Research article Special Issues

Numerical and graphical simulation of the non-linear fractional dynamical system of bone mineralization

  • Received: 01 January 2024 Revised: 13 February 2024 Accepted: 20 February 2024 Published: 04 March 2024
  • The objective of the present study was to improve our understanding of the complex biological process of bone mineralization by performing mathematical modeling with the Caputo-Fabrizio fractional operator. To obtain a better understanding of Komarova's bone mineralization process, we have thoroughly examined the boundedness, existence, and uniqueness of solutions and stability analysis within this framework. To determine how model parameters affect the behavior of the system, sensitivity analysis was carried out. Furthermore, the fractional Adams-Bashforth method has been used to carry out numerical and graphical simulations. Our work is significant owing to its comparison of fractional- and integer-order models, which provides novel insight into the effectiveness of fractional operators in representing the complex dynamics of bone mineralization.

    Citation: Ritu Agarwal, Pooja Airan, Mohammad Sajid. Numerical and graphical simulation of the non-linear fractional dynamical system of bone mineralization[J]. Mathematical Biosciences and Engineering, 2024, 21(4): 5138-5163. doi: 10.3934/mbe.2024227

    Related Papers:

  • The objective of the present study was to improve our understanding of the complex biological process of bone mineralization by performing mathematical modeling with the Caputo-Fabrizio fractional operator. To obtain a better understanding of Komarova's bone mineralization process, we have thoroughly examined the boundedness, existence, and uniqueness of solutions and stability analysis within this framework. To determine how model parameters affect the behavior of the system, sensitivity analysis was carried out. Furthermore, the fractional Adams-Bashforth method has been used to carry out numerical and graphical simulations. Our work is significant owing to its comparison of fractional- and integer-order models, which provides novel insight into the effectiveness of fractional operators in representing the complex dynamics of bone mineralization.



    加载中


    [1] L. Liu, S. Chen, M. Small, J. M. Moore, K. Shang, Global stability and optimal control of epidemics in heterogeneously structured populations exhibiting adaptive behavior, Commun. Nonlinear Sci. Numer. Simul., 126 (2023), 107500. https://doi.org/10.1016/j.cnsns.2023.107500 doi: 10.1016/j.cnsns.2023.107500
    [2] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fract. Calculus Models Numer. Methods, 3 (2012). World Scientific.
    [3] K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
    [4] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory Appl. Fract. Differ. Equat., 204 (2006), Elsevier.
    [5] M. A. Abdulwasaa, M. S. Abdo, K. Shah, T. A. Nofal, S. K. Panchal, S. V. Kawale, et al., Fractal-fractional mathematical modeling and forecasting of new cases and deaths of COVID-19 epidemic outbreaks in India, Results Phys., 20 (2021), 103702. https://doi.org/10.1016/j.rinp.2020.103702 doi: 10.1016/j.rinp.2020.103702
    [6] B. Dhar, P. K. Gupta, M. Sajid, Solution of a dynamical memory effect COVID-19 infection system with leaky vaccination efficacy by non-singular kernel fractional derivatives, Math. Biosci. Eng., 19 (2022), 4341–4367. http://dx.doi.org/10.3934/mbe.2022201 doi: 10.3934/mbe.2022201
    [7] R. Agarwal, S. Jain, R. P. Agarwal, Mathematical modeling and analysis of dynamics of cytosolic calcium ion in astrocytes using fractional calculus, J. Fract. Calculus Appl., 9 (2018), 1–12.
    [8] R. Agarwal, Kritika, S. D. Purohit, D. Kumar, Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator, Discrete Contin. Dynam. Syst.-S, 14 (2021), 3387–3399.
    [9] R. M. Pandey, A. Chandola, R. Agarwal, Mathematical model and interpretation of crowding effects on SARS-CoV-2 using Atangana-Baleanu fractional operator, in Methods of Mathematical Modeling, Elsevier, 2022, 41–58. https://doi.org/10.1016/B978-0-323-99888-8.00009-7
    [10] J. Mishra, R. Agarwal, A. Atangana, Math. Model. Soft Comput. Epidemiol., CRC Press, 2020.
    [11] M. P. Yadav, R. Agarwal, S. D. Purohit, D. Kumar, D. L. Suthar, Groundwater flow in karstic aquifer: Analytic solution of dual-porosity fractional model to simulate groundwater flow, Appl. Math. Sci. Eng., 30 (2022), 598–608. https://doi.org/10.1080/27690911.2022.2117913 doi: 10.1080/27690911.2022.2117913
    [12] Z. Li, Y. Peng, H. Peng, J. Peng, Z. Li, Simulation of borehole shrinkage in shale based on the triaxial fractional constitutive equation, Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 8 (2022), 65.
    [13] Y. Peng, A. Luo, Y. Li, Y. Wu, W. Xu, K. Sepehrnoori, Fractional model for simulating long-term fracture conductivity decay of shale gas and its influences on the well production, Fuel, 351 (2023), 129052. https://doi.org/10.1016/j.fuel.2023.129052 doi: 10.1016/j.fuel.2023.129052
    [14] A. W. Wharmby, R. L. Bagley, Modifying maxwell's equations for dielectric materials based on techniques from viscoelasticity and concepts from fractional calculus, Int. J. Eng. Sci., 79 (2014), 59–80. https://doi.org/10.1016/j.ijengsci.2014.02.004 doi: 10.1016/j.ijengsci.2014.02.004
    [15] M. Caputo, Linear models of dissipation whose Q is almost frequency independent—II, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [16] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress Fract. Differ. Appl., 1 (2015), 1–13. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [17] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl, 1 (2015), 87–92. http://dx.doi.org/10.12785/pfda/010202 doi: 10.12785/pfda/010202
    [18] P. Fratzl, H. Gupta, E. Paschalis, P. Roschger, Structure and mechanical quality of the collagen–mineral nano-composite in bone, Journal of Materials Chemistry, 14 (2004), 2115–2123.
    [19] C. W. Scheele, L. Dobbin, The collected papers of Carl Wilhelm Scheele, Kraus Reprint, 1971.
    [20] A. L. Boskey, A. S. Posner, Bone structure, composition, and mineralization., Orthop. Clin. North Am., 15 (1984), 597–612.
    [21] P. Roschger, H. Gupta, A. Berzlanovich, G. Ittner, D. Dempster, P. Fratzl, et al., Constant mineralization density distribution in cancellous human bone, Bone, 32 (2003), 316–323. https://doi.org/10.1016/S8756-3282(02)00973-0 doi: 10.1016/S8756-3282(02)00973-0
    [22] S. Nikolov, D. Raabe, Hierarchical modeling of the elastic properties of bone at submicron scales: The role of extrafibrillar mineralization, Biophys. J., 94 (2008), 4220–4232. https://doi.org/10.1529/biophysj.107.125567 doi: 10.1529/biophysj.107.125567
    [23] J. Crolet, M. Racila, R. Mahraoui, A. Meunier, A new numerical concept for modeling hydroxyapatite in human cortical bone, Comput. Methods Biomech. Biomed. Eng., 8 (2005), 139–143. https://doi.org/10.1080/10255840500156971 doi: 10.1080/10255840500156971
    [24] M. Grynpas, Age and disease-related changes in the mineral of bone, Calcif. Tissue Int., 53 (1993), S57–S64.
    [25] J. L. Niño-Barrera, M. L. Gutiérrez, D. A. Garzón-Alvarado, A theoretical model of dentinogenesis: Dentin and dentinal tubule formation, Comput. Methods Programs Biomed., 112 (2013), 219–227. https://doi.org/10.1016/j.cmpb.2013.06.010 doi: 10.1016/j.cmpb.2013.06.010
    [26] I. Petráš, J. Terpák, Fractional calculus as a simple tool for modeling and analysis of long memory process in industry, Mathematics, 7 (2019), 511. https://doi.org/10.3390/math7060511 doi: 10.3390/math7060511
    [27] S. V. Komarova, L. Safranek, J. Gopalakrishnan, M. Ou, M. McKee, M. Murshed, et al., Mathematical model for bone mineralization, Front. Cell Dev. Biol., 3 (2015). https://doi.org/10.3389/fcell.2015.00051
    [28] V. E. Tarasov, S. S. Tarasova, Fractional derivatives and integrals: What are they needed for?, Mathematics, 8 (2020), 164. https://doi.org/10.3390/math8020164 doi: 10.3390/math8020164
    [29] R. Agarwal, P. Airan, C. Midha, Mathematical analysis of the non-linear dynamics of the bone mineralization, in Mathematical Methods in Medical and Biological Sciences (ed. H. Singh), Elsevier, 2023, communicated.
    [30] K. Diethelm, A fractional calculus based model for the simulation of an outbreak of dengue fever, Nonlinear Dynam., 71 (2013), 613–619.
    [31] S. Chen, M. Small, X. Fu, Global stability of epidemic models with imperfect vaccination and quarantine on scale-free networks, IEEE Transact. Network Sci. Eng., 7 (2019), 1583–1596.
    [32] A. Atangana, S. I. Araz, New Numerical Scheme with Newton Polynomial: Theory, Methods, and Applications, Academic Press, 2021.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(722) PDF downloads(122) Cited by(3)

Article outline

Figures and Tables

Figures(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog