In this article, the dynamical behavior of a complex food chain model under a fractal fractional Caputo (FFC) derivative is investigated. The dynamical population of the proposed model is categorized as prey populations, intermediate predators, and top predators. The top predators are subdivided into mature predators and immature predators. Using fixed point theory, we calculate the existence, uniqueness, and stability of the solution. We examined the possibility of obtaining new dynamical results with fractal-fractional derivatives in the Caputo sense and present the results for several non-integer orders. The fractional Adams-Bashforth iterative technique is used for an approximate solution of the proposed model. It is observed that the effects of the applied scheme are more valuable and can be implemented to study the dynamical behavior of many nonlinear mathematical models with a variety of fractional orders and fractal dimensions.
Citation: Adnan Sami, Amir Ali, Ramsha Shafqat, Nuttapol Pakkaranang, Mati ur Rahmamn. Analysis of food chain mathematical model under fractal fractional Caputo derivative[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 2094-2109. doi: 10.3934/mbe.2023097
In this article, the dynamical behavior of a complex food chain model under a fractal fractional Caputo (FFC) derivative is investigated. The dynamical population of the proposed model is categorized as prey populations, intermediate predators, and top predators. The top predators are subdivided into mature predators and immature predators. Using fixed point theory, we calculate the existence, uniqueness, and stability of the solution. We examined the possibility of obtaining new dynamical results with fractal-fractional derivatives in the Caputo sense and present the results for several non-integer orders. The fractional Adams-Bashforth iterative technique is used for an approximate solution of the proposed model. It is observed that the effects of the applied scheme are more valuable and can be implemented to study the dynamical behavior of many nonlinear mathematical models with a variety of fractional orders and fractal dimensions.
[1] | R. K. Naji, Global stability and persistence of three species food web involving omnivory, Iraqi J. Sci., 53 (2012), 866–876. |
[2] | B. Nath, K. P. Das, Density dependent mortality of intermediate predator controls chaos-conclusion drawn from a tri-trophic food chain, J. Korean Soc. Ind. Appl. Math., 22 (2018), 179–199. https://doi.org/10.12941/jksiam.2018.22.179 doi: 10.12941/jksiam.2018.22.179 |
[3] | S. Gakkhar, A. Priyadarshi, S. Banerjee, Complex behavior in four species food-web model, J. Bio. Dyn., 6 (2012), 440–456. https://doi.org/10.1002/num.22603 doi: 10.1002/num.22603 |
[4] | M. Kondoh, S. Kato, Y. Sakato, Food webs are built up with nested subwebs, Ecology, 91 (2010), 3123–3130. https://doi.org/10.1890/09-2219.1 doi: 10.1890/09-2219.1 |
[5] | R. D. Holt, J. Grover, D. Tilman, Simple rules for interspecific dominance in systems with exploitative and apparent competition, Am. Nat. 144 (1994), 741–771. https://doi.org/10.1086/285705 doi: 10.1086/285705 |
[6] | C. Huang, Y. Qiao, L. Huang, R. P. Agarwal, Dynamical behaviors of a food-chain model with stage structure and time delays, Adv. Differ. Equations, 2018 (2018), 1–26. https://doi.org/10.1086/285705 doi: 10.1086/285705 |
[7] | R. K. Naji, H. F. Ridha, The dynamics of four species food web model with stage structur, Int. J. Technol. Enhanc. Emerg. Eng. Res., 4 (2016), 13–32. https://doi.org/10.1186/s13662-018-1589-8 doi: 10.1186/s13662-018-1589-8 |
[8] | L. Persson, A. M. De Roos, D. Claessen, P. Byström, J. Lövgren, S. Sjögren, et al., Gigantic cannibals driving a whole-lake trophic cascade, Proc. Natl. Acad. Sci., 100 (2003), 4035–4039. https://doi.org/10.1073/pnas.0636404100 doi: 10.1073/pnas.0636404100 |
[9] | F. Van den Bosch, W. Gabriel, Cannibalism in an age-structured predator-prey system, Bull. Math. Biol., 59 (1997), 551–567. https://doi.org/10.1073/pnas.0636404100 doi: 10.1073/pnas.0636404100 |
[10] | J. Jurado-Molina, C. Gatica, L. A. Cubillos, Incorporating cannibalism into an age-structured model for the Chilean hake, Fish. Res., 82 (2006), 30–40. https://doi.org/10.1016/j.fishres.2006.08.018 doi: 10.1016/j.fishres.2006.08.018 |
[11] | O. Diekmann, R. M. Nisbet, W. S. C. Gurney, F. Van den Bosch, Simple mathematical models for cannibalism: A critique and a new approach, Math. Biosci., 78 (1986), 21–46. https://doi.org/10.1016/0025-5564(86)90029-5 doi: 10.1016/0025-5564(86)90029-5 |
[12] | J. Bhattacharyya, S. Pal, Coexistence of competing predators in a coral reef ecosystem, Nonlinear Anal. Real World Appl., 12 (2011), 965–978. https://doi.org/10.1016/j.nonrwa.2010.08.020 doi: 10.1016/j.nonrwa.2010.08.020 |
[13] | S. Kumar, A. Kumar, B. Samet, H. Dutta, A study on fractional host-parasitoid population dynamical model to describe insect species, Numer. Method Partial Differ. Equation, 37 (2021), 1673–1692. https://doi.org/10.1002/num.22603 doi: 10.1002/num.22603 |
[14] | S. Kumar, A. Kumar, M. Jleli, A numerical analysis for fractional model of the spread of pests in tea plants, Numer. Method Partial Differ. Equation, 38 (2022), 540–565. https://doi.org/10.1002/num.22603 doi: 10.1002/num.22603 |
[15] | A. A. Kilbas,, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[16] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, preprint, arXiv: 1602.03408v1. |
[17] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Frac. Differ. Appl., 1, (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201 |
[18] | M. ur Rahman, Generalized fractal-fractional order problems under non-singular Mittag-Leffler kernel, Results Phys., 35, (2022), 105346. https://doi.org/10.1016/j.rinp.2022.105346 doi: 10.1016/j.rinp.2022.105346 |
[19] | T. Q. Tang, Z. Shah, R. Jan, E. Alzahrani, Modeling the dynamics of tumor-immune cells interactions via fractional calculus, Eur. Phys. J. Plus, 137 (2022), 1–18. https://doi.org/10.1140/epjp/s13360-022-02591-0 doi: 10.1140/epjp/s13360-022-02591-0 |
[20] | F. Özkösea, M. Yavuz, M. T. Şenel, R. Habbireeh, Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom, Chaos Solitons Fractals, 157 (2022), 111954. https://doi.org/10.1016/j.chaos.2022.111954 doi: 10.1016/j.chaos.2022.111954 |
[21] | A. S. Alnahdi, R. Shafqat, A. U. K. Niazi, M. B. Jeelani, Pattern formation induced by fuzzy fractional-order model of COVID-19. Axioms, 11 (2022), 313. https://doi.org/10.3390/axioms11070313 doi: 10.3390/axioms11070313 |
[22] | A. Atangana, S. Qureshi, Modeling attractors of chaotic dynamical systems with fractal fractional operators, Chaos Soliton Fractals, 123 (2019), 320–337. https://doi.org/10.1016/j.chaos.2019.04.020 doi: 10.1016/j.chaos.2019.04.020 |
[23] | S. Saifullah, A. Ali, E. F. D. Goufo, Investigation of complex behavior of fractal fractional chaotic attractor with mittag-leffler Kernel, Chaos Soliton Fractals, 152 (2021). https://doi.org/10.1016/j.chaos.2021.111332 doi: 10.1016/j.chaos.2021.111332 |
[24] | A. Atangana, S. Jain, A new numerical approximation of the fractal ordinary differential equation, Eur. Phys. J. Plus, 133 (2018), 1–15. https://doi.org/10.1140/epjp/i2018-11895-1 doi: 10.1140/epjp/i2018-11895-1 |
[25] | Adnan, S. Ahmad, A. Ullah, M. B. Riaz, A. Ali, A. Akgüld, M. Partohaghighi, Complex dynamics of multi strain TB model under nonlocal and nonsingular fractal fractional operator, Results Phys., (2021), 104823. https://doi.org/10.1016/j.rinp.2021.104823 doi: 10.1016/j.rinp.2021.104823 |
[26] | K. Owolabi, A. Atangana, A. Akgul, Modeling and analysis of fractal fractional partial differential equations: Application to reaction-diffusion model, Alexandria Eng. J., 59 (2020), 2477–2490. https://doi.org/10.1016/j.aej.2020.03.022 doi: 10.1016/j.aej.2020.03.022 |
[27] | A. Atangana, A. Ali, K. Owolabi, Analysis of fractal fractional differential equations, Alexandria Eng. J., 59 (2020), 1117–1134. https://doi.org/10.1016/j.aej.2020.01.005 doi: 10.1016/j.aej.2020.01.005 |
[28] | T. Q. Tang, Z. Shah, E. Bonyah, R. Jan, M. Shutaywi, N. Alreshidi, Modeling and analysis of breast cancer with adverse reactions of chemotherapy treatment through fractional derivative, Comput. Math. Methods Med., 2022 (2022), 5636844 https://doi.org/10.1155/2022/5636844 doi: 10.1155/2022/5636844 |
[29] | Z. U. A. Zafar, N. Ali, M. Inc, Z. Shah, S. Younas, Mathematical modeling of corona virus (COVID-19) and stability analysis, Comput. Methods Biomechan. Biomed. Eng., (2022), forthcoming. https://doi.org/10.1080/10255842.2022.2109020 doi: 10.1080/10255842.2022.2109020 |
[30] | I. U. Haq, M. Yavuz, N. Ali, A. Akgül, A SARS-CoV-2 fractional-order mathematical model via the modified euler method, Math. Comput. Appl., 27 (2022), 82. https://doi.org/10.3390/mca27050082 doi: 10.3390/mca27050082 |
[31] | P. A. Naik, P. Ahmad, Z. Eskandari, M. Yavuz, J. Zu, Complex dynamics of a discrete-time Bazykin–Berezovskaya prey-predator model with a strong Allee effect, J. Comput. Appl. Math., 413 (2022), 114401. https://doi.org/10.1016/j.cam.2022.114401 doi: 10.1016/j.cam.2022.114401 |
[32] | M. Yavuz, N. Sene, Stability analysis and numerical computation of the fractional predator-prey model with the harvesting rate, Fractal Fract., 4 (2020), 35. https://doi.org/10.3390/fractalfract4030035 doi: 10.3390/fractalfract4030035 |
[33] | E. Bonyah, M. Yavuz, D. Baleanu, S. Kumar, A robust study on the listeriosis disease by adopting fractal-fractional operators, Alexandria Eng. J., 61 (2022), 2016–2028. https://doi.org/10.1016/j.aej.2021.07.010 doi: 10.1016/j.aej.2021.07.010 |
[34] | Z. Hammouch, M. Yavuz, N. Özdemir, Numerical solutions and synchronization of a variable-order fractional chaotic system, Math. Modell. Numer. Simul. Appl., 1 (2021), 11–23. https://doi.org/10.1016/j.aej.2021.07.010 doi: 10.1016/j.aej.2021.07.010 |
[35] | A. Din, M. Z. Abidin, Analysis of fractional-order vaccinated Hepatitis-B epidemic model with Mittag-Leffler kernels, Math. Modell. Numer. Simul. Appl., 2 (2022), 59–72. https://doi.org/10.53391/mmnsa.2022.006 doi: 10.53391/mmnsa.2022.006 |
[36] | R. T. Alqahtani, S. Ahmad, A. Akgül, Dynamical analysis of bio-ethanol production model under generalized nonlocal operator in Caputo sense, Mathematics, 9 (2021), 2370. https://doi.org/10.3390/math9192370 doi: 10.3390/math9192370 |
[37] | V. S. Erturk, P. Kumar, Solution of a COVID-19 model via new generalized Caputo-type fractional derivatives, Chaos Solitons Fractals, 139 (2020), 110280. https://doi.org/10.1016/j.chaos.2020.110280 doi: 10.1016/j.chaos.2020.110280 |
[38] | H. A. Ibrahim, R. K. Naji, The complex dynamic in three species food webmodel involving stage structure and cannibalism, in AIP Conference Proceedings, 2292 (2020), 020006. https://doi.org/10.1063/5.0030510 |
[39] | L. Zhongfei, L. Zhuang, M. A. Khan, Fractional investigation of bank data with fractal fractional caputo derivative, Chaos Solitons Fractals, 131 (2020), 109528. https://doi.org/10.1016/j.chaos.2019.109528 doi: 10.1016/j.chaos.2019.109528 |
[40] | A. Atangana, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027 |
[41] | A. Granas, J. Dugundji, Fixed Point Theory, Springer, New York, 2005. |
[42] | M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, Eur. Phys. J. Plus., 132 (2017), 444. https://doi.org/10.1140/epjp/i2017-11717-0 doi: 10.1140/epjp/i2017-11717-0 |