Research article Special Issues

Modelling the impact of vaccination and environmental transmission on the dynamics of monkeypox virus under Caputo operator


  • Received: 11 January 2023 Revised: 19 March 2023 Accepted: 21 March 2023 Published: 29 March 2023
  • In this study, we examine the impact of vaccination and environmental transmission on the dynamics of the monkeypox. We formulate and analyze a mathematical model for the dynamics of monkeypox virus transmission under Caputo fractional order. We obtain the basic reproduction number, the conditions for the local and global asymptotic stability for the disease-free equilibrium of the model. Under the Caputo fractional order, existence and uniqueness solutions have been determined using fixed point theorem. Numerical trajectories are obtained. Furthermore, we explored some of the sensitive parameters impact. Based on the trajectories, we hypothesised that the memory index or fractional order could use to control the Monkeypox virus transmission dynamics. We observed that if the proper vaccination is administrated, public health education is given, and practice like personal hygiene and proper disinfection spray, the infected individuals decreases.

    Citation: Emmanuel Addai, Mercy Ngungu, Musibau Abayomi Omoloye, Edmore Marinda. Modelling the impact of vaccination and environmental transmission on the dynamics of monkeypox virus under Caputo operator[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 10174-10199. doi: 10.3934/mbe.2023446

    Related Papers:

  • In this study, we examine the impact of vaccination and environmental transmission on the dynamics of the monkeypox. We formulate and analyze a mathematical model for the dynamics of monkeypox virus transmission under Caputo fractional order. We obtain the basic reproduction number, the conditions for the local and global asymptotic stability for the disease-free equilibrium of the model. Under the Caputo fractional order, existence and uniqueness solutions have been determined using fixed point theorem. Numerical trajectories are obtained. Furthermore, we explored some of the sensitive parameters impact. Based on the trajectories, we hypothesised that the memory index or fractional order could use to control the Monkeypox virus transmission dynamics. We observed that if the proper vaccination is administrated, public health education is given, and practice like personal hygiene and proper disinfection spray, the infected individuals decreases.



    加载中


    [1] World Health Organization (WHO), 2022 Mpox (Monkeypox) outbreak: global trends, 2022. Available from: https://worldhealthorg.shinyapps.io/mpx_global/.
    [2] H. Harapan, Y. Ophinni, D. Megawati, A. Frediansyah, S. S. Mamada, M. Salampe, et al., Monkeypox: a comprehensive review, Viruses, 14 (2022), 2155. https://doi.org/10.3390/v14102155 doi: 10.3390/v14102155
    [3] E. M. Bunge, B. Hoet, L. Chen, F. Lienert, H. Weidenthaler, L. R. Baer, et al., The changing epidemiology of human monkeypox-A potential threat? A systematic review, PLoS Negl. Trop. Dis., 16 (2022), e0010141. https://doi.org/10.1371/journal.pntd.0010141 doi: 10.1371/journal.pntd.0010141
    [4] Centers for Disease Control and Prevention (CDC), 2022 Mpox outbreak global map, 2022. Available from: https://www.cdc.gov/poxvirus/monkeypox/response/2022/world-map.html.
    [5] World Health Organization (WHO), WHO director-general declares the ongoing Monkeypox otbreak a public health emergency of international concern, 2022. Available from: https://www.who.int/europe/news/item/23-07-2022-who-director-general-declares-the-ongoing-monkeypox-outbreak-a-public-health-event-of-international-concern.
    [6] N. I. O. Silva, J. S. de Oliveira, E. G. Kroon, G. de Souza Trindade, B. P. Drumond, There, and everywhere: The wide host range and geographic distribution of zoonotic orthopoxviruses, Viruses, 13 (2020), 43. https://doi.org/10.3390/v13010043 doi: 10.3390/v13010043
    [7] Y. Huang, L. Mu, W. Wang, Monkeypox: Epidemiology, pathogenesis, treatment and prevention, Signal Transduct. Target. Ther., 7 (2022), 373. https://doi.org/10.1038/s41392-022-01215-4
    [8] M. G. Reynolds, D. S. Carroll, K. L. Karem, Factors affecting the likelihood of monkeypox's emergence and spread in the post-smallpox era, Curr. Opin. Virol., 2 (2012), 335–343. https://doi.org/10.1016/j.coviro.2012.02.004 doi: 10.1016/j.coviro.2012.02.004
    [9] S. Usman, I. I. Adamu, Modeling the transmission dynamics of the Monkeypox virus infection with treatment and vaccination interventions, J. Appl. Math. Phys., 5 (2017), 2335–2353. https://doi.org/10.4236/jamp.2017.512191 doi: 10.4236/jamp.2017.512191
    [10] A. B. Al-Tammemi, R. Albakri, S. Alabsi, The outbreak of human Monkeypox in 2022: A changing epidemiology or an impending aftereffect of smallpox eradication? Front. Trop. Dis., 3 (2022), 951380. https://doi.org/10.3389/fitd.2022.951380
    [11] L. G. Lulli, A. Baldassarre, N. Mucci, G. Arcangeli, Prevention, risk exposure, and knowledge of Monkeypox in occupational settings: a scoping review, Trop. Med. Infect. Dis., 7 (2022), 276. https://doi.org/10.3390/tropicalmed7100276 doi: 10.3390/tropicalmed7100276
    [12] S. Parker, A. Nuara, R. M. Buller, D. A. Schultz, Human monkeypox: an emerging zoonotic disease, Future Microbiol., 2 (2007), 17–34. https://doi.org/10.2217/17460913.2.1.17 doi: 10.2217/17460913.2.1.17
    [13] K. Brown, P. A. Leggat, Human monkeypox: Current state of knowledge and implications for the future, Trop. Med. Infect. Dis., 1 (2016), 8. https://doi.org/10.3390/tropicalmed1010008 doi: 10.3390/tropicalmed1010008
    [14] World Health Organization (WHO), Monkeypox strategic preparedness, readiness, and response plan (SPRP), 2022. Available from: https://www.who.int/publications/m/item/monkeypox-strategic-preparedness–readiness–and-response-plan-(sprp).
    [15] N. Z. Alshahrani, F. Alzahrani, A. M. Alarifi, M. R. Algethami, M. N. Alhumam, H. A. M. Ayied, et al., Assessment of knowledge of monkeypox viral infection among the general population in Saudi Arabia, Pathogens, 11 (2022), 904. https://doi.org/10.3390/pathogens11080904 doi: 10.3390/pathogens11080904
    [16] H. Harapan, A. M. Setiawan, A. Yufika, S. Anwar, S. Wahyuni, F. W. Asrizal, et al., Knowledge of human monkeypox viral infection among general practitioners: a cross-sectional study in Indonesia, Pathog. Glob. Health, 114 (2020), 68–75. https://doi.org/10.1080/20477724.2020.1743037 doi: 10.1080/20477724.2020.1743037
    [17] M. Sallam, K. Al-Mahzoum, L. A. Dardas, A. B. Al-Tammemi, L. Al-Majali, H. Al-Naimat, et al., Knowledge of human monkeypox and its relation to conspiracy beliefs among students in Jordanian health schools: filling the knowledge gap on emerging zoonotic viruses, Medicina, 58 (2022), 924. https://doi.org/10.3390/medicina58070924 doi: 10.3390/medicina58070924
    [18] A. Kaur, R. Goel, R. Singh, A. Bhardwaj, R. Kumari, R. S. Gambhir, Identifying monkeypox: do dental professionals have adequate knowledge and awareness, Rocz. Panstw. Zakl. Hig., 73 (2022), 365–371. https://doi.org/10.32394/rpzh.2022.0226 doi: 10.32394/rpzh.2022.0226
    [19] H. Harapan, A. L. Wagner, A. Yufika, A. M. Setiawan, S. Anwar, S. Wahyuni, et al., Acceptance and willingness to pay for a hypothetical vaccine against monkeypox viral infection among frontline physicians: a cross-sectional study in Indonesia, Vaccine, 38 (2020), 6800–6806. https://doi.org/10.1016/j.vaccine.2020.08.034 doi: 10.1016/j.vaccine.2020.08.034
    [20] C. Dong, Z. Yu, Y. Zhao, X. Ma, Knowledge and vaccination intention of monkeypox in China's general population: a cross-sectional online survey, Travel Med. Infect. Dis., 52 (2023), 102533. https://doi.org/10.1016/j.tmaid.2022.102533 doi: 10.1016/j.tmaid.2022.102533
    [21] E. Addai, L. Zhang, J. K. K. Asamoah, J. F. Essel, A fractional order age-specific smoke epidemic model, Appl. Math. Modell., 119 (2023), 99–118. https://doi.org/10.1016/j.apm.2023.02.019 doi: 10.1016/j.apm.2023.02.019
    [22] M. Higazy, M. A. Alyami, New Caputo-Fabrizio fractional order SEIASqEqHR model for COVID-19 epidemic transmission with genetic algorithm based control strategy, Alex. Eng. J., 59 (2020), 4719–4736. https://doi.org/10.1016/j.aej.2020.08.034 doi: 10.1016/j.aej.2020.08.034
    [23] D. Baleanu, A. Jajarmi, H. Mohammad, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos, Solitons Fractals, 134 (2020), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705
    [24] S. Wutiphol, A. Turab, Mathematical analysis of an extended SEIR model of COVID-19 using the ABC-Fractional operator, Math. Comput. Simul., 198 (2022), 65–84. https://doi.org/10.1016/j.matcom.2022.02.009 doi: 10.1016/j.matcom.2022.02.009
    [25] J. K. K. Asamoah, E. Okyere, E. Yankson, A. A. Opoku, A. Adom-Konadu, E. Acheampong, et al., Non-fractional and fractional mathematical analysis and simulations for Q fever, Chaos, Solitons Fractals, 156 (2022), 111821. https://doi.org/10.1016/j.chaos.2022.111821 doi: 10.1016/j.chaos.2022.111821
    [26] L. L. Zhang, E. Addai, J. Ackora-Prah, Y. D. Arthur, J. K. K. Asamoah, Fractional-order Ebola-Malaria coinfection model with a focus on detection and treatment rate, Comput. Math. Methods Med., 2022 (2022), 6502598. https://doi.org/10.1155/2022/6502598 doi: 10.1155/2022/6502598
    [27] S. Kumar, R. P. Chauhan, S. Momani, S. Hadid, Numerical investigations on COVID-19 model through singular and non-singular fractional operators, Numer. Methods Partial Differ. Equations, 2020 (2020), 1–27. https://doi.org/10.1002/num.22707 doi: 10.1002/num.22707
    [28] M. Aslam, R. Murtaza, T. Abdeljawad, G. ur Rahman, A. Khan, H. Khan, et al., A fractional order HIV/AIDS epidemic model with Mittag-Leffler kernel, Adv. Differ. Equations, 107 (2021), 1–5. https://doi.org/10.1186/s13662-021-03264-5 doi: 10.1186/s13662-021-03264-5
    [29] O. J. Peter, F. A. Oguntolu, M. M. Ojo, A. O. Oyeniyi, R. Jan, I. Khan, Fractional order mathematical model of monkeypox transmission dynamics, Phys. Scr., 97 (2022), 084005. https://doi.org/10.1088/1402-4896/ac7ebc doi: 10.1088/1402-4896/ac7ebc
    [30] O. J. Peter, S. Kumar, N. Kumari, F. A. Oguntolu, K. Oshinubi, R. Musa, Transmission dynamics of Monkeypox virus: a mathematical modelling approach, Model. Earth Syst. Environ., 8 (2022), 3423–3434. https://doi.org/10.1007/s40808-021-01313-2 doi: 10.1007/s40808-021-01313-2
    [31] M. Ngungu, E. Addai, A. Adeniji, U. M. Adam, K. Oshinubi K., Mathematical epidemiological modeling and analysis of monkeypox dynamism with non-pharmaceutical intervention using real data from United Kingdom, Front. Public Health, 11 (2023), 1101436. https://doi.org/10.3389/fpubh.2023.1101436 doi: 10.3389/fpubh.2023.1101436
    [32] J. Singh, D. Kumar, M. A. Qurashi, D. Baleanu, A new fractional model for giving up smoking dynamics, Adv. Differ. Equations, 88 (2017). https://doi.org/10.1186/s13662-017-1139-9
    [33] Q. T. Ain, N. Anjum, D. Anwarud, A. Zeb, S. Djilali, Z. A Khan, On the analysis of Caputo fractional order dynamics of Middle East Lungs Coronavirus (MERS-CoV) model, Alexandria Eng. J., 61 (2022), 5123–5131. https://doi.org/10.1016/j.aej.2021.10.016 doi: 10.1016/j.aej.2021.10.016
    [34] U. T. Mustapha, S. Qureshi, A. Yusuf, E. Hincal, Fractional modeling for the spread of Hookworm infection under Caputo operator, Chaos, Solitons Fractals, 137 (2020), 109878. https://doi.org/10.1016/j.chaos.2020.109878 doi: 10.1016/j.chaos.2020.109878
    [35] I. Ahmed, I. A. Baba, A. Yusuf, P. Kumam, W. Kumam, Analysis of Caputo fractional-order model for COVID-19 with lockdown, Adv. Differ. Equations, 394 (2020). https://doi.org/10.1186/s13662-020-02853-0
    [36] E. Addai, L. L. Zhang, A. K. Preko, J. K. K. Asamoah, Fractional order epidemiological model of SARS-CoV-2 dynamism involving Alzheimer's disease, Healthcare Anal., 2 (2022), 100114. https://doi.org/10.1016/j.health.2022.100114 doi: 10.1016/j.health.2022.100114
    [37] A. Abdulhamid, N. Hussaini, Effects of quarantine on transmission dynamics of Lassa fever, Bayero J. Pure Appl. Sci., 11 (2019), 397. https://doi.org/10.4314/bajopas.v11i1.64S doi: 10.4314/bajopas.v11i1.64S
    [38] E. Ahmed, A. M. A. El-Sayed, H. A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models, J. Math. Anal. Appl., 325 (2007), 542–553. https://doi.org/10.1016/j.jmaa.2006.01.087 doi: 10.1016/j.jmaa.2006.01.087
    [39] P. van den Driessche, J. Wanmough, Reproduction numbers and sub-threshold endemic equilibria for compartimental models of disease transmition, Math. Biosci., 180 (2000), 29–48. https://doi.org/10.1016/s0025-5564(02)00108-6 doi: 10.1016/s0025-5564(02)00108-6
    [40] A. Atangana, K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Phenom., 13 (2018), 3. https://doi.org/10.1051/mmnp/2018041 doi: 10.1051/mmnp/2018041
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1760) PDF downloads(149) Cited by(9)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog