
https://www.aimspress.com/journal/mbe

MBE, 21(4): 5138–5163.
DOI: 10.3934/mbe.2024227
Received: 01 January 2024
Revised: 13 February 2024
Accepted: 20 February 2024
Published: 04 March 2024

Research article

Numerical and graphical simulation of the non-linear fractional dynamical
system of bone mineralization

Ritu Agarwal1, Pooja Airan1 and Mohammad Sajid2,∗

1 Department of Mathematics, Malaviya National Institute of Technology, Jaipur 302017, India
2 Department of Mechanical Engineering, College of Engineering, Qassim University, Buraydah

51452, Saudi Arabia

* Correspondence: Email: msajd@qu.edu.sa; Tel: +966-16-3013761.

Abstract: The objective of the present study was to improve our understanding of the complex bio-
logical process of bone mineralization by performing mathematical modeling with the Caputo-Fabrizio
fractional operator. To obtain a better understanding of Komarova’s bone mineralization process, we
have thoroughly examined the boundedness, existence, and uniqueness of solutions and stability anal-
ysis within this framework. To determine how model parameters affect the behavior of the system,
sensitivity analysis was carried out. Furthermore, the fractional Adams-Bashforth method has been
used to carry out numerical and graphical simulations. Our work is significant owing to its comparison
of fractional- and integer-order models, which provides novel insight into the effectiveness of fractional
operators in representing the complex dynamics of bone mineralization.
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1. Introduction

Mathematical modeling is a powerful approach used in various scientific disciplines, including
physics, engineering, economics, and biology [1]. It involves the construction of mathematical rep-
resentations to describe, analyze, and predict real-world phenomena. In the context of biological sys-
tems, mathematical modeling plays a crucial role in obtaining an understanding of complex processes
such as population dynamics, biochemical reactions, neural networks, and the spread of diseases.

In recent years, there has been a notable surge in the utilization of fractional calculus to model
and elucidate biological processes. Fractional calculus has emerged as a sophisticated mathematical
framework that enriches the traditional integer-order calculus by extending the concept of derivatives
and integrals to non-integer orders (see, e.g., [2–4]).
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The study of a dynamical system through the use of a fractional mathematical model provides a
very convenient way of analyzing the phenomenon [5, 6]. Modeling in fractional calculus helps us
to completely understand the past course of the problem, evaluate the current situation, or predict the
future course under different scenarios. Various mathematical models in fractional calculus have been
studied by various researchers. For example, the dynamics of cytosolic calcium ions in astrocytes has
been studied in [7, 8], various models of epidemiology in [9, 10], groundwater flow in karst aquifers
in [11], modeling accuracy for complex systems like viscoelastic materials and anomalous diffusion
processes in [12–14], and many others.

In 1967, Caputo [15] proposed a classic definition for a fractional derivative that overcomes the
drawback of the Riemann-Liouville fractional derivative and allows the use of the classic initial con-
ditions associated with integer-order differential equations. Caputo defined the fractional derivative in
the following form:

Definition 1.1. Suppose that ν > 0, t > x, a, x ∈ R, and the fractional operator

C
a Dν

x f (x) =


1

Γ(n − ν)

∫ x

a
(x − t)n−ν−1 f (n)(t)dt, n − 1 < ν < n

dn f
dxn , ν = n

(1.1)

is called the Caputo fractional derivative or Caputo fractional differential operator of order ν, where
f (x) ∈ ACn[a, b].

Equivalently, in the convolved form, we have

C
a Dν

x f (x) =
1

Γ(n − ν)
f (n)(x) ∗ (xn−ν−1), n = [Re(ν)] + 1, x ∈ (a, b). (1.2)

Caputo and Fabrizio [16], in 2015, compiled available data regarding fractional derivatives, presenting
a new branch of fractional calculus based on fractional operators with exponential, non-singular smooth
kernels.

Let H1(a, b) = { f | f ∈ L2(a, b) and f ′ ∈ L2(a, b)}, where L2(a, b) is the space of square-integrable
functions on the interval (a, b).

Definition 1.2. Let ν ∈ (0, 1), f (x) ∈ H1(a, b), and the Caputo-Fabrizio (C–F) fractional derivative be
defined as

CF
0 Dν

x f (x) =
Z(ν)
1 − ν

∫ x

0
exp

(
−
ν(x − t)
1 − ν

)
f ′(t)dt, (1.3)

where Z(ν) is the normalization function such that Z(0) = Z(1) = 1.
The C–F operator, in terms of convolution, can be expressed as follows:

CF
0 Dν

x f (x) =
Z(ν)
1 − ν

f ′(x) ∗ exp
(
−

ν

1 − ν
x
)
. (1.4)

Losada and Nieto [17] derived the appropriate C–F fractional integral. The formal definition is as
follows:

Definition 1.3. The C–F fractional integral for the function f of order ν ∈ [0, 1) is given by

CF
0 Iνx f (x) =

1 − ν
Z(ν)

f (x) +
ν

Z(ν)

∫ x

0
f (t)dt, x ∈ (a, b). (1.5)
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Fractional-order models differ from classical integer-order models in that they can address non-
locality, anomalous diffusion, nonlinear phenomena, memory effects, lag, etc, in various science and
engineering phenomena, taking into account the history and locally dispersed effects (see, e.g., [2, 3]).
In this study, we have attempted to modify the standard bone mineralization model by employing the
C–F fractional differential operator.

The structure of bone material can be presented by the interaction of two dynamic processes known
as mineralization and remodeling. Remodeling is the process whereby old, initially rigid bone is re-
placed with new, softer material. On the other side, mineralization refers to the occurrence of inorganic
precipitation over an organic background. Since the bone material stiffens as a result of the mineral-
ization process, this process plays an essential role in the stability of the bone [18].

Bone mineralization is a complex process that involves the deposition of minerals, primarily cal-
cium and phosphate, onto the extracellular matrix of bone. The presence of calcium phosphate minerals
in bone was initially noted by Scheele and Dobbin in 1771 [19]. The organic bone matrix crystallizes
hydroxyapatite [Ca10(PO4)6(OH)2] as a result of the precipitation of calcium and phosphate during
the mineralization process [20]. The collagen matrix stiffens as a result of the mineralization process.
The degree of mineralization is an essential determinant of bone quality since it modifies the matrix
material’s elastic modulus; the higher the degree of mineralization, the stiffer the material [21]. In ad-
dition to the organic matrix’s material characteristics, the amount of mineral is an essential component
in the stiffness of the bone material [18]. According to current theories, mineral clusters occur in the
surrounding fluid and are thought to attach to specific regions of the collagen matrix as the first steps in
the mineralization of newly deposited collagen. At the level of mineralized collagen fibrils, the elastic
characteristics of bone are discussed in [22]. A novel modeling technique that enables the computation
of physical characteristics of the human cortical bone is discussed in [23]. The mineralization profiles
within a particular bone using various techniques are discussed in [24], and the development of dentin
and dentinal tubules and their relation to mineralization and diffusion processes are covered in [25].

The dynamics of mineral deposition and resorption during bone mineralization can be viewed from
a new perspective by using fractional calculus [26]. Motivated by the results obtained by researchers
using fractional operators for various biological models, in this paper, we have fractionalized Ko-
marova’s bone mineralization model by using the C-F derivative and investigated the dynamics of the
new model qualitatively.

This article is organized into various sections, as follows: Section 2 introduces the mathematical
model of the dynamics of bone mineralization; in Section 3, the stability, existence, and uniqueness of
the solution are discussed; Section 4 describes the numerical and graphical simulations and the sensi-
tivity analysis with respect to the various parameters of the model; finally, Section 5 is the conclusion
section.

2. Mathematical model

Komarova et al. [27], in 2015, proposed the following mathematical bone mineralization model,
which successfully describes the nonlinear mineralization dynamics. Komarova et al. described the
dynamics of bone mineralization by applying integer order and explained the behavior of each vari-
able. We consider the C–F derivative that has non-singular kernels and hence describes the distributed
time delay and lag phenomenon [28]. The fractionalized mathematical model describes a process in
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a more realistic way than the integer order. Mineralization processes start with a lag and have a fi-
nite speed. The change in the number of raw collagen does not lead to instantaneous mineralization.
The developed model is highly efficient in terms of predicting mineralization disorders. The model
contains 5 important variables, including raw collagen, mature collagen, inhibitors, nucleators, and
mineralization.

The following system of equations describes the dynamics of bone mineralization:

dφ
dt

= −κφ,

dψ
dt

= κφ,

dθ
dt

= βφ − εψθ,

dπ
dt

= λ
dψ
dt
− υ

dω
dt
π,

dω
dt

= η
(

ρ

ρ + θσ

)
π.

(2.1)

The variables and parameters of the model are defined as follows:
φ is the concentration of the raw collagen,
ψ is the concentration of the mature collagen,
θ is the number of inhibitors that prevent raw collagen from converting into mature collagen,
π is the number of nucleators that act on the mature collagen so that mineralization occurs,
ω is the mineral,
κ is the rate at which collagen cross-linking takes place and is inversely related to time lag during
mineralization,
β is the rate at which the inhibitors are released into the extracellular compartment near the cells and
diffuse through immature collagen,
ε is the rate of removal of inhibitors and is stimulated in the presence of a mature collagen matrix,
λ is the number of nucleators per mature collagen molecule,
υ is the rate of nucleator removal,
η is the rate at which mineralization takes place.

The following presumptions are used in the mathematical modeling of the mineralization process:

• Matrix mineralization is modeled with assumed homogeneity.
• Inhibitors prevent raw collagen from converting into mature collagen.
• A nucleator is required to initiate mineralization, which happens quickly.
• Nucleators produced during collagen maturation are eliminated from the system at a rate that is

proportional to the rate of mineralization.

Agarwal et al. [29] studied the integer-order model of bone mineralization. We hereby study the
fractionalized model involving the C–F derivative, which has a non-singular kernel.

Upon replacing the integer-order derivative in (2.1) with C–F fractional derivative and balancing
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the dimensions [30], we obtain

CF
0 Dν

tφ = −κνφ,
CF
0 Dν

tψ = κνφ,
CF
0 Dν

t θ = βνφ − ενψθ,

CF
0 Dν

t π = λ
(

CF
0 Dν

tψ
)
− υ

(
CF
0 Dν

tω
)
π,

CF
0 Dν

tω = ην
(

ρ

ρ + θσ

)
π.

(2.2)

To make the system dimensionless, we apply the following substitutions:

Φ =
φ

φ̂
, Ψ =

ψ

φ̂
, Θ =

θ

φ̂
, Π =

π

φ̂
, Ω =

ω

ψ̂
,

κ̂ = κν, η̂ = ην
φ̂

ψ̂
, β̂ = βν, ρ̃ =

ρ

φ̂a
, ε̂ = ενφ̂, υ̂ = υψ̂,

(2.3)

the system (2.2) is reduced as follows:

CF
0 Dν

t Φ = −κ̂Φ, (2.4)
CF
0 Dν

t Ψ = κ̂Φ, (2.5)
CF
0 Dν

t Θ = β̂Φ − ε̂ΨΘ, (2.6)
CF
0 Dν

t Π = λ CF
0 Dν

t Ψ − υ̂
CF
0 Dν

t Ω Π, (2.7)
CF
0 Dν

t Ω = η̂
(

ρ̃

ρ̃ + Θσ

)
Π. (2.8)

In the next sections, we analyze the model (2.4) qualitatively and numerically, including the bound-
edness, existence, and uniqueness of the solution and stability analysis of the coupled system of equa-
tions defined above. After that the numerical simulations and sensitivity analysis are presented.

3. Qualitative analysis

This section examines the boundedness, existence, and uniqueness of the system of the differential
equations (2.4)–(2.8). The contraction mapping theorem is used to establish the solution’s existence.
Subsequently, the stability analysis is carried out to determine the future behavior of the system [31].

3.1. Boundedness of the solution

We must demonstrate that the model is biologically feasible and the parameter values are con-
strained before moving to the analytical approach.

Taking the Laplace transform of both sides of the equation (2.4), and using the formula

L[CF
0 Dν

t g(t)] =
sL[g(t)]

s + ν(1 − s)
−

g(0)
s + ν(1 − s)

, (3.1)
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we obtain
sL[Φ(t)]

s + ν(1 − s)
−

Φ(0)
s + ν(1 − s)

= −κ̂L[Φ(t)]

=⇒

[ s
s + ν(1 − s)

+ κ̂
]
L[Φ(t)] =

Φ(0)
s + ν(1 − s)

=⇒ L[Φ(t)] =

(
Φ0

s + ν(1 − s)

)( s + ν(1 − s)
s + κ̂(s + ν(1 − s))

)
, where Φ(0) = Φ0

=⇒ L[Φ(t)] =
Φ0

s(1 + κ̂ − νκ̂) + νκ̂
.

(3.2)

Let

p = 1 + κ̂ − νκ̂,

q = νκ̂.
(3.3)

,

L[Φ(t)] =
Φ0

sp + q
,

Φ(t) = L−1
[

Φ0

sp + q

]
=

Φ0

p
L−1

[ 1
s +

q
p

]
=

Φ0

p
e
−qt

p .
(3.4)

=⇒ Φ(t) > 0, ∀ t, and
∣∣∣Φ(t)

∣∣∣ ≤ Φ0

p
. (3.5)

Hence, Φ(t) is bounded and positive.
Put the value of Φ from (3.4) in (2.5); then, we get

CF
0 Dν

t Ψ =
κ̂Φ0

p
e
−qt

p . (3.6)

Taking the C–F integral, we get

Ψ(t) − Ψ(0) =
1 − ν
Z(ν)

κ̂Φ0

p
e
−qt

p +
ν

Z(ν)

∫ t

0

κ̂Φ0

p
e
−qτ

p dτ

Ψ(t) =
1 − ν
Z(ν)

κ̂Φ0

p
e
−qt

p +
ν

Z(ν)
κ̂Φ0

p
p
q

[
− e

−qτ
p

]t

0

Ψ(t) =
1 − ν
Z(ν)

κ̂Φ0

p
e
−qt

p +
ν

Z(ν)
κ̂Φ0

q

[
1 − e

−qt
p

]
∣∣∣Ψ(t)

∣∣∣ ≤ 1 − ν
Z(ν)

κ̂Φ0

p
+

ν

Z(ν)
κ̂Φ0

q
.

(3.7)

By incorporating the values of p, q from (3.3), we get∣∣∣Ψ(t)
∣∣∣ ≤1 − ν

Z(ν)
κ̂Φ0

1 + κ̂ − νκ̂
+

ν

Z(ν)
κ̂Φ0

νκ̂

=
Φ0

Z(ν)

[
1 +

κ̂(1 − ν)
1 + κ̂(1 − ν)

]
as

κ̂(1 − ν)
1 + κ̂(1 − ν)

< 1

=⇒
∣∣∣Ψ(t)

∣∣∣ < 2Φ0

Z(ν)
.

(3.8)
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This implies that Ψ(t) is bounded.
Given that ε̂ΘΨ > 0, from (2.6), we observe that CF

0 Dν
t Θ ≤ β̂Φ.

Applying the value of Φ from (3.4), we get

CF
0 Dν

t Θ ≤
β̂Φ0

p
e
−qt

p . (3.9)

Applying the C–F integral, we get

Θ(t) − Θ(0) ≤
(1 − ν)
Z(ν)

β̂Φ0

p
e
−qt

p +
ν

Z(ν)

∫ t

0

β̂Φ0

p
e
−qτ

p dτ

≤
1 − ν
Z(ν)

β̂Φ0

p
e
−qt

p +
ν

Z(ν)
β̂Φ0

q

[
1 − e

−qt
p

]
∣∣∣Θ(t)

∣∣∣ ≤ β̂Φ0

Z(ν)

[ 1 − ν
1 + κ̂(1 − ν)

+
1
κ̂

]
.

(3.10)

Hence, Θ(t) is bounded.

Given that CF
0 Dν

t Ω = η̂
(

ρ̃

ρ̃ + Θσ

)
Π > 0, from (2.7), we observe that CF

0 Dν
t Π ≤ κ̂λΦ.

Applying the value of Φ from (3.4), we get

CF
0 Dν

t Π ≤
κ̂λΦ0

p
e
−qt

p . (3.11)

Taking the C–F integral, we get

Π(t) − Π(0) ≤
(1 − ν)
Z(ν)

κ̂λΦ0

p
e
−qt

p +
ν

Z(ν)

∫ t

0

κ̂λΦ0

p
e
−qτ

p dτ

Π(t) ≤
1 − ν
Z(ν)

κ̂λΦ0

p
e
−qt

p +
ν

Z(ν)
κ̂λΦ0

q

[
1 − e

−qt
p

]
, as Π(0) = 0.

=⇒
∣∣∣Π(t)

∣∣∣ ≤ κ̂λΦ0

Z(ν)

[ 1 − ν
1 + κ̂(1 − ν)

+
1
κ̂

]
= ξ (say), [using (3.3)]

(3.12)

Hence, Π(t) is bounded.
Taking the C–F integral of (2.8), we get

Ω(t) −Ω(0) =
1 − ν
Z(ν)

η̂
(

ρ̃

ρ̃ + Θσ

)
Π(t) +

ν

Z(ν)

∫ t

0
η̂
(

ρ̃

ρ̃ + Θσ

)
Π(τ)dτ

Ω(t) ≤ Ω(0) +
1 − ν
Z(ν)

η̂Π(t) +
ν

Z(ν)
η̂

∫ t

0
Π(τ)dτ,

(3.13)

since
(

ρ̃

ρ̃ + Θσ

)
< 1.

Applying the value of Π(t) from (3.12) and integrating, we get

Ω(t) ≤ Ω(0) +
1 − ν
Z(ν)

η̂Π(t) +
νη̂

Z(ν)

[1 − ν
Z(ν)

κ̂λΦ0

q
(1 − e

−qt
p ) +

ν

Z(ν)
κ̂λΦ0

q
(
t +

p
q

e
−qt

p − 1
)]
,

|Ω(t)| ≤ Ω(0) +
1 − ν
Z(ν)

η̂ξ +
νη̂

Z(ν)

[1 − ν
Z(ν)

λΦ0

ν
+
λΦ0

Z(ν)

(
t +

1 + κ̂(1 − 2ν)
νκ̂

)]
.

(3.14)

It can be observed that Ω(t) is bounded for t lying in a bounded interval.
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3.2. Existence and uniqueness of the solution of the Bone mineralization system

In this subsection, we prove the existence and uniqueness of the solution of the nonlinear system of
the differential equations (2.4)–(2.8).

If C(J) is the collection of continuous real-valued functions defined on the interval J ⊂ R. Then,
V = C(J) × C(J) × C(J) × C(J) × C(J) will be a Banach space with the norm for (Φ,Ψ,Θ,Π,Ω) ∈ V ,
defined as ‖(Φ,Ψ,Θ,Π,Ω)‖ = ‖Φ‖+ ‖Ψ‖+ ‖Θ‖+ ‖Π‖+ ‖Ω‖, where Φ,Ψ,Θ,Π,Ω ∈ C(J) and the norm
is the supremum norm, which is defined as ‖ · ‖ = sup

t∈J
| · |.

Here, using the contraction mapping theorem, we prove the existence of the solution of the system
of differential equations given by (2.4)–(2.8).

Applying the C–F integral operator to (2.4)–(2.8) respectively, we obtain

Φ(t) − Φ(0) = CF
0 Iνt (−κ̂Φ),

Ψ(t) − Ψ(0) = CF
0 Iνt (κ̂Φ),

Θ(t) − Θ(0) = CF
0 Iνt (β̂Φ − ε̂ΨΘ),

Π(t) − Π(0) = CF
0 Iνt

(
κ̂λΦ − υ̂η̂

(
ρ̃

ρ̃ + Θσ

)
Π2

)
,

Ω(t) −Ω(0) = CF
0 Iνt

(
η̂
(

ρ̃

ρ̃ + Θσ

)
Π

)
.

(3.15)

Upon using the definition of CF
0 Iνt , we have

Φ(t) − Φ(0) =
1 − ν
Z(ν)

(−κ̂Φ) +
ν

Z(ν)

∫ t

0
−κ̂Φ(τ)dτ, (3.16)

Ψ(t) − Ψ(0) =
1 − ν
Z(ν)

(κ̂Φ) +
ν

Z(ν)

∫ t

0
κ̂Φ(τ)dτ, (3.17)

Θ(t) − Θ(0) =
1 − ν
Z(ν)

(β̂Φ − ε̂ΨΘ) +
ν

Z(ν)

∫ t

0

(
β̂Φ(τ) − ε̂Ψ(τ)Θ(τ)

)
dτ, (3.18)

Π(t) − Π(0) =
1 − ν
Z(ν)

(
κ̂λΦ − υ̂η̂

(
ρ̃

ρ̃ + Θσ

)
Π2

)
+

ν

Z(ν)

∫ t

0

(
κ̂λΦ − υ̂η̂

(
ρ̃

ρ̃ + Θσ

)
Π2(τ)

)
dτ, (3.19)

Ω(t) −Ω(0) =
1 − ν
Z(ν)

η̂
(

ρ̃

ρ̃ + Θσ

)
Π +

ν

Z(ν)

∫ t

0
η̂
(

ρ̃

ρ̃ + Θσ

)
Πdτ. (3.20)

Let us write the following as kernels:

L1(t,Φ) = −κ̂Φ,

L2(t,Ψ) = κ̂Φ,

L3(t,Θ) = β̂Φ − ε̂ΨΘ,

L4(t,Π) = κ̂λΦ − υ̂η̂
(

ρ̃

ρ̃ + Θσ

)
Π2,

L5(t,Ω) = η̂
(

ρ̃

ρ̃ + Θσ

)
Π.

(3.21)
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Theorem 3.1. The Lipschitz condition and contraction would be satisfied by L1,L2,L3,L4,L5 if the

inequalities 0 ≤ κ̂ < 1, 0 ≤
2ε̂Φ0

Z(ν)
< 1, and 0 ≤ 2υ̂λη̂ξ < 1 hold.

Proof. Let us start with L1, and with Φ and Φ(1) as two functions satisfying (2.4) of the bone mineral-
ization model. Then,

‖L1(u,Φ(u)) − L1(u,Φ(1)(u))‖ = ‖ − κ̂Φ(u) + κ̂Φ(1)(u)‖
= ‖ − κ̂(Φ(u) − Φ(1)(u))‖
= | − κ̂| ‖(Φ(u) − Φ(1)(t))‖
= κ̂ ‖Φ(u) − Φ(1)(u)‖.

(3.22)

Clearly, κ̂ is a fixed parameter and Φ(u) is a bounded function. Hence, it satisfies the Lipschitz
condition for L1, and it is contraction if 0 ≤ κ̂ < 1.

The Lipschitz condition is satisfied in the remaining four cases as well, i.e.,

‖L2(u,Ψ(u)) − L2(u,Ψ(1)(u))‖ = κ̂‖Ψ(u) − Ψ(1)(u)‖,

‖L3(u,Θ(u)) − L3(u,Θ(1)(u))‖ =
2ε̂Φ0

Z(ν)
‖Θ(u) − Θ(1)(u)‖,

‖L4(u,Π(u)) − L4(u,Π(1)(u))‖ = 2υ̂λη̂ξ‖Π(u) − Π(1)(u)‖,
‖L5(u,Ω(u)) − L5(u,Ω(1)(u))‖ = 0.

(3.23)

�

Theorem 3.2. The system of equations to model fractional-order bone mineralization, as given by

(2.4)–(2.8), has an exact coupled solution under the condition that there exists a t0 such that
1 − ν
Z(ν)

γi +

ν

Z(ν)
γit0 < 1 holds for

γi =



κ̂, i = 1, 2

ε̂Ψ, i = 3

2υ̂λη̂ξ, i = 4

0, i = 5

(3.24)

and the solution is unique.

Proof. Existence:
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Upon using the above kernels given in (3.21) in the equations (3.16)–(3.20) respectively, we get

Φ(t) − Φ(0) =
1 − ν
Z(ν)
L1(t,Φ) +

ν

Z(ν)

∫ t

0
L1(τ,Φ)dτ,

Ψ(t) − Ψ(0) =
1 − ν
Z(ν)
L2(t,Ψ) +

ν

Z(ν)

∫ t

0
L2(τ,Ψ)dτ,

Θ(t) − Θ(0) =
1 − ν
Z(ν)
L3(t,Θ) +

ν

Z(ν)

∫ t

0
L3(τ,Θ)dτ,

Π(t) − Π(0) =
1 − ν
Z(ν)
L4(t,Π) +

ν

Z(ν)

∫ t

0
L4(τ,Π)dτ,

Ω(t) −Ω(0) =
1 − ν
Z(ν)
L5(t,Ω) +

ν

Z(ν)

∫ t

0
L5(τ,Ω)dτ.

(3.25)

The corresponding recursive formulas are respectively given by

Φ(n)(t) =
1 − ν
Z(ν)
L1(t,Φ(n−1)) +

ν

Z(ν)

∫ t

0
L1(τ,Φ(n−1))dτ,

Ψ(n)(t) =
1 − ν
Z(ν)
L2(t,Ψ(n−1)) +

ν

Z(ν)

∫ t

0
L2(τ,Ψ(n−1))dτ,

Θ(n)(t) =
1 − ν
Z(ν)
L3(t,Θ(n−1)) +

ν

Z(ν)

∫ t

0
L3(τ,Θ(n−1))dτ,

Π(n)(t) =
1 − ν
Z(ν)
L4(t,Π(n−1)) +

ν

Z(ν)

∫ t

0
L4(τ,Π(n−1))dτ,

Ω(n)(t) =
1 − ν
Z(ν)
L5(t,Ω(n−1)) +

ν

Z(ν)

∫ t

0
L5(τ,Ω(n−1))dτ.

(3.26)

The initial conditions are Φ(0) = Φ(0), Ψ(0) = Ψ(0), Θ(0) = Θ(0), Π(0) = Π(0), and Ω(0) = Ω(0).
The following expression respectively represents the differences between the above terms in (3.26)

and their succeeding terms:

P(t) =Φ(n)(t) − Φ(n−1)(t)

=
1 − ν
Z(ν)

(
L1(t,Φ(n−1)) − L1(t,Φ(n−2))

)
+

ν

Z(ν)

∫ t

0

(
L1(τ,Φ(n−1)) − L1(τ,Φ(n−2))

)
dτ,

(3.27)

Q(t) =Ψ(n)(t) − Ψ(n−1)(t)

=
1 − ν
Z(ν)

(
L2(t,Ψ(n−1)) − L2(t,Ψ(n−2))

)
+

ν

Z(ν)

∫ t

0

(
L2(τ,Ψ(n−1)) − L2(τ,Ψ(n−2))

)
dτ,

(3.28)

R(t) =Θ(n)(t) − Θ(n−1)(t)

=
1 − ν
Z(ν)

(
L3(t,Θ(n−1)) − L3(t,Θ(n−2))

)
+

ν

Z(ν)

∫ t

0

(
L3(τ,Θ(n−1)) − L3(τ,Θ(n−2))

)
dτ,

(3.29)

S(t) =Π(n)(t) − Π(n−1)(t)

=
1 − ν
Z(ν)

(
L4(t,Π(n−1)) − L4(t,Π(n−2))

)
+

ν

Z(ν)

∫ t

0

(
L4(τ,Π(n−1)) − L4(τ,Π(n−2))

)
dτ,

(3.30)
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T(t) =Ω(n)(t) −Ω(n−1)(t)

=
1 − ν
Z(ν)

(
L5(t,Ω(n−1)) − L5(t,Ω(n−2))

)
+

ν

Z(ν)

∫ t

0

(
L5(τ,Ω(n−1)) − L5(τ,Ω(n−2))

)
dτ.

(3.31)

Hence,

Φ(n)(t) =

n∑
i=0

Pi(t),

Ψ(n)(t) =

n∑
i=0

Qi(t),

Θ(n)(t) =

n∑
i=0

Ri(t),

Π(n)(t) =

n∑
i=0

Si(t),

Ω(n)(t) =

n∑
i=0

Ti(t).

(3.32)

Further, we have

‖Pn(t)‖ =
∥∥∥Φ(n)(t) − Φ(n−1)(t)

∥∥∥
=

∥∥∥∥∥∥1 − ν
Z(ν)

(
L1(t,Φ(n−1)) − L1(t,Φ(n−2))

)
+

ν

Z(ν)

∫ t

0

(
L1(τ,Φ(n−1)) − L1(τ,Φ(n−2))

)
dτ

∥∥∥∥∥∥ . (3.33)

Upon applying the triangle inequality, we get

‖Pn(t)‖ ≤
1 − ν
Z(ν)

∥∥∥L1(t,Φ(n−1)) − L1(t,Φ(n−2))
∥∥∥ +

ν

Z(ν)

∫ t

0

∥∥∥L1(τ,Φ(n−1)) − L1(τ,Φ(n−2))
∥∥∥ dτ. (3.34)

The kernels satisfy the Lipschitz condition given by

‖Pn(t)‖ ≤
1 − ν
Z(ν)

γ1

∥∥∥Φ(n−1) − Φ(n−2)
∥∥∥ +

νγ1

Z(ν)

∫ t

0

∥∥∥Φ(n−1) − Φ(n−2)
∥∥∥ dτ, (3.35)

and, hence,

‖Pn(t)‖ ≤
1 − ν
Z(ν)

γ1 ‖Pn−1(t)‖ +
νγ1

Z(ν)

∫ t

0
‖Pn−1(τ)‖ dτ. (3.36)

Similarly,

‖Qn(t)‖ ≤
1 − ν
Z(ν)

γ2 ‖Qn−1(t)‖ +
νγ2

Z(ν)

∫ t

0
‖Qn−1(τ)‖ dτ, (3.37)

‖Rn(t)‖ ≤
1 − ν
Z(ν)

γ3 ‖Rn−1(t)‖ +
νγ3

Z(ν)

∫ t

0
‖Rn−1(τ)‖ dτ, (3.38)
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‖Sn(t)‖ ≤
1 − ν
Z(ν)

γ4 ‖Sn−1(t)‖ +
νγ4

Z(ν)

∫ t

0
‖Sn−1(τ)‖ dτ, (3.39)

‖Tn(t)‖ ≤
1 − ν
Z(ν)

γ5 ‖Tn−1(t)‖ +
νγ5

Z(ν)

∫ t

0
‖Tn−1(τ)‖ dτ. (3.40)

�

Since the functions Φ,Ψ,Θ,Π,Ω are bounded and the kernels satisfy the Lipschitz condition, from
the equations (3.36)–(3.40) and the recursive method, the resulting relations can be derived as follows:

‖P(t)‖ ≤ ‖Φ(n)(0)‖
[1 − ν

Z(ν)
γ1 +

ν

Z(ν)
γ1t

]n

,

‖Q(t)‖ ≤ ‖Ψ(n)(0)‖
[1 − ν

Z(ν)
γ2 +

ν

Z(ν)
γ2t

]n

,

‖R(t)‖ ≤ ‖Θ(n)(0)‖
[1 − ν

Z(ν)
γ3 +

ν

Z(ν)
γ3t

]n

,

‖S(t)‖ ≤ ‖Π(n)(0)‖
[1 − ν

Z(ν)
γ4 +

ν

Z(ν)
γ4t

]n

,

‖T(t)‖ ≤ ‖Ω(n)(0)‖
[1 − ν

Z(ν)
γ5 +

ν

Z(ν)
γ5t

]n

.

(3.41)

Therefore, the functions given by (3.27)–(3.31) will exist and be continuous.
Now, to show that the functions making up (3.32) constitute a solution of the system of the equations

given by (2.4)–(2.8), consider the following relations:

Φ(t) − Φ(0) = Φ(n)(t) −An(t),
Ψ(t) − Ψ(0) = Ψ(n)(t) − Bn(t),
Θ(t) − Θ(0) = Θ(n)(t) − Cn(t),
Π(t) − Π(0) = Π(n)(t) −Dn(t),
Ω(t) −Ω(0) = Ω(n)(t) − En(t).

(3.42)

Now,

An(t) = Φ(n)(t) − Φ(t) + Φ(0),

‖An(t)‖ =

∥∥∥∥∥∥1 − ν
Z(ν)

(
L1(t,Φ) − L1(t,Φ(n−1))

)
+

ν

Z(ν)

∫ t

0

(
L1(τ,Φ) − L1(τ,Φ(n−1))

)
dτ

∥∥∥∥∥∥ ,
‖An(t)‖ ≤

1 − ν
Z(ν)

∥∥∥L1(t,Φ) − L1(t,Φ(n−1))
∥∥∥ +

ν

Z(ν)

∫ t

0

∥∥∥L1(τ,Φ) − L1(τ,Φ(n−1))
)∥∥∥ dτ

≤
1 − ν
Z(ν)

γ1

∥∥∥Φ(t) − Φ(n−1)(t)
∥∥∥ +

νγ1t
Z(ν)

∥∥∥Φ(t) − Φ(n−1)(t)
∥∥∥ .

(3.43)

Upon repeated application of the recursive relations, we get

‖An(t)‖ ≤ γn+1
1

(1 − ν
Z(ν)

+
νt

Z(ν)

)n+1

Φ(0). (3.44)
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At some t0,

‖An(t)‖ ≤ γn+1
1

(1 − ν
Z(ν)

+
νt0

Z(ν)

)n+1

Φ(0). (3.45)

Taking the limit n→ ∞ in the equation (3.45), we have

‖An(t)‖ → 0 =⇒ Φ(t) − Φ(0) = lim
n→∞

Φ(n)(t). (3.46)

Similarly,

as n→ ∞, ‖Bn(t)‖ → 0 =⇒ Ψ(t) − Ψ(0) = lim
n→∞

Ψ(n)(t),

as n→ ∞, ‖Cn(t)‖ → 0 =⇒ Θ(t) − Θ(0) = lim
n→∞

Θ(n)(t),

as n→ ∞, ‖Dn(t)‖ → 0 =⇒ Π(t) − Π(0) = lim
n→∞

Π(n)(t),

as n→ ∞, ‖En(t)‖ → 0 =⇒ Ω(t) −Ω(0) = lim
n→∞

Ω(n)(t).

(3.47)

This proves that the solution exists for the model.

Uniqueness:
For the uniqueness, let us consider {Φ′,Ψ′,Θ′,Π′,Ω′} as another solution of the system of equations

given by (2.4)–(2.8):

Φ(t) − Φ′(t) =
1 − ν
Z(ν)

(
L1(t,Φ) − L1(t,Φ′)

)
+

ν

Z(ν)

∫ t

0

(
L1(τ,Φ) − L1(τ,Φ′)

)
dτ,

‖Φ(t) − Φ′(t)‖ =

∥∥∥∥∥∥1 − ν
Z(ν)

(
L1(t,Φ) − L1(t,Φ′

)
+

ν

Z(ν)

∫ t

0

(
L1(τ,Φ) − L1(τ,Φ′

)
dτ

∥∥∥∥∥∥ ,
‖Φ(t) − Φ′(t)‖ ≤

1 − ν
Z(ν)

‖L1(t,Φ) − L1(t,Φ′‖ +
ν

Z(ν)

∫ t

0

∥∥∥L1(τ,Φ) − L1(τ,Φ′
)∥∥∥ dτ,

≤
1 − ν
Z(ν)

γ1 ‖Φ(t) − Φ′(t)‖ +
νγ1t
Z(ν)

‖Φ(t) − Φ′(t)‖ .

(3.48)

It gives

‖Φ(t) − Φ′(t)‖
(
1 −

1 − ν
Z(ν)

γ1 −
ν

Z(ν)
γ1t

)
≤ 0. (3.49)

Since
(
1 −

1 − ν
Z(ν)

γ1 −
ν

Z(ν)
γ1t

)
> 0,

‖Φ(t) − Φ′(t)‖ = 0 =⇒ Φ(t) = Φ′(t). (3.50)

Similarly, we can show that Ψ(t) = Ψ′(t), Θ(t) = Θ′(t), Π(t) = Π′(t), and Ω(t) = Ω′(t).
Hence, the uniqueness of the solution is proved.
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3.3. Stability analysis

A requirement of studying dynamic systems and understanding their behavior is stability analysis.
The stability of the equilibrium points of the fractional-order differential system has been studied by
using the Jacobian and corresponding eigenvalues at the points of equilibrium.

We discuss here the stability of Komarova’s coupled system for the process of bone mineralization.

Theorem 3.3. The system given by (2.4)–(2.8) is marginally stable at the critical points.

Proof. In the model given by (2.4)–(2.8), we set all of the derivatives equal to zero and define them as
follows:

f1 = −κ̂Φ, (3.51)

f2 = κ̂Φ, (3.52)

f3 = β̂Φ − ε̂ΨΘ, (3.53)

f4 = λ
(

CF
0 Dν

t Ψ
)
− υ̂

(
CF
0 Dν

t Ω
)

Π, (3.54)

f5 = η̂
(

ρ̃

ρ̃ + Θσ

)
Π. (3.55)

Critical points can be obtained by setting fi=0 for i = 1, 2, 3, 4, 5.

f1 = −κ̂Φ = 0 =⇒ Φ = 0.

Since Φ + Ψ = K, we have that Ψ = K.
Now,

f3 = β̂Φ − ε̂ΨΘ = 0 =⇒ β̂Φ − ε̂KΘ = 0, =⇒ Θ = 0.

Also,

f5 = η̂
(

ρ̃

ρ̃ + Θσ

)
Π = 0, =⇒ Π = 0.

f4 = λ
(

CF
0 Dν

t Ψ
)
− υ̂

(
CF
0 Dν

t Ω
)

Π = 0, =⇒ υ̂
(

CF
0 Dν

t Ω
)

Π = 0.

CF
0 Dν

t Ω may or may not be zero. Hence, the system has infinitely many critical points
(Φ,Ψ,Θ,Π,Ω) = (0,K, 0, 0,Ω).

We shall now determine whether the system in question is stable or unstable at its critical points.
So, for this, we will find the Jacobian matrix.
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For the particular system of bone mineralization, the Jacobian matrix will take the following form:

J =
∂( f1, f2, f3, f4, f5)
∂(Φ,Ψ,Θ,Π,Ω)

=



∂ f1

∂Φ

∂ f1

∂Ψ

∂ f1

∂Θ

∂ f1

∂Π

∂ f1

∂Ω

∂ f2

∂Φ

∂ f2

∂Ψ

∂ f2

∂Θ

∂ f2

∂Π

∂ f2

∂Ω

∂ f3

∂Φ

∂ f3

∂Ψ

∂ f3

∂Θ

∂ f3

∂Π

∂ f3

∂Ω

∂ f4

∂Φ

∂ f4

∂Ψ

∂ f4

∂Θ

∂ f4

∂Π

∂ f4

∂Ω

∂ f5

∂Φ

∂ f5

∂Ψ

∂ f5

∂Θ

∂ f5

∂Π

∂ f5

∂Ω



. (3.56)

Making the substitutions for fi, i = 1, 2, 3, 4, 5 in the matrix we get the following Jacobian matrix:

J =



−κ̂1 0 0 0 0
κ̂1 0 0 0 0
β̂1 −ε̂1Θ 0 0 0
κ̂1λ 0 0 0 0

0 0 0
η̂ρ̃

ρ̃ + Θσ
0


. (3.57)

The eigenvalues corresponding to the above matrix are (0, 0, 0,−κ̂1,−κ̂1ε̂1).
Observing the eigenvalues, we can conclude that the system is marginally stable at the critical

points (0,K, 0, 0,Ω), which occur after a short span of the start of the mineralization process. Thus, the
mineralization will not suddenly explode and the system will always have a bounded solution but no
steady-state output. �

4. Numerical and graphical simulation

We solve the initial-value fractional-order problem by using the numerical technique. Here, we use
the fractional Adams-Bashforth (AB) method [32] to find the approximation solution.

Let us consider the problem with the exponential law kernel:

CF
0 Dν

xw(x) = Λ(x,w(x)), w(0) = w0, 0 < ν ≤ 1. (4.1)

For Z(ν) =
2

2 − ν
in the equation (1.5), the Lagrangian approximation of w, i.e., the solution of the

equation (4.1), is given by

wk+1 = wk +
(2 − ν)Λ(xk,w(xk))

2

[
1 − ν +

3
2

hν
]

+
(2 − ν)Λ(xk−1,w(xk−1))

2

[
ν − 1 −

1
2

hν
]
. (4.2)

Following the process, the Lagrangian approximations for Φ,Ψ,Θ,Π,Ω in (2.4)–(2.8) are respec-
tively given by
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Φk+1 =Φk +
(2 − ν) f1(tk,Φk,Ψk,Θk,Πk,Ωk)

2

[
1 − ν +

3
2

hν
]

+
(2 − ν) f1(tk−1,Φk−1,Ψk−1,Θk−1,Πk−1,Ωk−1)

2

[
ν − 1 −

1
2

hν
]
,

Ψk+1 =Ψk +
(2 − ν) f2(tk,Φk,Ψk,Θk,Πk,Ωk)

2

[
1 − ν +

3
2

hν
]

+
(2 − ν) f2(tk−1,Φk−1,Ψk−1,Θk−1,Πk−1,Ωk−1)

2

[
ν − 1 −

1
2

hν
]
,

Θk+1 =Θk +
(2 − ν) f3(tk,Φk,Ψk,Θk,Πk,Ωk)

2

[
1 − ν +

3
2

hν
]

+
(2 − ν) f3(tk−1,Φk−1,Ψk−1,Θk−1,Πk−1,Ωk−1)

2

[
ν − 1 −

1
2

hν
]
,

Πk+1 =Πk +
(2 − ν) f4(tk,Φk,Ψk,Θk,Πk,Ωk)

2

[
1 − ν +

3
2

hν
]

+
(2 − ν) f4(tk−1,Φk−1,Ψk−1,Θk−1,Πk−1,Ωk−1)

2

[
ν − 1 −

1
2

hν
]
,

Ωk+1 =Ωk +
(2 − ν) f5(tk,Φk,Ψk,Θk,Πk,Ωk)

2

[
1 − ν +

3
2

hν
]

+
(2 − ν) f5(tk−1,Φk−1,Ψk−1,Θk−1,Πk−1,Ωk−1)

2

[
ν − 1 −

1
2

hν
]
.

(4.3)

Figure 1. Concentration profiles of the normalized raw collagen (Φ), mature collagen (Ψ),
inhibitors (Θ), nucleators (Π) and minerals (Ω) with respect to time for integer order (dashed
lines) and fractional order ν = 0.9 (solid lines).

The following values were taken from [27] for the parameters before the non-dimensionalization:
φ = 9.4 × 105 molecules/µm3, ψ = 9.4 × 105 molecules/µm3, θ ∼ 106 molecules/µm3,

π = 1 − 10 per 1 assembled collagen, ω = 0.8 × 109 molecules/µm3.
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(a) Raw collagen with respect to time. (b) Mature collagen with respect to time.

Figure 2. Graphical representation of the concentration profiles of the raw collagen and
mature collagen for various values of the order ν of the fractional derivative.

κ = 0.1 per day, λ = 1, ε = 2 × 10−7 per day, η = 1000 per day, β = 0.1 per day,
υ = 1.7 × 10−8 per mol, σ = 10, ρ = 1057.

For normalization, the following values have been considered in (2.3):
φ̂ = 106, ψ̂ = 109.

Figure 1 shows how the concentrations of raw collagen, mature collagen, inhibitors, nucleators, and
minerals change with respect to time. Here, the dotted line denotes ν = 1 (integer order) and the solid
line denotes ν = 0.9 (fractional order). Initially, the raw collagen (Φ) has full collagen in the system;
with time, it decreases gradually and is converted into mature collagen (Ψ). For the orders ν = 0.9
and ν = 1, there is a little difference in the process. At the beginning, the inhibitors (Θ) are present in
the raw collagen and then decrease rapidly within 20 days. For the orders ν = 0.9 and ν = 1, there is
a difference in the peak values of the inhibitors. For ν = 1, the number of inhibitors is larger within
20 days than for ν = 0.9. The nucleators (Π) reach the maximum within 20 days and then decrease
rapidly. For ν = 1, it reaches the maximum peak faster than the case of ν = 0.9. For the fractional
order, the peak is small and it begins decreasing very slowly. The mineralization (Ω) starts with some
lag time. For fractional order ν = 0.9, the lag time is much shorter than for the integer order ν = 1,
which means that it takes less time for the mineralization. For the integer order ν = 1 the degree of
mineralization is a little higher than for the fractional order ν = 0.9.

The amount of time needed to initiate the mineralization process is known as the Mineralization lag
time, and the Mineralization degree is defined as the greatest amount of mineralization that may occur
during the process.

The concentration of raw collagen with respect to time for the different values of the order ν of
the fractional derivative is displayed in Figure 2a. Because the value of ν decreases during a specific
period, raw collagen requires fewer days to be converted into mature collagen. The amount of mature
collagen can be observed to change over time, as seen in Figure 2b. During a particular interval of
time, the concentration of the mature collagen increases as ν decreases. The average life cycle for the
conversion of raw collagen to mature collagen is less than 100 days; the curves in 2 merge after the
completion of the cycle.
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(a) Inhibitors with respect to time. (b) Nucleators with respect to time.

Figure 3. Graphical illustration of the concentration profiles of the inhibitors and nucleators
for different values of the order ν of the fractional derivative.

Figure 3a shows how inhibitors degrade with time for various values of ν. The peak shifts and
the number of inhibitors increases as the value of ν increases. For different values of ν, the effect of
nucleators can be observed in Figure 3b. The number of nucleators for mineralization increases as
ν increases and the peak shifts in a small range. Figure 4 demonstrates the impact of mineralization
for different values of ν. As the value of ν increases the mineralization lag time and the degree of
mineralization both increase. Initially, the mineralization lag time increases gradually, but when ν = 1,
it increases at a comparatively fast pace.

4.1. Sensitivity analysis

Sensitivity analysis of a model with respect to its parameters determines how different values of
an independent variable affect a particular dependent variable under a given set of assumptions. We
present here the concentration profiles of the variables and the sensitivity analysis with respect to the
parameters κ, β, ε, λ, υ, η to illustrate their impact on the variables and, ultimately on the mineralization.

The effect of the parameter κ on the raw collagen is shown in Figure 5a. It shows that, as the value
of κ increases, raw collagen begins to require fewer days to convert into mature collagen. The effect of
the parameter κ on the mature collagen is shown in Figure 5b. It demonstrates that, when the value of
κ increases, the time it takes for mature collagen to form decreases.

The effect of the parameter β on the inhibitors is shown in Figure 6a. It shows that, even as the
value of β decreases by 10 times, there is a small change in the number of inhibitors; however, when
it increases by 10 times during a specific period of time, there is a huge difference in the number of
inhibitors. Figure 6b demonstrates the impact of the parameter ε on the inhibitors. It shows that,
when the value for ε = 0.43 decreases by three times, nine times, and so on, the number of inhibitors
increases in the different intervals of time and takes more than 120 days to reduce. And, when the value
for the parameter ε = 0.43 increases three times, there is a small change in the number of inhibitors;
the inhibitors reduced in the same manner as ε = 0.43.

Figure 7a illustrates how the nucleators are affected by the parameter λ. It shows that the number
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Figure 4. Graphical illustration of the concentration profile of the minerals with respect to
time for different values of ν.

of nucleators increases rapidly and then steadily falls when the value for the parameter λ = 1 increases
by three times. When the value of parameter λ decreases by three times, the number of nucleators
decreases. In the graph, we can easily see that after a certain interval of time, the number of nucleators
decreased in the same way, irrespective of the value of λ.

The impact of the parameter κ on the nucleators is shown in Figure 7b. It demonstrates that when the
value of κ = 0.1 falls by three times, the number of nucleators increases. The graph also demonstrates
a significant shift before the peak is reached. Furthermore, while the peak of the nucleators does not
significantly change when the value of the parameter is increased by three times, it is slightly displaced.

The effect of the parameter υ on the nucleators can be seen in Figure 8a. It demonstrates that the
number of nucleators increases at a specific time interval when the parameter υ = 17 falls by three
times; it then steadily diminishes in the same way. Additionally, the number of nucleators falls when
the value of the parameter υ increases by three and nine times, respectively. Figure 8b demonstrates the
impact of the parameter η on the nucleators. It shows that as the parameter η = 0.71 increases by three
times, nine times, and more, the number of nucleators decreases but the time interval during which
nucleators are present remains unchanged. After a certain time interval, the number of nucleators
decreases gradually. Moreover, the number of nucleators increases when the parameter’s value is
decreased by three times.

Figure 9a shows the change in the parameter η affect the rate and degree of mineralization. A three-
times decrease in η = 0.71 resulted in a decrease in the degree of mineralization, whereas a three-fold
increase, 9-fold, and more, resulted in an increase in the degree of mineralization. A change in the
value of the parameter κ causes a change in the lag time and degree of mineralization, as shown in
Figure 9b. A three-fold decrease in κ = 0.10 resulted in a considerable increment in mineralization
lag time; also, a three-fold or more increase merely affected the mineralization lag time. However, a
three-fold or more increase in the value of κ affects the degree of mineralization. As the value of κ
increases, the degree of mineralization decreases.

Figure 10a demonstrates that, when ε = 0.43 decreases by three-fold, the mineralization lag time
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(a) Raw collagen. (b) Mature collagen.

Figure 5. The effect of parameter κ, i.e., the rate of collagen cross-linking, on the raw
collagen and mature collagen for the order ν = 0.95 of the fractional derivative.

(a) Sensitivity analysis with regard to the parameter β. (b) Sensitivity analysis with regard to the parameter ε.

Figure 6. The concentration profiles of the inhibitors for ν = 0.95 with respect to the pa-
rameters β (rate of inhibitors that are released into an extracellular compartment and diffuse
through immature collagen) and ε (removal rate of inhibitors).
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(a) The impact of parameter λ. (b) The impact of parameter κ.

Figure 7. The concentration profiles of the nucleators for ν = 0.95 with respect to the
parameters λ (number of nucleators per mature collagen molecule ) and κ (rate of collagen
cross-linking taking place that is inversely related to time lag during mineralization).

(a) The effect of parameter υ. (b) The effect of parameter η.

Figure 8. The concentration profiles of the nucleators for ν = 0.95 with respect to the
parameters υ (inversely affects the mineralization) and η (rate of mineralization).
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(a) The effect of parameter η on the mineral with respect to
time.

(b) The effect of parameter κ on the mineral with respect to
time.

Figure 9. The concentration profiles of the minerals for ν = 0.95 with respect to the pa-
rameters η (rate of mineralization) and κ (rate of collagen cross-linking taking place that is
inversely related to time lag during mineralization).

(a) The effect of parameter ε. (b) The effect of parameter β.

Figure 10. The concentration profiles of the minerals for ν = 0.95 and various values of
parameters ε (removal rate of inhibitors) and β (rate of inhibitors that are released into an
extracellular compartment and diffuse through immature collagen).
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(a) The effect of parameter υ. (b) The effect of parameter λ.

Figure 11. The concentration profiles of the minerals for ν = 0.95 with respect to the
parameters υ (inversely affects the mineralization) and λ (number of nucleators per mature
collagen molecule).

decreases and there is a small increase in the degree of mineralization. When the value of ε increases
three-fold, the lag time of mineralization increases slowly; however, at 9-fold, the lag time of mineral-
ization is greater, and there is a decrease in the degree of mineralization. When the value of β = 0.10
decreases by 10-fold, as shown in Figure 10b, the lag time decreases and the degree of mineralization
increases. A 10-fold, or more increase results in a greater change in the lag time of mineralization and
an approximately 40–50% decrease in the degree of mineralization.

Figure 11a demonstrates that when υ = 17 decreases by 3-fold, there is almost a 2-fold increase in
the degree of mineralization. Furthermore, when υ increases by 3-fold, the degree of mineralization
decreases. There is not much difference in the mineralization lag time due to υ. According to Figure
11b, the degree of mineralization decreases when λ = 1 falls by 3-fold, leading to greater increases in
the degree of mineralization when λ increases by 3-fold or more. Due to λ, there is a minimal difference
in the lag time; alternatively, we can say that the difference in mineralization lag time is negligible.

5. Conclusion

In the current study, a fractional model has been used to investigate the kinetics of bone mineraliza-
tion, which is a vital bodily function that significantly contributes to the stability of the bones. The local
mineral balance and its impact on mineral formation have been predicted dynamically and explained
through the defined mathematical model of a nonlinear system of differential equations. Here, a math-
ematical model was fractionalized by using the C–F fractional derivative with non-singular kernels,
where the order of the fractional derivative can be modified to match the experimental data. Numerical
simulation was performed using the fractional AB method. It has been ascertained that the presence of
minerals can be depicted at an early stage with the help of a fractional model which is not true for an
integer-order model. Sensitivity analysis has been performed to study the effects of various parame-
ters, i.e., the collagen cross-linking rate κ, rate of release of inhibitors β, rate of removal of inhibitors ε,
number of nucleators per mature collagen molecule λ, rate of removal of nucleators υ, and rate of min-
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eralization η. In particular, a significant impact has been observed on the mineral concentration level
in relation to a variety of parameters. The capacity of the suggested fractional model to forecast the
mineralization at an early stage can help researchers and decision-makers to take preventive actions.
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26. I. Petráš, J. Terpák, Fractional calculus as a simple tool for modeling and analysis of long memory
process in industry, Mathematics, 7 (2019), 511. https://doi.org/10.3390/math7060511

Mathematical Biosciences and Engineering Volume 21, Issue 4, 5138–5163.

https://dx.doi.org/https://doi.org/10.1080/27690911.2022.2117913
https://dx.doi.org/https://doi.org/10.1016/j.fuel.2023.129052 
https://dx.doi.org/https://doi.org/10.1016/j.ijengsci.2014.02.004
https://dx.doi.org/https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
https://dx.doi.org/http://dx.doi.org/10.12785/pfda/010201
https://dx.doi.org/http://dx.doi.org/10.12785/pfda/010202
https://dx.doi.org/https://doi.org/10.1016/S8756-3282(02)00973-0
https://dx.doi.org/https://doi.org/10.1529/biophysj.107.125567
https://dx.doi.org/https://doi.org/10.1080/10255840500156971
https://dx.doi.org/https://doi.org/10.1016/j.cmpb.2013.06.010
https://dx.doi.org/https://doi.org/10.3390/math7060511


5163

27. S. V. Komarova, L. Safranek, J. Gopalakrishnan, M. Ou, M. McKee, M. Murshed,
et al., Mathematical model for bone mineralization, Front. Cell Dev. Biol., 3 (2015).
https://doi.org/10.3389/fcell.2015.00051

28. V. E. Tarasov, S. S. Tarasova, Fractional derivatives and integrals: What are they needed for?,
Mathematics, 8 (2020), 164. https://doi.org/10.3390/math8020164

29. R. Agarwal, P. Airan, C. Midha, Mathematical analysis of the non-linear dynamics of the bone
mineralization, in Mathematical Methods in Medical and Biological Sciences (ed. H. Singh), El-
sevier, 2023, communicated.

30. K. Diethelm, A fractional calculus based model for the simulation of an outbreak of dengue fever,
Nonlinear Dynam., 71 (2013), 613–619.

31. S. Chen, M. Small, X. Fu, Global stability of epidemic models with imperfect vaccination and
quarantine on scale-free networks, IEEE Transact. Network Sci. Eng., 7 (2019), 1583–1596.

32. A. Atangana, S. I. Araz, New Numerical Scheme with Newton Polynomial: Theory, Methods, and
Applications, Academic Press, 2021.

c© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 21, Issue 4, 5138–5163.

https://dx.doi.org/https://doi.org/10.3389/fcell.2015.00051
https://dx.doi.org/https://doi.org/10.3390/math8020164
https://creativecommons.org/licenses/by/4.0

	Introduction
	Mathematical model
	Qualitative analysis
	Boundedness of the solution
	Existence and uniqueness of the solution of the Bone mineralization system
	Stability analysis

	Numerical and graphical simulation
	Sensitivity analysis

	Conclusion

