12): 12950-12980. doi: 10.3934/mbe.2022605
    [5] A. Q. Khan, I. Ahmad, H. S. Alayachi, M. S. M. Noorani, A. Khaliq . Discrete-time predator-prey model with flip bifurcation and chaos control. Mathematical Biosciences and Engineering, 2020, 17(5): 5944-5960. doi: 10.3934/mbe.2020317
    [6] Saima Rashid, Rehana Ashraf, Qurat-Ul-Ain Asif, Fahd Jarad . Novel stochastic dynamics of a fractal-fractional immune effector response to viral infection via latently infectious tissues. Mathematical Biosciences and Engineering, 2022, 19(11): 11563-11594. doi: 10.3934/mbe.2022539
    [7] Maghnia Hamou Maamar, Matthias Ehrhardt, Louiza Tabharit . A nonstandard finite difference scheme for a time-fractional model of Zika virus transmission. Mathematical Biosciences and Engineering, 2024, 21(1): 924-962. doi: 10.3934/mbe.2024039
    [8] Leonardo Schultz, Antonio Gondim, Shigui Ruan . Gompertz models with periodical treatment and applications to prostate cancer. Mathematical Biosciences and Engineering, 2024, 21(3): 4104-4116. doi: 10.3934/mbe.2024181
    [9] Haifeng Zhang, Jinzhi Lei . Optimal treatment strategy of cancers with intratumor heterogeneity. Mathematical Biosciences and Engineering, 2022, 19(12): 13337-13373. doi: 10.3934/mbe.2022625
    [10] Maher Alwuthaynani, Raluca Eftimie, Dumitru Trucu . Inverse problem approaches for mutation laws in heterogeneous tumours with local and nonlocal dynamics. Mathematical Biosciences and Engineering, 2022, 19(4): 3720-3747. doi: 10.3934/mbe.2022171
  • The mathematical oncology has received a lot of interest in recent years since it helps illuminate pathways and provides valuable quantitative predictions, which will shape more effective and focused future therapies. We discuss a new fractal-fractional-order model of the interaction among tumor cells, healthy host cells and immune cells. The subject of this work appears to show the relevance and ramifications of the fractal-fractional order cancer mathematical model. We use fractal-fractional derivatives in the Caputo senses to increase the accuracy of the cancer and give a mathematical analysis of the proposed model. First, we obtain a general requirement for the existence and uniqueness of exact solutions via Perov's fixed point theorem. The numerical approaches used in this paper are based on the Grünwald-Letnikov nonstandard finite difference method due to its usefulness to discretize the derivative of the fractal-fractional order. Then, two types of stabilities, Lyapunov's and Ulam-Hyers' stabilities, are established for the Incommensurate fractional-order and the Incommensurate fractal-fractional, respectively. The numerical results of this study are compatible with the theoretical analysis. Our approaches generalize some published ones because we employ the fractal-fractional derivative in the Caputo sense, which is more suitable for considering biological phenomena due to the significant memory impact of these processes. Aside from that, our findings are new in that we use Perov's fixed point result to demonstrate the existence and uniqueness of the solutions. The way of expressing the Ulam-Hyers' stabilities by utilizing the matrices that converge to zero is also novel in this area.



    Cancer is a word used to describe disorders in which aberrant cells divide uncontrollably and can infiltrate neighboring tissues. According to the World Health Organization (2020), cancer is the second leading cause of mortality globally, accounting for approximately one in every six deaths [1]. Since the middle of the 1960s, mathematical modeling and nonlinear simulations of the tumor growth process has been researched due to the significant public health issues and the requirement for immediate health measures [2,3,4,5,6,7,8,9].

    Edward Lorenz, a meteorologist and mathematician, discovered the chaos phenomenon in the unpredictable and irregular behavior of nonlinear dynamical systems in 1963 [10]. Chaos can be expressed mathematically via deterministic iterations of nonlinear difference equations or the development of nonlinear ordinary differential equations (ODEs) or partial differential equations (PDEs). The study of chaotic systems has been heralded as one of the most significant scientific accomplishments of the twentieth century. While the field is still in its infancy, there is no doubt that it is becoming increasingly important in various of scientific disciplines. To that end, chaos has been demonstrated to exist in a wide range of systems, including electronics [11], chemistry [12], economics and finance [13,14], biological systems [15,16,17,18] and so on.

    It is worth noting that fractional calculus is a vital branch of mathematics. Because of the memory and genetic peculiarity of fractional-order differential equations, several researchers have modeled biological phenomena using fractional calculus derivatives. As a result, it is a very useful tool for describing genuine natural processes. Many papers on fractional-order dynamical models have recently been published [19,20,21].

    Atangana [22] presented a new advanced type of fractal fractional derivative in 2017, bridging the gap between fractional and fractal calculus. Fractal-fractional operators contain two components: the fractional order and the fractal dimension (order). Differential equations using the fractal-fractional derivative transform the assumed system's order and dimension into a rational order system. The major goal of defining these derivatives is to examine fractal nonlocal boundary and initial value problems in nature. Certain mathematicians developed various results and designed some fractal-fractional models that exhibit improved simulations for representing mathematical structures in this direction [23,24,25,26].

    The nonstandard finite deferential numerical methods were first introduced by Mickens in 1994 [27]. These methods are well known for maintaining the positivity, boundedness and stability of nonlinear systems' equilibrium points [27,28].

    In the paper [15], authors introduced and on studied the following three-dimensional order cancer model

    {x=ax(1y)(1+z)x2y,x(0)=x00,y=by(1z)(1+x)y2z,y(0)=y0>0,z=cz(1x)(1+y)z2x,z(0)=z0>0, (1.1)

    where x(t) stands for the number of tumor cells at time ty(t) for the number of healthy host cells at time t, and z(t) for the number of effector immune cells present at time t within the single tumor-site compartment, and x0,y0 and z0 are the associated initial values of system (1.1). Here, the parameters a,b and c are positive real numbers that indicate the growth rates of populations of x(t),y(t) and z(t), respectively. If αi=α for every i=1,...,3, then the system (1.3) is called commensurate order; otherwise, it is named incommensurate order [29]. The fractional version of system (1.1) was considered in the paper [16], and were described by

    {C0Dα1x=ax(1y)(1+z)x2y,x(0)=x0,0<α11,C0Dα2y=by(1z)(1+x)y2z,y(0)=y0,0<α21,C0Dα3z=cz(1x)(1+y)z2x,z(0)=z0,0<α31, (1.2)

    where C0Dα is the α-order Caputo differential operator.

    The three-dimensional fractal-fractional-order cancer model is the main topic of this research:

    {C0Dα1,β1x=ax(1y)(1+z)x2y=F1(x,y,z)(t),x(0)=x0,0<α1,β11,C0Dα2,β2y=by(1z)(1+x)y2z=F2(x,y,z)(t),y(0)=y0,0<α2,β21,C0Dα3,β3z=cz(1x)(1+y)z2x=F3(x,y,z)(t),z(0)=z0,0<α3,β31, (1.3)

    where C0Dα,β is the (α,β) fractal-fractional-order Caputo differential operator.

    The rest of this paper is organized as follows. Section 2 provides some fundamental definitions of generalized Banach spaces in the sense of Perov, its properties and fractal fractional operators in the Caputo sense. Section 3 is devoted to the existence and the uniqueness with Perov fixed point theorem. In Section 4, the suggested model's numerical solution was achieved using the Grünwald-Letnikov nonstandard finite difference scheme of Caputo derivative (in short GL-NSFDM) scheme using MATLAB software. Section 5 presents the Lyapunov's stability of the equilibrium points of the proposed system by varying the fractional order and the set of parameter (a,b,c), and by maintaining the fractal dimension (β1,β2,β3)=(1,1,1). Section 6 shows the Ulam-Hyers stability of the Incommensurate fractal-fractional-order cancer model (1.3). Finally, the discussion and the conclusion are given in the last two sections.

    We present some basic notation, results of generalized Banach spaces in the sense of Perov, matrices converges to zero and Fractal-Fractional calculus in Caputo sense, which will be essential in the next sections. We begin with defining on Mm×n(R+) the partial order relation as follow: Let Λ,ΥMm×n(R+),m1 and n1. Put Λ=(Λi,j)1jm1in and Υ=(Υi,j)1jm1in. Then,

    ΛΥ if Υi,jΛi,j for all j=1,,m,i=1,,n.ΛΥ if Υi,j>Λi,j for all j=1,,m,i=1,,n.

    and we write In for the identity n×n matrix and On for the zero n×n matrix.

    Definition 2.1. Let E be a vector space over K=R or C. A generalized norm on E is a map

    G: E[0,+)nϑϑG=(ϑ1ϑn)

    has the next properties

    (i) For all ϑE; if ϑG=0Rn+, then ϑ=0E,

    (ii)aϑG=|a|ϑG for all ϑE and aK, and

    (iii)ϑ+ωGϑG+ωG for all ϑ,ωE.

    The pair (E,G) is called a generalized normed space. Moreover, (E,G) is called a generalized Banach space (in short, GBS), if the vector-valued metric space generated by its vector-valued metric δG(x,y)=xyG is complete.

    Let (E,G) be a generalized Banach space. In the rest of this article for r=(r1,,rn)Rn+, ϑ0E and i=1,,n, we denote by:

    B(ϑ0,r)={ϑE:ϑ0ϑGr},

    for the open ball centered at ϑ0 with radius r, and by:

    ˉB(ϑ0,r)={ϑE:ϑ0ϑGr},

    for the closed ball centered at ϑ0 with radius r. If ϑ0=0 we simply denote Br=B(0,r) and ¯Br=ˉB(0,r). Finally, we respectively denote by ¯K and co(K) for the closure and the convex hull of a subset K of E.

    Definition 2.2. A matrix ΥMn×n(R+) is said to be convergent to zero if

    ΥmOn, as m.

    Lemma 2.3. [30] Let ΥMn×n(R+). The following assertions are equivalent:

    (i)ΥmOn,asm.

    (ii) The matrix InΥ is invertible, and (InΥ)1Mn×n(R+).

    (iii) The spectral radius of Υ is strictly less than 1.

    Definition 2.4. Let (E,δG) be a generalized metric space and N be an operator from E into itself. N is called Υ-contraction with matrix ΥMn×n(R+) that is converges to On, if for all ϱ,vE we have

    δG(N(ϱ),N(v))ΥδG(ϱ,v).

    In the following, an extension of the Banach contraction principle by Perov is given.

    Theorem 2.5. [31] Let E be a complete generalized metric space and let N:EE be an M-contraction operator. Then, N has a unique fixed point in E.

    Next, we give some important concepts from fractal-fractional calculus in Caputo sense. We refer the reader for the reference [32] for more details.

    Definition 2.6. Let ϱ be differentiable in opened interval (a,b), if ϱ is fractal differentiable on (a,b) with order β, then the FF-derivative of ϱ of order α in the Caputo sense with power law is given as:

    CaDα,βtϱ(t)=1Γ(nα)ta(tτ)nα1dnϱ(τ)dtβdτn1<α,βn,nN. (2.1)

    where

    dϱ(t)dtβ=lim

    Lemma 2.7. The Eq (2.1) can be written as follows:

    { }_{0}^{C} D_{t}^{\alpha, \beta} \varrho(t) = { }_{0}^{C} D_{t}^{\alpha} \varrho(t) \dfrac{1}{\beta t^{\beta-1}}, \quad {\text{where}}, \, \, \, n = 1, a = 0 .

    Lemma 3.1. (x, y, z) is a solution of the fractal-fractional-order system (1.3), if and only if it is a solution of the following problem

    \begin{equation} \left\{\begin{array}{l} x(t) = x_{0}+\dfrac{\beta_{1}}{\Gamma(\alpha_{1})}\int_{0}^{t}\dfrac{(t-s)^{\alpha_{1}-1}}{s^{1-\beta_{1}}}[a x(s)(1-y(s))(1+z(s))-x^{2}(s) y(s)] ds, \\ {y}(t) = y_{0}+\dfrac{\beta_{2}}{\Gamma(\alpha_{2})}\int_{0}^{t}\dfrac{(t-s)^{\alpha_{2}-1}}{s^{1-\beta_{2}}}[b y(s)(1-z(s))(1+x(s))-y^{2}(s) z(s)]ds, \\ z(t) = z_{0}+\dfrac{\beta_{3}}{\Gamma(\alpha_{3})}\int_{0}^{t}\dfrac{(t-s)^{\alpha_{3}-1}}{s^{1-\beta_{3}}}[c z(s)(1-x(s))(1+y(s))-z^{2}(s) x(s)]ds. \end{array}\right. \end{equation} (3.1)

    Theorem 3.2. Suppose that there is a vector with positive entries fulfills

    \begin{equation} \varUpsilon = \begin{pmatrix} \varUpsilon_{1}\\\varUpsilon_{2}\\\varUpsilon_{3} \end{pmatrix}\succcurlyeq \begin{pmatrix} \Big( \dfrac{\beta_{1} T^{\alpha_{1}+\beta_{1}-1}}{\Gamma ( \alpha_{1}) }\mathcal{H}(\alpha_{1}, \beta_{1})\Big)|a \varUpsilon_{1}(1-\varUpsilon_{2})(1+\varUpsilon_{3})-\varUpsilon_{1}^{2} \varUpsilon_{2}|\\ \Big( \dfrac{\beta_{2} T^{\alpha_{2}+\beta_{2}-1}}{\Gamma ( \alpha_{2}) }\mathcal{H}(\alpha_{2}, \beta_{2})\Big)|b \varUpsilon_{2}(1-\varUpsilon_{3})(1+\varUpsilon_{1})-\varUpsilon_{2}^{2} \varUpsilon_{3}|\\ \Big( \dfrac{\beta_{3} T^{\alpha_{3}+\beta_{3}-1}}{\Gamma ( \alpha_{3}) }\mathcal{H}(\alpha_{3}, \beta_{3})\Big) |c \varUpsilon_{3}(1-\varUpsilon_{1})(1+\varUpsilon_{2})-\varUpsilon_{3}^{2} \varUpsilon_{1}| \end{pmatrix}, \end{equation} (3.2)

    in addition, if the matrix

    \begin{equation} \varTheta = \max\limits_{i = 1, ..., 3}\left\lbrace \dfrac{\beta_{i} T^{\alpha_{i}+\beta_{i}-1}}{\Gamma ( \alpha_{i}) }\mathcal{H}(\alpha_{i}, \beta_{i})\right\rbrace \left(\begin{array}{ccc} 2\varUpsilon_{1}\varUpsilon_{2} & (a\varUpsilon_{1}[1+\varUpsilon_{3}]+\varUpsilon_{1}^{2})& (a\varUpsilon_{1}[1+\varUpsilon_{2}])\\\\ (b\varUpsilon_{2}[1+\varUpsilon_{3}])& 2\varUpsilon_{2}\varUpsilon_{3} & (b\varUpsilon_{2}[1+\varUpsilon_{1}]+\varUpsilon_{2}^{2}) \\\\(c\varUpsilon_{3}[1+\varUpsilon_{2}]+\varUpsilon_{3}^{2})& (c\varUpsilon_{3}[1+\varUpsilon_{1}])& 2\varUpsilon_{3}\varUpsilon_{1} \end{array}\right) . \end{equation} (3.3)

    converges to O_{3} , where \mathcal{H}(\alpha_{i}, \beta_{i}) denotes the beta function of \alpha_{i} and \beta_{i} , then the system (3.1) has a unique solution in the space \mathcal{C}([0, \, T])\times\mathcal{C}([0, \, T])\times\mathcal{C}([0, \, T]).

    Proof. Let \mathcal{K} be the closed ball \bar{B}((x_0, y_0, z_0), \varUpsilon) on \mathcal{E} = \mathcal{C}([0, T], \mathbb{R})\times \mathcal{C}([0, T], \mathbb{R})\times \mathcal{C}([0, T], \mathbb{R}) centered at (x_0, y_0, z_0) of radius \varUpsilon\succ0_{ \mathbb{R}^{3}_{+}} where r satisfies the above inequality in (3.2). We recall that the space {\mathcal{E}} = \mathcal{C}([0, T], \mathbb{R})\times \mathcal{C}([0, T], \mathbb{R})\times \mathcal{C}([0, T], \mathbb{R}) is generalized Banach space endowed with the generalized norm

    \begin{aligned} \|.\|_{G} : &{\mathcal{E}} \longrightarrow \mathbb{R}^{3}_{+} \\& X = (x, y, z) \mapsto\|(x, y, z)\|_{G} = \begin{pmatrix} \|x\|_{\infty} \\ \|y\|_{\infty} \\ \|z\|_{\infty} \\ \end{pmatrix}. \end{aligned}

    The proof will be broken up into several steps.

    Step 1: First, we shall show that the mapping

    N : \mathcal{{ C }} ( [0, T], \mathbb{R} )\times\mathcal{{ C }} ( [0, T], \mathbb{R} )\times\mathcal{{ C }} ( [0, T], \mathbb{R} )\rightarrow \mathcal{{ C }} ( [0, T], \mathbb{R} )\times\mathcal{{ C }} ( [0, T], \mathbb{R} )\times\mathcal{{ C }} ( [0, T], \mathbb{R} )

    is G-contraction where N defined by the following formula:

    \begin{aligned} N(x, y, z)(t)& = \begin{pmatrix} N_{1}(x, y, z)(t)\\ N_{2}(x, y, z)(t)\\ N_{3}(x, y, z)(t) \\ \end{pmatrix}\\& = \begin{pmatrix} x_{0}+\dfrac{\beta_{1}}{\Gamma(\alpha_{1})}\int_{0}^{t}\dfrac{(t-s)^{\alpha_{1}-1}}{s^{1-\beta_{1}}}[a x(s)(1-y(s))(1+z(s))-x^{2}(s) y(s)] ds\\ y_{0}+\dfrac{\beta_{2}}{\Gamma(\alpha_{2})}\int_{0}^{t}\dfrac{(t-s)^{\alpha_{2}-1}}{s^{1-\beta_{2}}}[b y(s)(1-z(s))(1+x(s))-y^{2}(s) z(s)]ds \\ z_{0}+\dfrac{\beta_{3}}{\Gamma(\alpha_{3})}\int_{0}^{t}\dfrac{(t-s)^{\alpha_{3}-1}}{s^{1-\beta_{3}}}[c z(s)(1-x(s))(1+y(s))-z^{2}(s) x(s)]ds\\ \end{pmatrix} \end{aligned}

    To this end, let X_1 = (x_1, y_1, z_1), \ X_2 = (x_2, y_2, z_2)\in \mathcal{E} and for t\in [0, \, T] we have

    \begin{aligned} |N_{1}(x_{2}, y_{2}, z_{2})(t)-N_{1}(x_{1}, y_{1}, z_{1})(t)|&\leq \dfrac{\beta_{1}}{\Gamma(\alpha_{1})}\int_{0}^{t}\dfrac{(t-s)^{\alpha_{1}-1}}{s^{1-\beta_{1}}}\times\Big|a x_{2}(s)(1-y_{2}(s))(1+z_{2}(s))-x_{2}^{2}(s) y_{2}(s)\\& - a x_{1}(s)(1-y_{1}(s))(1+z_{1}(s))+x_{1}^{2}(s) y_{1}(s)\Big| ds \\& \leq \dfrac{\beta_{1}}{\Gamma(\alpha_{1})}\int_{0}^{t}\dfrac{(t-s)^{\alpha_{1}-1}}{s^{1-\beta_{1}}} \times\Big|a \varUpsilon_{1}(-y_{2}(s) -y_{2}(s)z_{2}(s)+1+z_{2}(s))\\& -x_{2}^{2}(s) y_{2}(s)- a \varUpsilon_{1}(-y_{1}(s) -y_{1}(s)z_{1}(s)+1+z_{1}(s))+x_{1}^{2}(s) y_{1}(s)\Big| ds \\& \leq \dfrac{\beta_{1}}{\Gamma(\alpha_{1})}\int_{0}^{t}\dfrac{(t-s)^{\alpha_{1}-1}}{s^{1-\beta_{1}}} \times\Big(a \varUpsilon_{1}\Big[|y_{2}(s)-y_{1}(s)|+ |y_{2}(s)z_{2}(s)\\&-y_{1}(s)z_{1}(s)|+|z_{2}(s)-z_{1}(s)|\Big]+|x_{2}^{2}(s) y_{2}(s)-x_{1}^{2}(s) y_{1}(s)|\Big) ds . \end{aligned}

    And we have for all A_{1}, \, A_{2}, \, B_{1}, \, B_{2} \in \mathbb{R}

    | A_{1}B_{1}-A_{2}B_{2}| = \frac{1}{2} \Big[ (A_{1}-A_{2})(B_{1}+B_{2})+(A_{1}+A_{2})(B_{1}-B_{2})\Big],

    then

    \begin{aligned} |N_{1}(x_{2}, y_{2}, z_{2})(t)-N_{1}(x_{1}, y_{1}, z_{1})(t)|&\leq \dfrac{\beta_{1}}{\Gamma(\alpha_{1})}\int_{0}^{t}\dfrac{(t-s)^{\alpha_{1}-1}}{s^{1-\beta_{1}}} \times\Big(a \varUpsilon_{1}\Big[|y_{2}(s)-y_{1}(s)|+|z_{2}(s)-z_{1}(s)|\\&+\dfrac{1}{2}\Big[ |y_{2}(s)-y_{1}(s)||z_{2}(s)+z_{1}(s)|+|y_{2}(s)+y_{1}(s)||z_{2}(s)-z_{1}(s)|\Big]\Big]\\&+\frac{1}{2}\Big[|x_{2}^{2}(s) -x_{1}^{2}(s) ||y_{2}(s)+ y_{1}(s)|+|x_{2}^{2}(s) +x_{1}^{2}(s)|| y_{2}(s)- y_{1}(s)|\Big]\Big) ds \\ &\leq \dfrac{\beta_{1}}{\Gamma(\alpha_{1})}\int_{0}^{t}\dfrac{(t-s)^{\alpha_{1}-1}}{s^{1-\beta_{1}}} \times\Big(a \varUpsilon_{1}\Big[(1+\varUpsilon_{3})|y_{2}(s)-y_{1}(s)|\\&+(1+\varUpsilon_{2})|z_{2}(s)-z_{1}(s)|\Big]+\varUpsilon_{2}|x_{2}^{2}(s) -x_{1}^{2}(s) |+\varUpsilon_{1}^{2}| y_{2}(s)- y_{1}(s)|\Big) ds \end{aligned}

    by taking the supermum over t we find

    \begin{aligned} ||N_{1}(x_{2}, y_{2}, z_{2})-N_{1}(x_{1}, y_{1}, z_{1})||_{\infty}&\leq \Big( \dfrac{\beta_{1} T^{\alpha_{1}+\beta_{1}-1}}{\Gamma ( \alpha_{1}) }\mathcal{H}(\alpha_{1}, \beta_{1})\Big)\Big(a \varUpsilon_{1}\Big[(1+\varUpsilon_{3})||y_{2}-y_{1}||_{\infty}\\&+(1+\varUpsilon_{2})||z_{2}-z_{1}||_{\infty}\Big]+\varUpsilon_{2}||x_{2}^{2} -x_{1}^{2} ||_{\infty}+\varUpsilon_{1}^{2}|| y_{2}- y_{1}||_{\infty}\Big) \end{aligned}

    And we have for all positive numbers \varrho_{1}, \, \varrho_{2} and \gamma\geq1

    |\varrho_{1}^{\gamma}- \varrho_{2}^{\gamma} |\leq \gamma\sup(\varrho_{1}, \, \varrho_{2})^{\gamma-1} |\varrho_{1}- \varrho_{2}|,

    then,

    \begin{aligned} ||N_{1}(x_{2}, y_{2}, z_{2})-N_{1}(x_{1}, y_{1}, z_{1})||_{\infty}&\leq \Big( \dfrac{\beta_{1} T^{\alpha_{1}+\beta_{1}-1}}{\Gamma ( \alpha_{1}) }\mathcal{H}(\alpha_{1}, \beta_{1})\Big)\Big(a \varUpsilon_{1}\Big[(1+\varUpsilon_{3})||y_{2}-y_{1}||_{\infty}\\&+(1+\varUpsilon_{2})||z_{2}-z_{1}||_{\infty}\Big]+2\varUpsilon_{1}\varUpsilon_{2}||x_{2} -x_{1} ||_{\infty}+\varUpsilon_{1}^{2}|| y_{2}- y_{1}||_{\infty}\Big) \end{aligned}

    It is clear that

    \begin{aligned} F_{2}(x, y, z)& = F_{1}(y, z, x)\\ F_{3}(x, y, z)& = F_{1}(z, x, y)\\ \end{aligned}

    then

    \begin{aligned} ||N_{2}(x_{2}, y_{2}, z_{2})-N_{2}(x_{1}, y_{1}, z_{1})||_{\infty}&\leq \Big( \dfrac{\beta_{2} T^{\alpha_{2}+\beta_{2}-1}}{\Gamma ( \alpha_{2}) }\mathcal{H}(\alpha_{2}, \beta_{2})\Big)\Big(b \varUpsilon_{2}\Big[(1+\varUpsilon_{1})||z_{2}-z_{1}||_{\infty}\\&+(1+\varUpsilon_{3})||x_{2}-x_{1}||_{\infty}\Big]+2\varUpsilon_{2}\varUpsilon_{3}||y_{2} -y_{1} ||_{\infty}+\varUpsilon_{2}^{2}|| z_{2}- z_{1}||_{\infty}\Big) \end{aligned}

    and

    \begin{aligned} ||N_{3}(x_{2}, y_{2}, z_{2})-N_{3}(x_{1}, y_{1}, z_{1})||_{\infty}&\leq \Big( \dfrac{\beta_{3} T^{\alpha_{3}+\beta_{3}-1}}{\Gamma ( \alpha_{3}) }\mathcal{H}(\alpha_{3}, \beta_{3})\Big)\Big(c \varUpsilon_{3}\Big[(1+\varUpsilon_{3})||x_{2}-x_{1}||_{\infty}\\&+(1+\varUpsilon_{3})||y_{2}-y_{1}||_{\infty}\Big]+2\varUpsilon_{3}\varUpsilon_{1}||z_{2} -z_{1} ||_{\infty}+\varUpsilon_{3}^{2}|| x_{2}- x_{1}||_{\infty}\Big) \end{aligned}

    As conclusion

    \begin{aligned} ||N(X_{2})-N(X_{1})||_{G}&\preccurlyeq \varUpsilon_{*} \left(\begin{array}{ccc} 2\varUpsilon_{1}\varUpsilon_{2} & (a\varUpsilon_{1}[1+\varUpsilon_{3}]+\varUpsilon_{1}^{2})& (a\varUpsilon_{1}[1+\varUpsilon_{2}])\\\\ (b\varUpsilon_{2}[1+\varUpsilon_{3}])& 2\varUpsilon_{2}\varUpsilon_{3} & (b\varUpsilon_{2}[1+\varUpsilon_{1}]+\varUpsilon_{2}^{2}) \\\\(c\varUpsilon_{3}[1+\varUpsilon_{3}]+\varUpsilon_{3}^{2})& (c\varUpsilon_{3}[1+\varUpsilon_{1}])& 2\varUpsilon_{3}\varUpsilon_{1} \end{array}\right)\|X_{1}-X_{2}\|_{G} , \end{aligned}

    where

    \varUpsilon_{*} = \max\limits_{i = 1, ..., 3}\left\lbrace \dfrac{\beta_{i} T^{\alpha_{i}+\beta_{i}-1}}{\Gamma ( \alpha_{i}) }\mathcal{H}(\alpha_{i}, \beta_{i})\right\rbrace .

    Step 2: Our objective here is to prove that the operator N maps \mathcal{K} into itself. To do so, let X = (x, y, z), \ \in \mathcal{K} and for t\in [0, \, T] we have

    \begin{aligned} |N_{1}(x, y, z)(t)-x_{0}| &\leq \dfrac{\beta_{1}}{\Gamma(\alpha_{1})}\int_{0}^{t}\dfrac{(t-s)^{\alpha_{1}-1}}{s^{1-\beta_{1}}} |a x(s)(1-y(s))(1+z(s))-x^{2}(s) y(s)| ds \\&\leq \Big( \dfrac{\beta_{1} t^{\alpha_{1}+\beta_{1}-1}}{\Gamma ( \alpha_{1}) }\mathcal{H}(\alpha_{1}, \beta_{1})\Big) |a \varUpsilon_{1}(1-\varUpsilon_{2})(1+\varUpsilon_{3})-\varUpsilon_{1}^{2} \varUpsilon_{2}| \end{aligned}

    Then

    \|N_{1}(x, y, z)(t)-x_{0}\|_{\infty}\leq \Big( \dfrac{\beta_{1} T^{\alpha_{1}+\beta_{1}-1}}{\Gamma ( \alpha_{1}) }\mathcal{H}(\alpha_{1}, \beta_{1})\Big) |a \varUpsilon_{1}(1-\varUpsilon_{2})(1+\varUpsilon_{3})-\varUpsilon_{1}^{2} \varUpsilon_{2}|

    By the same manner, we find

    \begin{aligned} \|N_{2}(x, y, z)-y_{0}\|_{\infty} &\leq \Big( \dfrac{\beta_{2} T^{\alpha_{2}+\beta_{2}-1}}{\Gamma ( \alpha_{2}) }\mathcal{H}(\alpha_{2}, \beta_{2})\Big)|b \varUpsilon_{2}(1-\varUpsilon_{3})(1+\varUpsilon_{1})-\varUpsilon_{2}^{2} \varUpsilon_{3}| \end{aligned}

    and

    \begin{aligned} \|N_{3}(x, y, z)-z_{0}\|_{\infty} &\leq \Big( \dfrac{\beta_{3} T^{\alpha_{3}+\beta_{3}-1}}{\Gamma ( \alpha_{3}) }\mathcal{H}(\alpha_{3}, \beta_{3})\Big) |c \varUpsilon_{3}(1-\varUpsilon_{1})(1+\varUpsilon_{2})-\varUpsilon_{3}^{2} \varUpsilon_{1}|. \end{aligned}

    Hence,

    \|F(x, y, z)-X_{0}\|_{G}\preccurlyeq \begin{pmatrix} \Big( \dfrac{\beta_{1} T^{\alpha_{1}+\beta_{1}-1}}{\Gamma ( \alpha_{1}) }\mathcal{H}(\alpha_{1}, \beta_{1})\Big)|a \varUpsilon_{1}(1-\varUpsilon_{2})(1+\varUpsilon_{3})-\varUpsilon_{1}^{2} \varUpsilon_{2}|\\ \Big( \dfrac{\beta_{2} T^{\alpha_{2}+\beta_{2}-1}}{\Gamma ( \alpha_{2}) }\mathcal{H}(\alpha_{2}, \beta_{2})\Big)|b \varUpsilon_{2}(1-\varUpsilon_{3})(1+\varUpsilon_{1})-\varUpsilon_{2}^{2} \varUpsilon_{3}|\\ \Big( \dfrac{\beta_{3} T^{\alpha_{3}+\beta_{3}-1}}{\Gamma ( \alpha_{3}) }\mathcal{H}(\alpha_{3}, \beta_{3})\Big) |c \varUpsilon_{3}(1-\varUpsilon_{1})(1+\varUpsilon_{2})-\varUpsilon_{3}^{2} \varUpsilon_{1}| \end{pmatrix} \preccurlyeq\begin{pmatrix} \varUpsilon_{1}\\\varUpsilon_{2}\\\varUpsilon_{3} \end{pmatrix}.

    By using Perov fixed point Theorem 2.5, we conclude that the system (3.1) has a unique solution in \mathcal{K} .

    According to Lemma 2.7, the system (1.3) can be written as follows:

    \begin{equation} \left\{\begin{array}{l} { }_{0}^{C} D_{t}^{\alpha_{1}} x(t) = \beta_{1} t^{\beta_{1}-1} F_{1}(x, y, z)(t), \quad x(0) = x_{0}, \quad 0 < \alpha_{1}, \beta_{1} \leq 1 \\ { }_{0}^{C} D_{t}^{\alpha_{2}} y(t) = \beta_{2} t^{\beta_{2}-1} F_{2}(x, y, z)(t), \quad y(0) = y_{0}, \quad 0 < \alpha_{2}, \beta_{2} \leq 1 \\ { }_{0}^{C} D_{t}^{\alpha_{3}} z(t) = \beta_{3} t^{\beta_{3}-1} F_{3}(x, y, z)(t), \quad z(0) = z_{0}, \quad 0 < \alpha_{3}, \beta_{3} \leq 1. \end{array}\right. \end{equation} (4.1)

    The discretization of fractional derivative is given by GL approach [33,34]:

    \left.{ }_{0}^{C} D_{t}^{\alpha_{1}} x(t)\right|_{t = t^{n}} = \frac{1}{\Delta t^{\alpha_{1}}}\left(x_{n+1}-\sum\limits_{i = 1}^{n+1} \mu_{1_i} x_{n+1-i}-q_{1_{n+1}} x_{0}\right),

    where t_{n} = n \Delta t, \quad \Delta t = \frac{T}{N} is the time-step size, N is a natural number, \mu_{j_i} = (-1)^{i-1}\left(\begin{array}{c}\alpha_{j} \\ i\end{array}\right), \mu_{j_1} = \alpha_{j}, q_{j_i} = \dfrac{i^{\alpha_{j}}}{\Gamma(1-\alpha_{j})} and i = 1, 2, \ldots, n+1, \; j = 1, 2, 3. In addition, let us assume that [35]:

    \begin{aligned} &0 < \mu_{j_{i+1}} < \mu_{j_i} < \ldots < \mu_{j_1} = \alpha_{j} < 1, \\ &0 < q_{j_{i+1}} < q_{j_i} < \ldots < q_{j_1} = \frac{1}{\Gamma(1-\alpha_{j})} . \end{aligned}

    Using the GL approximation and the NSFD framework [27], we discretize the first equation in (1.3) as follows:

    \left.{ }_{0}^{C} D_{t}^{\alpha_{1}} x(t)\right|_{t = t^{n}} = \frac{1}{\phi(\Delta t)^{\alpha_{1}}}\left(x_{n+1}-\sum\limits_{i = 1}^{n+1} \mu_{1_i} x_{n+1-i}-q_{1_{n+1}} x_{0}\right)

    where,

    \phi(\Delta t) = \Delta(t)+O\left(\Delta(t)^{2}\right), \quad 0 < \phi(\Delta t) < 1, \quad \Delta(t) \longrightarrow 0 .

    From the first equation in (4.1), we have:

    \beta_{1} t^{\beta_{1}-1}_{n} F_{1}\left(x_{n}, y_{n}, z_{n}\right) (t_{n}) = \frac{1}{\phi(\Delta t)^{\alpha_{1}}}\left(x_{n+1}-\sum\limits_{i = 1}^{n+1} \mu_{1_i}- x_{n+1-i}-q_{1_{n+1}} x_{0}\right),

    hence

    \begin{equation} x_{n+1} = \phi(\Delta t)^{\alpha_{1}} \beta_{1} t^{\beta_{1}-1}_{n} F_{1}\left(x_{n}, y_{n}, z_{n}\right) (t_{n})+\sum\limits_{i = 1}^{n+1} \mu_{1_i} x_{n+1-i}+q_{1_{n+1}} x_{0} \text {. } \end{equation} (4.2)

    Looking that the function F_{1} can be written as next:

    \begin{aligned} F_{1}\left(x_{n}, y_{n}, z_{n}\right)(t_{n}) & = ax_{n}(1-y_{n})(1+z_{n})-x_{n}(x_{n}y_{n})\\& = g_{1_1}(x_{n}, y_{n}, z_{n})(t_{n})+x_{n}g_{1_{2}}(x_{n}, y_{n}, z_{n})(t_{n}). \end{aligned}

    By substituting this latter in (4.2), and using the fact that the nonlinear term g_{1_1}(x_{n}, y_{n}, z_{n})(t_{n})+x_{n}g_{1_2}(x_{n}, y_{n}, z_{n})(t_{n}) is approximated by g_{1_1}(x_{n}, y_{n}, z_{n})(t_{n})+x_{n+1}g_{1_2}(x_{n}, y_{n}, z_{n})(t_{n}) in a nonlocal way, we find that:

    x_{n+1} = \dfrac{\sum_{i = 1}^{n+1} \mu_{1_i} x_{n+1-i}+q_{1_{n+1}} x_{0}+\beta_{1} t^{\beta_{1}-1}_{n} \phi(\Delta t)^{\alpha_{1}}\left(g_{1_1}(x_{n}, y_{n}, z_{n})(t_{n})\right)}{1+\beta_{1} t^{\beta_{1}-1}_{n} \phi(\Delta t)^{\alpha_{1}} g_{1_2}(x_{n}, y_{n}, z_{n})(t_{n})}.

    Repeating the same procedure to the second and the third equation of the system (1.3), we conclude that the discretization of system (1.3) using GL-NSFDM can be formulated as follows:

    \begin{equation} \left\{\begin{array}{l} x_{n+1} = \dfrac{\sum_{i = 1}^{n+1} \mu_{1_i} x_{n+1-i}+q_{1_{n+1}} x_{0}+\beta_{1} t^{\beta_{1}-1}_{n} \phi(\Delta t)^{\alpha_{1}}\left(ax_{n}(1-y_{n})(1+z_{n})\right)}{1+\beta_{1} t^{\beta_{1}-1}_{n} \phi(\Delta t)^{\alpha_{1}} x_{n}y_{n}} \\ y_{n+1} = \dfrac{\sum_{i = 1}^{n+1} \mu_{2_i} y_{n+1-i}+q_{2_{n+1}} y_{0}+\beta_{2} t^{\beta_{2} -1}_{n} \phi(\Delta t)^{\alpha_{2}}\left(by_{n}(1-z_{n})(1+x_{n})\right)}{1+\beta_{2} t^{\beta_{2} -1}_{n} \phi(\Delta t)^{\alpha_{2}} y_{n}z_{n}}\\ z_{n+1} = \dfrac{\sum_{i = 1}^{n+1} \mu_{3_i} z_{n+1-i}+q_{3_{n+1}} z_{0}+\beta_{3} t^{\beta_{3}-1}_{n} \phi(\Delta t)^{\alpha_{3}}\left(cz_{n}(1-x_{n})(1+y_{n})\right)}{1+\beta_{3} t^{\beta_{3}-1}_{n} \phi(\Delta t)^{\alpha_{3}} x_{n}z_{n}}. \end{array}\right. \end{equation} (4.3)

    In this section we analyze the dynamics of the incommensurate by taking the initial conditions (x_{0}, \, y_{0}, \, z_{0}) = (0.4, 0.5, 0.5) , (\beta_{1}, \, \beta_{2}, \, \beta_{3}) = (1, 1, 1) and by selecting different values of the fractional-orders \alpha_{1}, \, \alpha_{2}, \; \alpha_{3} and varying the set of parameter (a, b, c).

    Definition 5.1. [36] The equilibrium point E is called a saddle point of index one (two) if the Jacobian matrix evaluated at point E has exactly one (two) eigenvalue with non-negative real part. Scrolls are generally created only around the saddle points of index two.

    The Following Lemma gives the sufficient condition to exhibit the equilibrium point E a stability nature.

    Lemma 5.2. [37] The equilibrium point E of the fractional-order system is locally asymptotically stable in the Lyapunov sense if the following condition is satisfied:

    \begin{equation} \dfrac{\pi }{2\delta} -\min\limits_{\lambda\in\{\lambda:\, \Delta(\lambda) = 0\}}\Big|\arg(\lambda)\Big| < 0, \end{equation} (5.1)

    where \Delta(\lambda) = det(J-\operatorname{diag}(\lambda^{\delta \alpha_{1}}, \, ..., \, \lambda^{\delta \alpha_{k}})) and J = (\dfrac{\partial F_{i}}{\partial x_{j}}) _{i, j = 1, ..., k} is the Jacobian matrix evaluated at E. The parameter \delta is the least common multiple of the denominators q_{i} s of \alpha _{i} s, where \alpha _{i} = \dfrac{p_{i}}{q_{i}} , (p_{i}, q_{i}) = 1 , p_{i}, q_{i}\in \mathbb{Z} ^{+} .

    If the condition (5.1) does not satisfy, we are in the following state.

    Lemma 5.3. [38] A necessary condition for fractional-order system to exhibit the chaotic attractor is

    \begin{equation} \dfrac{\pi }{2\delta} -\min\limits_{\lambda\in\{\lambda:\, \Delta(\lambda) = 0\}}\Big|\arg(\lambda)\Big|\geq0. \end{equation} (5.2)

    Furthermore, the number {\pi }/{2\delta} -\min_{\lambda\in\{\lambda:\, \Delta(\lambda) = 0\}}|\arg(\lambda)| is called the instability measure for equilibrium points in fractional order systems (in short IMFOS).

    The Jacobian matrix of system (1.3) is

    J = \left(\begin{array}{ccc} a(1-y)(1+z)-2xy &-ax(1+z)-x^{2} &ax(1-y)\\\\ by(1-z)& b(1-z)(1+x)-2yz&-by(1+x)-y^{2} \\\\-cz(1+y)-z^{2}& cz(1-x)&c(1-x)(1+y) -2zx\end{array}\right) .

    In [39], the authors established that the system (1.3) has five real equilibrium points, where four of them are obtained analytically and can be described as follows:

    1) \; E_{0} = (0, 0, 0),

    2) \; E_{1} = (0, -1, (\frac{b}{b - 1})), \text{ if } b \neq 1 ,

    3) \; E_{2} = ((\frac{c}{c - 1}), 0, -1), \text{ if } c \neq 1 ,

    4) \; E_{3} = (-1, (\frac{a}{a - 1}), 0), \text{ if } a \neq 1 ,

    Because they have negative coordinates, the equilibrium points E_{1}, \, E_{2}, and E_{3} are irrelevant to the ensuing dynamics (negative populations are not defined and, consequently, the dynamics must take place in the positive octant). The equilibrium point E_{0} relates to a situation in which there is no cell at all. The fifth equilibrium point changes according to the set of parameters (a, b, c) . The following Table 1 gives the index of saddle points (ISP), and the IMFOSs of three sets selected parameters and different fractional-orders.

    Table 1.  The IMFOSs and the index of saddle points (ISP) of the incommensurate fractal-fractional-order cancer model (1.3) for different fractional-orders and system parameters, and (\beta_{1}, \beta_{2}, \beta_{3}) = (1, 1, 1) .
    Cases Paramaters ISP Equilibrium point \alpha s IMFOS
    1 \left\{\begin{array}{l} a= 0.2834 \\ b= 0.6825 \\ c=0.3581 \end{array}\right. 2 E_{*}=\left(\begin{array}{c} 0.450576 \\ 0.510738 \\ 0.65968\end{array}\right) \alpha=\left(\begin{array}{c} 0.96 \\ 0.88 \\ 0.9 \end{array}\right) \dfrac{\pi}{100} - 0.0327=-1.3427 10^{-3}
    2 \left\{\begin{array}{l} a= 0.55 \\ b = 0.7 \\ c = 0.56 \end{array}\right. 2 E_{**}=\left(\begin{array}{c} 0.582529 \\ 0.608397 \\ 0.645491 \end{array}\right) \alpha=\left(\begin{array}{c} 0.97 \\ 0.96 \\ 0.85 \end{array}\right) \dfrac{\pi}{200} -0.016217=-5.091\times10^{-4}
    3 \left\{\begin{array}{l} a=0.38 \\ b=0.78 \\ c=0.42 \end{array}\right. 2 E_{***}=\left(\begin{array}{c} 0.493405 \\ 0.563188 \\ 0.674089 \end{array}\right) \alpha=\left(\begin{array}{c} 0.98 \\ 0.99 \\ 0.96 \end{array}\right) \dfrac{\pi}{200} -0.003622=1.2086\times10^{-2}

     | Show Table
    DownLoad: CSV

    According to Table 1 the IMFOSs for the equilibrium points E_{*} and E_{**} are negative numbers, which implies that E_{*} and E_{**} are stables. Therefore, for the given derivative orders, the systems in case 1 and case 2 do not have the necessary condition to exhibit chaos. Numerical simulation results in Figures 1 and 2, respectively, confirm this conclusion. In the third case, Table 1 shows that the IMFOS is non-negative number, and the equilibrium point E_{***} is a saddle point of index 2. This implies that the system (1.3) in case 3 in The Table 1 satisfies the necessary condition for exhibiting a 1-scroll attractor. As shown in Figure 3, numerical simulation results confirm this conclusion.

    Figure 1.  Numerical simulation for the system in (1.3) of the case 2 as stated in the Table 1 using the GL-NSFDM scheme. (a): Time behaviors of the three state variables: x(t), y(t) and z(t) . (b)–(d): The corresponding projection in xy; yz and xz planes, respectively. (e):Behavior of the model in xyz -plane.
    Figure 2.  Results of the numerical simulation for the system in (1.3) of the case 2 as stated in the Table 1 using the GL-NSFDM scheme. (a): Time behaviors of the three state variables: x(t), y(t) and z(t) . (b)–(d): The corresponding projection in xy; yz and xz planes, respectively. (e):Behavior of the model in xyz -plane.
    Figure 3.  Results of the numerical simulation for the system in (1.3) of the case 3 as stated in the Table 1 using the GL-NSFDM scheme. (a): Time behaviors of the three state variables: x(t), y(t) and z(t) . (b)–(d): The corresponding projection in xy; yz and xz planes, respectively. (e):Behavior of the model (1.3) in xyz -plane.

    Here, we are going to demonstrate the stability of Ulam-Hyers sense of the proposed model. We adopt the following definitions from [40].

    Definition 6.1. Let (X, d_{G}) be a generalized metric space and F: X \rightarrow X be an operator. Then, the fixed point equation

    \begin{equation} X = F(X), \end{equation} (6.1)

    is said to be generalized Ulam-Hyers stable if there exists an increasing function \psi: \mathbb{R}_{+}^{m} \rightarrow \mathbb{R}_{+}^{m} , continuous in 0_{ \mathbb{R} ^{m}} with \psi(0) = 0 , such that, for any \varepsilon: = \left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right) with \varepsilon_{i} > 0 for i \in\{1, \ldots, m\} and any solution Y^{*} \in X of the inequalities

    d_{G}(Y^{*}, F(Y^{*})) \preccurlyeq \varepsilon,

    there exists a solution X^{*} of (6.1) such that

    d_{G}\left(X^{*}, Y^{*}\right) \preccurlyeq \psi(\varepsilon) .

    Consider a small perturbation \Phi: = (\Phi_{1}, \Phi_{2}, \Phi_{3}) \in \mathcal{C}([0, {T}])\times\mathcal{C}([0, {T}])\times\mathcal{C}([0, {T}]) such that \Phi(0_{ \mathbb{R}^{3}}) = 0_{ \mathbb{R}^{3}} . Let

    |\Phi_{i}(t)| \leq \varepsilon_{{i}} , for \varepsilon_{{i}} > 0 \; i = 1, ..3.

    \begin{equation} \left\{\begin{array}{l} { }_{0}^{C} D^{\alpha_{1}, \beta_{1}} x = a x(1-y)(1+z)-x^{2} y +\Phi_{1}(t), \\ { }_{0}^{C} D^{\alpha_{2}, \beta_{2}}{y} = b y(1-z)(1+x)-y^{2} z +\Phi_{2}(t), \\ { }_{0}^{C} D^{\alpha_{3}, \beta_{3}}z = c z(1-x)(1+y)-z^{2} x+\Phi_{3}(t). \end{array}\right. \end{equation} (6.2)

    Lemma 6.2. The solution of the perturbed model

    \begin{equation} \left\{\begin{array}{l} { }_{0}^{C} D^{\alpha_{1}} x = \beta_{1}t^{\beta_{1}-1}(a x(1-y)(1+z)-x^{2} y +\Phi_{1}(t)), \quad x(0) = x_{0}, \\ { }_{0}^{C} D^{\alpha_{2}}{y} = \beta_{2}t^{\beta_{2}-1}(b y(1-z)(1+x)-y^{2} z +\Phi_{2}(t)), \quad y(0) = y_{0}, \\ { }_{0}^{C} D^{\alpha_{3}}z = \beta_{3}t^{\beta_{3}-1}(c z(1-x)(1+y)-z^{2} x+\Phi_{3}(t)), \quad z(0) = z_{0}, \end{array}\right. \end{equation} (6.3)

    fulfills the relation given below

    \begin{equation} \left\|\begin{pmatrix} x(t)-\left(x(0)+\frac{\beta_{1}}{\Gamma(\alpha_{1})} \int_{0}^{t} s^{\beta_{1}-1}(t-s)^{\alpha_{1}-1} F_{1}(x, y, z)(s ) d s\right)\\ y(t)-\left(y(0)+\frac{\beta_{2}}{\Gamma(\alpha_{2})} \int_{0}^{t} s^{\beta_{2}-1}(t-s)^{\alpha_{2}-1} F_{2}(x, y, z)(t ) d s\right)\\ z(t)-\left(z(0)+\frac{\beta_{3}}{\Gamma(\alpha_{3})} \int_{0}^{t} s^{\beta_{3}-1}(t-s)^{\alpha_{3}-1} F_{3}(x, y, z)(s ) d s\right)\\ \end{pmatrix}\right\|_{G}\preccurlyeq\begin{pmatrix} \Big( \dfrac{\beta_{1} T^{\alpha_{1}+\beta_{1}-1}}{\Gamma ( \alpha_{1}) }\mathcal{H}(\alpha_{1}, \beta_{1})\Big)\varepsilon_{1}\\ \Big( \dfrac{\beta_{2} T^{\alpha_{2}+\beta_{2}-1}}{\Gamma ( \alpha_{2}) }\mathcal{H}(\alpha_{2}, \beta_{2})\Big)\varepsilon_{2}\\ \Big( \dfrac{\beta_{3} T^{\alpha_{3}+\beta_{3}-1}}{\Gamma ( \alpha_{3}) }\mathcal{H}(\alpha_{3}, \beta_{3})\Big)\varepsilon_{3} \end{pmatrix}. \end{equation} (6.4)

    Proof. The solution of (6.3) is given by

    \begin{equation} \left\{\begin{array}{l} x(t) = x_{0}+\dfrac{\beta_{1}}{\Gamma(\alpha_{1})}\int_{0}^{t}\dfrac{(t-s)^{\alpha_{1}-1}}{s^{1-\beta_{1}}}\Big(F_{1}(x, y, z)(s ) +\Phi_{1}(s)\Big)ds, \\ {y}(t) = y_{0}+\dfrac{\beta_{2}}{\Gamma(\alpha_{2})}\int_{0}^{t}\dfrac{(t-s)^{\alpha_{2}-1}}{s^{1-\beta_{2}}}\Big(F_{2}(x, y, z)(s )+\Phi_{2}(s)\Big)ds, \\ z(t) = z_{0}+\dfrac{\beta_{3}}{\Gamma(\alpha_{3})}\int_{0}^{t}\dfrac{(t-s)^{\alpha_{3}-1}}{s^{1-\beta_{3}}}\Big(F_{3}(x, y, z)(s )+\Phi_{3}(s)\Big)ds. \end{array}\right. \end{equation} (6.5)

    Then, we have

    \begin{aligned} \sup\limits_{t\in[0\, T]}\Big|x(t)&-\left(x_0+\frac{\beta_{1}}{\Gamma(\alpha_{1})} \int_{0}^{t} s^{\beta_{1}-1}(t-s)^{\alpha_{1}-1} F_{1}(x, y, z)(s ) d s\right)\Big| = \sup\limits_{t\in[0\, T]}\Big|x_{0}+\dfrac{\beta_{1}}{\Gamma(\alpha_{1})}\times\\ & \int_{0}^{t}\dfrac{(t-s)^{\alpha_{1}-1}}{s^{1-\beta_{1}}}\Big(F_{1}(x, y, z)(s ) +\Phi_{1}(s)\Big)ds\\&-\left(x_0+\frac{\beta_{1}}{\Gamma(\alpha_{1})} \int_{0}^{t} s^{\beta_{1}-1}(t-s)^{\alpha_{1}-1} F_{1}(x, y, z)(s ) d s\right)\Big|\\& = \sup\limits_{t\in[0\, T]}\Big|\dfrac{\beta_{1}}{\Gamma(\alpha_{1})} \int_{0}^{t}\dfrac{(t-s)^{\alpha_{1}-1}}{s^{1-\beta_{1}}}\Phi_{1}(s) \Big|\\&\leq \Big( \dfrac{\beta_{1} T^{\alpha_{1}+\beta_{1}-1}}{\Gamma ( \alpha_{1}) }\mathcal{H}(\alpha_{1}, \beta_{1})\Big)\varepsilon_{1}, \end{aligned}

    Repeating the same procedure to the second and the third equations of the system (6.3), we have

    \sup\limits_{t\in[0\, T]}\Big|y(t)-\left(y_0+\frac{\beta_{2}}{\Gamma(\alpha_{2})} \int_{0}^{t} s^{\beta_{2}-1}(t-s)^{\alpha_{2}-1} F_{2}(x, y, z)(s ) d s\right)\Big|\leq \Big( \dfrac{\beta_{2} T^{\alpha_{2}+\beta_{2}-1}}{\Gamma ( \alpha_{2}) }\mathcal{H}(\alpha_{2}, \beta_{2})\Big)\varepsilon_{2},
    \sup\limits_{t\in[0\, T]}\Big|z(t)-\left(z_0+\frac{\beta_{3}}{\Gamma(\alpha_{3})} \int_{0}^{t} s^{\beta_{3}-1}(t-s)^{\alpha_{3}-1} F_{3}(x, y, z)(s ) d s\right)\Big|\leq \Big( \dfrac{\beta_{3} T^{\alpha_{3}+\beta_{3}-1}}{\Gamma ( \alpha_{3}) }\mathcal{H}(\alpha_{3}, \beta_{3})\Big)\varepsilon_{3}.

    Hence, the proof is completed.

    Theorem 6.3. If the matrix \varTheta (3.3) converges to O_{3} , then (1.3) is generalized Ulam-Hyers stable.

    Proof. Let X = (x, y, z) be any solution of the inequality (6.4), and let X^{*} = (x^{*}, y^{*}, z^{*}) be the unique solution of (1.3), then

    \begin{aligned} \|x-x^{*}\|_{\infty} = &\sup\limits_{t\in[0\, T]} \left|x(t)-\left(x^{*}_0+\frac{\beta_1}{\Gamma(\alpha_{1})} \int_{0}^{t} s^{\beta_1-1}(t-s)^{\alpha_{1}-1} F_1(x^{*}, y^{*}, z^{*})(s)d s\right)\right| \\&\leq\sup\limits_{t\in[0\, T]}\left|x(t)-\left(x_0+\frac{\beta_1}{\Gamma(\alpha_{1})} \int_{0}^{t} s^{\beta_1-1}(t-s)^{\alpha_{1}-1} F_1(x, y, z)(s) d s\right)\right|\\& +\sup\limits_{t\in[0\, T]}\left|\left(x_0+\frac{\beta_1}{\Gamma(\alpha_{1})} \int_{0}^{t} s^{\beta_1-1}(t-s)^{\alpha_{1}-1} F_1(x, y, z)(s) d s\right)\right.\\& -\left.\left(x^{*}_0+\frac{\beta_1}{\Gamma(\alpha_{1})} \int_{0}^{t} s^{\beta_1-1}(t-s)^{\alpha_{1}-1} F_1(x^{*}, y^{*}, z^{*})(s)d s\right)\right| \\& \leq \Big( \dfrac{\beta_{1} T^{\alpha_{1}+\beta_{1}-1}}{\Gamma ( \alpha_{1}) }\mathcal{H}(\alpha_{1}, \beta_{1})\Big)\varepsilon_{1}+ \Big( \dfrac{\beta_{1} T^{\alpha_{1}+\beta_{1}-1}}{\Gamma ( \alpha_{1}) }\mathcal{H}(\alpha_{1}, \beta_{1})\Big)\Big(a \varUpsilon_{1}\Big[(1+\varUpsilon_{3})||y-y^{*}||_{\infty}\\&+(1+\varUpsilon_{2})||z-z^{*}||_{\infty}\Big]+2\varUpsilon_{1}\varUpsilon_{2}||x -x^{*} ||_{\infty}+\varUpsilon_{1}^{2}|| y- y^{*}||_{\infty}\Big) . \end{aligned}

    By the same manner, we find

    \begin{aligned} \|y-y^{*}\|_{\infty} & \leq \Big( \dfrac{\beta_{2} T^{\alpha_{2}+\beta_{2}-1}}{\Gamma ( \alpha_{2}) }\mathcal{H}(\alpha_{2}, \beta_{2})\Big)\varepsilon_{2}+ \Big( \dfrac{\beta_{2} T^{\alpha_{2}+\beta_{2}-1}}{\Gamma ( \alpha_{1}) }\mathcal{H}(\alpha_{1}, \beta_{1})\Big)\Big(b \varUpsilon_{2}\Big[(1+\varUpsilon_{1})||z-z^*||_{\infty}\\&+(1+\varUpsilon_{3})||x-x^*||_{\infty}\Big]+2\varUpsilon_{2}\varUpsilon_{3}||y -y^* ||_{\infty}+\varUpsilon_{2}^{2}|| z- z^*||_{\infty}\Big) , \end{aligned}

    and

    \begin{aligned} \|z-z^{*}\|_{\infty} & \leq \Big( \dfrac{\beta_{3} T^{\alpha_{3}+\beta_{3}-1}}{\Gamma ( \alpha_{3}) }\mathcal{H}(\alpha_{3}, \beta_{3})\Big)\varepsilon_{3}+ \Big( \dfrac{\beta_{3} T^{\alpha_{3}+\beta_{3}-1}}{\Gamma ( \alpha_{3}) }\mathcal{H}(\alpha_{3}, \beta_{3})\Big)\Big(c \varUpsilon_{3}\Big[(1+\varUpsilon_{3})||x-x^{*}||_{\infty}\\&+(1+\varUpsilon_{3})||y-y^{*}||_{\infty}\Big]+2\varUpsilon_{3}\varUpsilon_{1}||z -z^{*} ||_{\infty}+\varUpsilon_{3}^{2}|| x- x^{*}||_{\infty}\Big), \end{aligned}

    Consequently, one can write

    \|X-X^{*}\| _{G}\preccurlyeq\begin{pmatrix} \Big( \dfrac{\beta_{1} T^{\alpha_{1}+\beta_{1}-1}}{\Gamma ( \alpha_{1}) }\mathcal{H}(\alpha_{1}, \beta_{1})\Big)\varepsilon_{1}\\ \Big( \dfrac{\beta_{2} T^{\alpha_{2}+\beta_{2}-1}}{\Gamma ( \alpha_{2}) }\mathcal{H}(\alpha_{2}, \beta_{2})\Big)\varepsilon_{2}\\ \Big( \dfrac{\beta_{3} T^{\alpha_{3}+\beta_{3}-1}}{\Gamma ( \alpha_{3}) }\mathcal{H}(\alpha_{3}, \beta_{3})\Big)\varepsilon_{3} \end{pmatrix} +\varTheta\|X-X^{*}\|_{G} \text {. }

    Since the matrix \varTheta converges to zero, then we have

    \|X-X^{*}\| _{G}\preccurlyeq(I_{3}-\varTheta)^{-1}\begin{pmatrix} \Big( \dfrac{\beta_{1} T^{\alpha_{1}+\beta_{1}-1}}{\Gamma ( \alpha_{1}) }\mathcal{H}(\alpha_{1}, \beta_{1})\Big)\varepsilon_{1}\\ \Big( \dfrac{\beta_{2} T^{\alpha_{2}+\beta_{2}-1}}{\Gamma ( \alpha_{2}) }\mathcal{H}(\alpha_{2}, \beta_{2})\Big)\varepsilon_{2}\\ \Big( \dfrac{\beta_{3} T^{\alpha_{3}+\beta_{3}-1}}{\Gamma ( \alpha_{3}) }\mathcal{H}(\alpha_{3}, \beta_{3})\Big)\varepsilon_{3} \end{pmatrix} \text {. }

    Hence, the solution of the proposed problem is generalized Ulam-Hyers stable.

    Example 6.4. Consider the following fractal-fractional-order cancer model

    \begin{equation} \left\{\begin{array}{l} { }_{0}^{C} D^{0.98, 0.88} x = 0.38 x(1-y)(1+z)-x^{2} y, \quad x(0) = 0.4, \\ { }_{0}^{C} D^{0.99, 0.8}{y} = 0.78 y(1-z)(1+x)-y^{2} z, \quad y(0) = 0.5, \\ { }_{0}^{C} D^{0.96, 0.9}z = 0.42 z(1-x)(1+y)-z^{2} x, \quad z(0) = 0.5. \end{array}\right. \end{equation} (6.6)

    Note that for \beta = (1, 1, 1) the system (6.6) was stated in the third case in Table 1 and exhibit a chaotic behavior, as it have shown in Figure 3. By taking \varUpsilon = (1, 1, 1) we find

    \begin{equation} \varUpsilon\succcurlyeq \begin{pmatrix} \Big( \dfrac{\beta_{1} T^{\alpha_{1}+\beta_{1}-1}}{\Gamma ( \alpha_{1}) }\mathcal{H}(\alpha_{1}, \beta_{1})\Big)|a \varUpsilon_{1}(1-\varUpsilon_{2})(1+\varUpsilon_{3})-\varUpsilon_{1}^{2} \varUpsilon_{2}|\\ \Big( \dfrac{\beta_{2} T^{\alpha_{2}+\beta_{2}-1}}{\Gamma ( \alpha_{2}) }\mathcal{H}(\alpha_{2}, \beta_{2})\Big)|b \varUpsilon_{2}(1-\varUpsilon_{3})(1+\varUpsilon_{1})-\varUpsilon_{2}^{2} \varUpsilon_{3}|\\ \Big( \dfrac{\beta_{3} T^{\alpha_{3}+\beta_{3}-1}}{\Gamma ( \alpha_{3}) }\mathcal{H}(\alpha_{3}, \beta_{3})\Big) |c \varUpsilon_{3}(1-\varUpsilon_{1})(1+\varUpsilon_{2})-\varUpsilon_{3}^{2} \varUpsilon_{1}| \end{pmatrix} = 10^{-3}\times\begin{pmatrix} 1.4017 \\ 3.1789 \\ 1.4322 \end{pmatrix}. \end{equation} (6.7)

    Furthermore,

    \begin{equation} \varTheta = 10^{-3}\times\left(\begin{array}{ccc} 6.3577 & 5.5948 & 2.4159\\\\ 4.9590 & 6.3577 & 8.1379\\\\ 5.8491 & 2.6702 &6.3577 \end{array}\right). \end{equation} (6.8)

    Then, the eigenvalues of matrix \varTheta are as follows:

    \lambda = \begin{pmatrix} 0.016069 \\ 0.0015018 + 0.002671i\\ 0.0015018 - 0.002671i, \end{pmatrix}

    hence, the spectral radius of \varTheta is \rho = 1.6069\times 10^{-2} < 1. As a result, the system (6.6) has a unique solution that is generalized Ulam-Hyers stable according Theorem 3.2 and Theorem 6.3. Figure 4 illustrates the conclusion.

    Figure 4.  Numerical simulation for the system in (1.3) of the case 3 as stated in the Table 1 using the GL-NSFDM scheme. (a): Time behaviors of the three state variables: x(t), y(t) and z(t) . (b)–(d): The corresponding projection in xy; yz and xz planes, respectively. (e):Behavior of the model in xyz -plane.

    This section is devoted to numerical simulations of the proposed model under investigation in the present paper. As described in Table 1 and Example 6.4, the approximate solutions of the fractal-fractional system (1.3) are given in Figures 14 with varying values of fractional-order parameters (\alpha _{1}, \alpha _{2}, \alpha _{3}) , the fractal dimension (\beta _{1}, \beta _{2}, \beta _{3}) and the set parameters (a, b, c) . We briefly presented the simulation of this model using the GL-NSFDM numerical method as given in (4.3). The time interval is [0, 3000] and \phi(t) = exp (t) -1 . MATLAB computer language was used to accomplish all computations in this work.

    By maintaining the fractal dimension (\beta_{1}, \, \beta_{2}, \, \beta_{3}) = (1, 1, 1) , the phase plots in Figures 1 and 2 presented above indicated that the system exhibits a non-chaotic behavior, counter to Figure 3, where the phase portrait shows a chaotic behavior. By varying the fractal dimension of the previous case to \beta = (0.88, 0.8, 0.9) , the fractal-fractional cancer model widths a stable behavior in Figure 4. This demonstrates how the fractal dimension -which is absent in both the fractional and classical models- can turn the behavior of the solutions from chaotic into a stable state and vice versa. By returning to the proposed model, we observe that the parameters (a, b, c) are constants. However, from the biological point of view, these parameters may show a randomness behavior; that is a limitation of our study. In future research, we are focusing on replacing these parameters with Ornstein-Uhlenbeck process to make the model more realistic.

    A mathematical study of the growth of tumor has been discussed in this paper. The contribution is based on describing the cancer process by a novel fractal-fractional order model. This is inspired by population dynamics and contains terms that refer to tumor cells, effector immune cells and healthy tissue cells. The study in [16] is a special case from the present paper. Perov's fixed point theorem showed the existence and the uniqueness result. Besides, the numerical simulations were received with the Grünwald-Letnikovv nonstandard finite difference scheme. The dynamics of the proposed Incommensurate fractal-fractional cancer model were analyzed by varying the value of the fractional order, the fractal dimension and the values of the system parameters. The obtained results are also compatible with theoretical analysis. The proposed model could describe a wide range of biologically observed tumor states, including stable and chaotic states.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    All sources of funding of the study must be disclosed

    The authors declare there is no conflict of interest.



    [1] World Health Organization, Cancer: Fact sheets, 2020, Accessed 3 February 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer.
    [2] A. Fasano, A. Bertuzzi, A. Gandolfi, Mathematical modelling of tumour growth and treatment, in Complex Systems in Biomedicine, Springer, Milano, (2006), 71–108. https://doi.org/10.1007/88-470-0396-2_3
    [3] T. Roose, S. J. Chapman, P. K. Maini. Mathematical models of a vascular tumor growth. SIAM Rev., 49 (2007), 179–208. https://doi.org/10.1137/S0036144504446291
    [4] J. S. Lowengrub, H. B. Frieboes, F. Jin, Y. L. Chuang, X. Li, P. Macklin, et al., Nonlinear modelling of cancer: bridging the gap between cells and tumours, Nonlinearity, 23 (2009), R1. https://doi.org/10.1088/0951-7715/23/1/R01 doi: 10.1088/0951-7715/23/1/R01
    [5] H. M. Byrne, Mathematical biomedicine and modeling a vascular tumor growth, De Gruyter, 2012.
    [6] A. Debbouche, M. V. Polovinkina, I. P. Polovinkin, S. A. David, On the stability of stationary solutions in diffusion models of oncological processes, Eur. Phys. J. Plus, 136 (2021), 0–8. https://doi.org/10.1140/epjp/s13360-020-01070-8 doi: 10.1140/epjp/s13360-020-01070-8
    [7] A. Carlos, J. A.Valentim, Rabi, S. A. David, Fractional mathematical oncology: On the potential of non-integer order calculus applied to interdisciplinary models, Biosystems, 204 (2021), 104377. https://doi.org/10.1016/j.biosystems.2021.104377 doi: 10.1016/j.biosystems.2021.104377
    [8] Z. Sabir, M. Munawar, M. A. Abdelkawy, M. A. Z. Raja, C. Ünlü, M. B. Jeelani, A. S. Alnahdi, Numerical investigations of the fractional-order mathematical model underlying immune-chemotherapeutic treatment for breast cancer using the neural networks, Fractal Fract., 6 (2022), 184. https://doi.org/10.3390/fractalfract6040184 doi: 10.3390/fractalfract6040184
    [9] J. Manimaran, L. Shangerganesh, A. Debbouche, V. Antonov, Numerical solutions for time-fractional cancer invasion system with nonlocal diffusion, Front. Phys., 7 (2019). https://doi.org/10.3389/fphy.2019.00093
    [10] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 20 (1963), 130–141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
    [11] T. Matsumoto, A chaotic attractor from Chua's circuit, IEEE Trans. Circuits Syst., 31 (1984), 1055–1058. https://doi.org/10.1109/TCS.1984.1085459 doi: 10.1109/TCS.1984.1085459
    [12] K. Agladze, V. Krinsky, A. Pertsov, Chaos in the non-stirred Belousov–Zhabotinsky reaction is induced by interaction of waves and stationary dissipative structures, Nature, 308 (1984), 834–835. https://doi.org/10.1038/308834a0 doi: 10.1038/308834a0
    [13] W. C. Chen, Nonlinear dynamics and chaos in a fractional-order financial system, Chaos Solitons Fractals, 36 (2008), 1305–1314. https://doi.org/10.1016/j.chaos.2006.07.051 doi: 10.1016/j.chaos.2006.07.051
    [14] N. Sweilam, S. AL. Mekhlafi, D. Mohamed, Novel chaotic systems with fractional differential operators: Numerical approaches, Chaos Solitons Fractals, 142 (2021), 110475. https://doi.org/10.1016/j.chaos.2020.110475 doi: 10.1016/j.chaos.2020.110475
    [15] K. M. Ravi, A. Divya, C. Adwitiya, H. Sk. Sarif, Dynamics of a three dimensional chaotic cancer model, Int. J. Math. Trends Technol., 53 (2018), 353–368. https://doi.org/10.14445/22315373/IJMTT-V53P544 doi: 10.14445/22315373/IJMTT-V53P544
    [16] N. Debbouche, A. Ouannas, G. Grassi, A. B. A. Al-Hussein, F. R. Tahir, K. M. Saad, et al., Chaos in cancer tumor growth model with commensurate and incommensurate fractional-order derivatives, Comput. Math. Methods Med., 2022 (2022). https://doi.org/10.1155/2022/9898129
    [17] S. S. Sajjadi, D. Baleanu, A. Jajarmi, H. M. Pirouz, A new adaptive synchronization and hyperchaos control of a biological snap oscillator, Chaos Solitons Fractals, 138 (2020), 109919. https://doi.org/10.1016/j.chaos.2020.109919 doi: 10.1016/j.chaos.2020.109919
    [18] S. Vaidyanathan, Global chaos synchronization of the Lotka-Volterra biological systems with four competitive species via active control, Int. J. PharmTech Res., 8 (2015), 206–217.
    [19] C. Huang, W. Juan, C. Xiaoping, C. Jinde, Bifurcations in a fractional-order BAM neural network with four different delays, Neural Networks, 141 (2021), 344–354. https://doi.org/10.1016/j.neunet.2021.04.005 doi: 10.1016/j.neunet.2021.04.005
    [20] P. Li, Y. Lu, C. Xu, J. Ren, Insight into hopf bifurcation and control methods in fractional order BAM neural networks incorporating symmetric structure and delay, Cognit. Comput., (2023), 1–43. https://doi.org/10.1007/s12559-023-10155-2
    [21] C. Xu, D. Mu, Y. Pan, C. Aouiti, L. Yao, Exploring bifurcation in a fractional-order predator-prey system with mixed delays, J. Appl. Anal. Comput., 13 (2023), 1119–1136. https://doi.org/10.11948/20210313 doi: 10.11948/20210313
    [22] A. Atangana, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
    [23] J. Gomez-Aguilar, T. Cordova-Fraga, T. Abdeljawad, A. Khan, H. Khan, Analysis of fractal–fractional Malaria transmission model, Fractals, 28 (2020), 2040041. https://doi.org/10.1142/S0218348X20400411 doi: 10.1142/S0218348X20400411
    [24] K. Shah, M. Arfan, I. Mahariq, A. Ahmadian, S. Salahshour, M. Ferrara, Fractal-fractional mathematical model addressing the situation of corona virus in Pakistan, Results Phys., 19 (2020), 103560. https://doi.org/10.1016/j.rinp.2020.103560 doi: 10.1016/j.rinp.2020.103560
    [25] M. Alqhtani, K. M. Saad, Fractal–fractional Michaelis–Menten enzymatic reaction model via different kernels, Fractal Fract., 6 (2021), 13. https://doi.org/10.3390/fractalfract6010013 doi: 10.3390/fractalfract6010013
    [26] K. M. Saad, M. Alqhtani, J. Gómez-Aguilar, Fractal-fractional study of the hepatitis c virus infection model, Results Phys., 19 (2020), 103555. https://doi.org/10.1016/j.rinp.2020.103555 doi: 10.1016/j.rinp.2020.103555
    [27] R. E. Mickens, Nonstandard finite difference models of differential equations, World scientific, 1994.
    [28] R. E. Mickens, Applications of nonstandard finite difference schemes, World Scientific, 2000.
    [29] D. Baleanu, R. L. Magin, S. Bhalekar, V. Daftardar-Gejji, Chaos in the fractional order nonlinear Bloch equation with delay, Commun. Nonlinear Sci. Numerical Simul., 25 (2015), 41–49. https://doi.org/10.1111/aej.12107 doi: 10.1111/aej.12107
    [30] R. S. Varga, Matrix iterative analysis Springer-Verlag, New York, Berlin, Heidelberg, 2000.
    [31] A. Perov, On the Cauchy problem for a system of ordinary differential equations, Priblijen, Metod Res. Dif. Urav. Kiev, 1964.
    [32] A. Atangana, S. Qureshi, Modeling attractors of chaotic dynamical systems with fractal–fractional operators, Chaos Solitons Fractals, 123 (2019), 320–337. https://doi.org/10.1016/j.chaos.2019.04.020 doi: 10.1016/j.chaos.2019.04.020
    [33] A. J. Arenas, G. Gonzalez-Parra, B. M. Chen-Charpentier, Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order, Math. Comput. Simul., 121 (2016), 48–63. https://doi.org/10.1016/j.matcom.2015.09.001 doi: 10.1016/j.matcom.2015.09.001
    [34] Z. Iqbal, N. Ahmed, D. Baleanu, W. Adel, M. Rafiq, M. A. u. Rehman, Positivity and boundedness preserving numerical algorithm for the solution of fractional nonlinear epidemic model of HIV/AIDS transmission, Chaos Solitons Fractals, 134 (2020), 109706. https://doi.org/10.1016/j.chaos.2020.109706 doi: 10.1016/j.chaos.2020.109706
    [35] R. Scherer, S. L. Kalla, Y. Tang, J. Huang, The grünwald–letnikov method for fractional differential equations, Comput. Math. Appl., 62 (2011), 902–917. https://doi.org/10.1016/j.camwa.2011.03.054 doi: 10.1016/j.camwa.2011.03.054
    [36] M. S. Tavazoei, M. Haeri, A necessary condition for double scroll attractor existence in fractional-order systems, Phys. Letters A, 367 (2007), 102–113. https://doi.org/10.1016/j.physleta.2007.05.081 doi: 10.1016/j.physleta.2007.05.081
    [37] W. Deng, C. Li, J. Lü, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dyn., 48 (2007), 409–416. https://doi.org/10.1007/s11071-006-9094-0 doi: 10.1007/s11071-006-9094-0
    [38] M. S. Tavazoei, M. Haeri, Chaotic attractors in incommensurate fractional order systems, Phys. D Nonlinear Phenom., 237 (2008), 2628–2637. https://doi.org/10.1016/j.physd.2008.03.037 doi: 10.1016/j.physd.2008.03.037
    [39] R. K. Maddali, D. Ahluwalia, A. Chaudhuri, S. S. Hassan, Dynamics of a three dimensional chaotic cancer model, Int. J. Math. Trends Technol., 53 (2018), 353–368. https://doi.org/10.14445/22315373/IJMTT-V53P544 doi: 10.14445/22315373/IJMTT-V53P544
    [40] C. Urs, Ulam-Hyers stability for coupled fixed points of contractive type operators, J. Nonlinear Sci. Appl., 6 (2013), 124–136. https://doi.org/10.22436/jnsa.006.02.08 doi: 10.22436/jnsa.006.02.08
  • This article has been cited by:

    1. Weam G. Alharbi, M. Maneea, Khalid K. Ali, Optimizing fractional mathematical frameworks for cancer tumor analysis with residual power series, 2025, 194, 09600779, 116157, 10.1016/j.chaos.2025.116157
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1639) PDF downloads(100) Cited by(1)

Figures and Tables

Figures(4)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog