Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Data analytics in transport: Does Simpson's paradox exist in rule of ship selection for port state control?


  • Received: 13 September 2022 Revised: 17 October 2022 Accepted: 19 October 2022 Published: 28 October 2022
  • Although previous studies have applied artificial intelligence techniques to improve the accuracy and efficiency of ship selection in port state control (PSC) inspections, the new inspection regime (NIR) is still in effect and widely adopted by PSC authorities in the Tokyo Memorandum of Understanding to select ships for inspection. It considers seven features, and each candidate value of a certain feature is assigned a fixed weighting point. The sum of the weighting points of these seven features determines the risk level of a ship. The assumption behind the NIR is that ships with values attached with higher weighting points should have more deficiencies. However, this paper finds that Simpson's paradox may exist for this assumption; that is, the average number of deficiencies of ships with values attached with higher weighting points is lower than that of ships with values attached with lower weighting points. Therefore, this paper examines the plausibility of the NIR's weighted-sum method and further explores which feature flips the effect. Finally, we arrive at the conclusion that the features selected by NIR are coupled with each other, so we should not use a simple weighted-sum method to determine the risk level of a candidate ship. Based on the results, we further provide suggestions for PSC authorities with respect to the improvement of the ship selection scheme of NIR.

    Citation: Simon Tian, Xinyi Zhu. Data analytics in transport: Does Simpson's paradox exist in rule of ship selection for port state control?[J]. Electronic Research Archive, 2023, 31(1): 251-272. doi: 10.3934/era.2023013

    Related Papers:

    [1] Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283
    [2] Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood . Fractional inequalities of the Hermite–Hadamard type for m-polynomial convex and harmonically convex functions. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115
    [3] Wenbing Sun, Rui Xu . Some new Hermite-Hadamard type inequalities for generalized harmonically convex functions involving local fractional integrals. AIMS Mathematics, 2021, 6(10): 10679-10695. doi: 10.3934/math.2021620
    [4] Serap Özcan, Saad Ihsan Butt, Sanja Tipurić-Spužević, Bandar Bin Mohsin . Construction of new fractional inequalities via generalized n-fractional polynomial s-type convexity. AIMS Mathematics, 2024, 9(9): 23924-23944. doi: 10.3934/math.20241163
    [5] Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392
    [6] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [7] Muhammad Bilal Khan, Omar Mutab Alsalami, Savin Treanțǎ, Tareq Saeed, Kamsing Nonlaopon . New class of convex interval-valued functions and Riemann Liouville fractional integral inequalities. AIMS Mathematics, 2022, 7(8): 15497-15519. doi: 10.3934/math.2022849
    [8] Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024
    [9] Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546
    [10] Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad . (m,n)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates. AIMS Mathematics, 2021, 6(5): 4677-4690. doi: 10.3934/math.2021275
  • Although previous studies have applied artificial intelligence techniques to improve the accuracy and efficiency of ship selection in port state control (PSC) inspections, the new inspection regime (NIR) is still in effect and widely adopted by PSC authorities in the Tokyo Memorandum of Understanding to select ships for inspection. It considers seven features, and each candidate value of a certain feature is assigned a fixed weighting point. The sum of the weighting points of these seven features determines the risk level of a ship. The assumption behind the NIR is that ships with values attached with higher weighting points should have more deficiencies. However, this paper finds that Simpson's paradox may exist for this assumption; that is, the average number of deficiencies of ships with values attached with higher weighting points is lower than that of ships with values attached with lower weighting points. Therefore, this paper examines the plausibility of the NIR's weighted-sum method and further explores which feature flips the effect. Finally, we arrive at the conclusion that the features selected by NIR are coupled with each other, so we should not use a simple weighted-sum method to determine the risk level of a candidate ship. Based on the results, we further provide suggestions for PSC authorities with respect to the improvement of the ship selection scheme of NIR.



    In convex functions theory, Hermite-Hadamard inequality is very important which was discovered by C. Hermite and J. Hadamard independently (see, also [1], and [2,p.137])

    F(π1+π22)1π2π1π2π1F(ϰ)dϰF(π1)+F(π2)2, (1.1)

    whereF is a convex function. In the case of concave mappings, the above inequality is satisfied in reverse order.

    Over the last twenty years, numerous studies have focused on obtaining trapezoid and midpoint type inequalities which give bounds for the right-hand side and left-hand side of the inequality (1.1), respectively. For example, the authors first obtained trapezoid and midpoint type inequalities for convex functions in [3] and in [4], respectively. In [5], Sarikaya et al. obtained the inequalities (1.1) for Riemann-Liouville fractional integrals and the authors also proved some corresponding trapezoid type inequalities for fractional integrals. Iqbal et al. presented some fractional midpoint type inequalities for convex functions in [6]. Sarikaya and Ertuğral [7] introduced the notions of generalized fractional integrals and proved some Hermite-Hadamard type inequalities for convex functions. In [8], Budak et al. used the generalized fractional integrals to prove Hermite-Hadamard type inequalities for twice differentiable convex functions. After that, the authors used generalized fractional integrals and proved the different variants of integral inequalities in [9,10,11,12,13,14].

    On the other hand, İşcan [15] defined the following class of functions called harmonically convex functions:

    If the mapping F:IR{0}R satisfies the inequality

    F(1σϰ+1σy)σF(ϰ)+(1σ)F(y),

    for all ϰ,yI and σ[0,1], then F is called harmonically convex function. In the case of harmonically concave mappings, the above inequality is satisfied in reverse order.

    It is worth noting that the harmonic feature has been important in a variety of disciplines in pure and applied sciences. The authors explore the significance of the harmonic mean in Asian stock company [16]. Harmonic methods are used in electric circuit theory, which is interesting. The overall resistance of a set of parallel resistors is just half of the entire resistors' harmonic mean. If r1 and r2 are the resistances of two parallel resistors, the total resistance may be calculated using the following formula:

    rσ=r1r2r1+r2=12H(r1,r2),

    which is the half of the harmonic mean.

    The harmonic mean, according to Noor [17], is also important in the creation of parallel algorithms for solving nonlinear problems. Several researchers have proposed iterative approaches for solving linear and nonlinear systems of equations using harmonic means and harmonically convex functions.

    Several research articles have recently been published on various generalizations of integral inequalities using various approaches. For example, İşcan established some new Hermite-Hadamard type inequalities for harmonically convex functions and trapezoid type inequalities for this class of functions in [15]. In [18], İ şcan and Wu established Hermite-Hadamard type inequalities for harmonically convex functions via Riemann-Liouville fractional integrals. They also proved some fractional trapezoid type inequalities for mapping whose derivatives in absolute value are harmonically convex. İşcan proved Ostrowski type integral inequalities for harmonically s-convex functions in [19] and in [20], Chen gave an extension of fractional Hermite-Hadamard type inequalities for harmonically convex functions. Kunt et al. [21] and Set et al. [22] used the Riemann-Liouville fractional integrals and proved Hermite-Hadamard type inequalities for harmonically convex functions. In [23], Șanlı proved several fractional midpoint type inequalities utilizing differentiable convex functions. The authors used the generalized fractional integrals and proved Hermite-Hadamard type inequalities for harmonically convex functions in [24,25]. Mohsen et al. [26] used the h- harmonically convexity to prove some new Ostrowski type inequalities and in [27], Akhtar et al. proved a new variant of Ostrowski inequalities for harmonically convex functions. In the literature there are several papers on the inequalities for harmonically convex functions. For some recent developments in integral inequalities and harmonically convexity, one can consult [28,29,30].

    Inspired by the ongoing studies, we use the generalized fractional integrals to develop some new Ostrowski type inequalities for differentiable harmonically convex functions. We also show that the newly developed inequalities are extensions of some previously known inequalities.

    The following is the structure of this paper: Section 2 provides a brief overview of the fractional calculus as well as other related studies in this field. In Section 3, we establish Ostrowski type inequalities for differentiable functions. The relationship between the findings reported here and similar findings in the literature are also taken into account. We discuss the special cases of newly established inequalities in Section 4 and obtain several new Ostrowski type inequalities. We give some applications to special means of real numbers in Section 5. Section 6 concludes with some recommendations for future research.

    In this section, we recall some basic concepts of fractional integrals and related integral inequalities.

    Definition 2.1. [7] The left and right-sided generalized fractional integrals given as follows:

    π1+IφF(ϰ)=ϰπ1φ(ϰσ)ϰσF(σ)dσ,  ϰ>π1, (2.1)
    π2IφF(ϰ)=π2ϰφ(σϰ)σϰF(σ)dσ,  ϰ<π2, (2.2)

    where the function φ:[0,)[0,) satisfies 10φ(σ)σdσ<. For the details about the genrarlized fractional integrals, one can consult [7].

    The most important feature of the generalized fractional integrals is that they generalize some types of fractional integrals such as Riemann-Liouville fractional integral, k-Riemann-Liouville fractional integral, Katugampola fractional integrals, conformable fractional integral, Hadamard fractional integrals, etc. Few important special cases of the integral operators (2.1) and (2.2) are mentioned below.

    i) Taking φ(σ)=σ, the operators (2.1) and (2.2) reduces to the classical Riemann integrals as follows:

    Iπ+1F(ϰ)=ϰπ1F(σ)dσ,ϰ>π1,
    Iπ2F(ϰ)=π2ϰF(σ)dσ,  ϰ<π2.

    ii) Taking φ(σ)=σαΓ(α), the operators (2.1) and (2.2) reduces to the well-known Riemann–Liouville fractional integrals as follows:

    Jαπ+1F(ϰ)=1Γ(α)ϰπ1(ϰσ)α1F(σ)dσ,  ϰ>π1,
    Jαπ2F(ϰ)=1Γ(α)π2ϰ(σϰ)α1F(σ)dσ,  ϰ<π2.

    iii) Taking φ(σ)=σαkkΓk(α), the operators (2.1) and (2.2) reduces to the well-known k–Riemann–Liouville fractional integrals as follows:

    Jα,kπ1+F(ϰ)=1kΓk(α)ϰπ1(ϰσ)αk1F(σ)dσ,  ϰ>π1,
    Jα,kπ2F(ϰ)=1kΓk(α)π2ϰ(σϰ)αk1F(σ)dσ,  ϰ<π2,

    where

    Γk(α)=0σα1eσkkdσ,   R(α)>0

    and

    Γk(α)=kαk1Γ(αk),  R(α)>0;k>0.

    Recently, Zhao et al. used the generalized fractional integrals and proved the following Hermite-Hadamard type inequalities.

    Theorem 2.2. [25] For any harmonically convex mapping, the following inequalityholds:

    F(2π1π2π1+π2)12Φ(1){Jα1π1(Fg)(1π2)+Jα1π2+(Fg)(1π1)}F(π1)+F(π2)2, (2.3)

    where g(ϰ)=1ϰ and Φ(σ)=σ0φ(π2π1π1π2s)sds<+.

    Remark 2.3. It is obvious that if we set φ(σ)=σ in inequality (2.3), then we obtain the following inequality of Hermite-Hadamard type inequality (see, [15]):

    F(2π1π2π1+π2)π1π2π2π1π2π1F(ϰ)dϰF(π1)+F(π2)2.

    Remark 2.4. It is obvious that if we set φ(σ)=σαΓ(α) in inequality (2.3), then we obtain the following inequality of Hermite-Hadamard type inequality for Riemann-Liouville fractional integrals (see, [18]):

    F(2π1π2π1+π2)Γ(α+1)2(π1π2π2π1)α{Jα1π1(Fg)(1π2)+Jα1π2+(Fg)(1π1)}F(π1)+F(π2)2.

    Remark 2.5. It is obvious that if we set φ(σ)=σαkkΓk(α) in inequality (2.3), then we obtain the following inequality of Hermite-Hadamard type inequality for k-Riemann Liouville fractional integrals (see, [25]):

    F(2π1π2π1+π2)kΓk(α+k)2(π1π2π2π1)αk{Jα,k1π1(Fg)(1π2)+Jα,k1π2+(Fg)(1π1)}F(π1)+F(π2)2.

    In this section, we prove some new Ostrowski type inequalities for differentiable harmonically convex functions via the generalized fractional integrals. For brevity, we give the following special functions:

    (1) The Beta function:

    β(ϰ,y)=Γ(ϰ)Γ(y)Γ(ϰ+y)=10σϰ1(1σ)y1dσ, ϰ,y>0.

    (2) The hypergeometric function:

    2F1(π1,π2;c;z)=1β(π2,cπ2)10σπ21(1σ)cπ21(1zσ)αdσ, c>π2>0, |z|<1.

    Lemma 3.1. Let F:I=[π1,π2](0,+)R be a differentiable function on I such that FL([π1,π2]). Then, the following generalized fractional integrals identity holds for all ϰ(π1,π2):

    π1ϰ(ϰπ1)10Δ(σ)(σπ1+(1σ)ϰ)2F(π1ϰσπ1+(1σ)ϰ)dσϰπ2(π2ϰ)10Λ(σ)(σπ2+(1σ)ϰ)2F(π2ϰσπ2+(1σ)ϰ)dσ=(Δ(1)+Λ(1))F(ϰ)[1ϰ+Iφ(Fg)(1π1)+1ϰIφ(Fg)(1π2)], (3.1)

    where the mappings Δ and Λ are defined as:

    Δ(σ)=σ0φ(ϰπ1π1ϰs)sds<+,

    and

    Λ(σ)=σ0φ(π2ϰπ2ϰs)sds<+.

    Proof. Consider

    π1ϰ(ϰπ1)10Δ(σ)(σπ1+(1σ)ϰ)2F(π1ϰσπ1+(1σ)ϰ)dσϰπ2(π2ϰ)10Λ(σ)(σπ2+(1σ)ϰ)2F(π2ϰσπ2+(1σ)ϰ)dσ=I1I2. (3.2)

    From fundamentals of integrations, we have

    I1=π1ϰ(ϰπ1)10Δ(σ)(σπ1+(1σ)ϰ)2F(π1ϰσπ1+(1σ)ϰ)dσ=10Δ(σ)dF(π1ϰσπ1+(1σ)ϰ)dσ=Δ(1)F(ϰ)10φ((ϰπ1)π1ϰσ)σF(π1ϰσπ1+(1σ)ϰ)dσ=Δ(1)F(ϰ)1ϰ+Iφ(Fg)(1π1).

    Similarly, we have

    I2=ϰπ2(π2ϰ)10Λ(σ)(σπ2+(1σ)ϰ)2F(π2ϰσπ2+(1σ)ϰ)dσ=Λ(1)F(ϰ)+1ϰIφ(Fg)(1π2).

    Thus, we obtain the required identity (3.1) by using the calculated values of I1 and I2 in (3.2).

    Remark 3.2. If we set φ(σ)=σ in Lemma 3.1, then we obtain the following equality:

    π1π2π2π1{(ϰπ1)210σ(σπ1+(1σ)ϰ)2F(π1ϰσπ1+(1σ)ϰ)dσ(π2ϰ)210σ(σπ2+(1σ)ϰ)2F(π2ϰσπ2+(1σ)ϰ)dσ}=F(ϰ)π1π2π2π1π2π1F(u)u2du.

    This is proved by İşcan in [19,Lemma 2.1].

    Remark 3.3. In Lemma 3.1, if we set φ(σ)=σαΓ(α), then we have the following equality for Riemann-Liouville fractional integrals:

    (ϰπ1)α+1(π1ϰ)α110σα(σπ1+(1σ)ϰ)2F(π1ϰσπ1+(1σ)ϰ)dσ(π2ϰ)α+1(ϰπ2)α110σα(σπ2+(1σ)ϰ)2F(π2ϰσπ2+(1σ)ϰ)dσ=[(ϰπ1π1ϰ)α+(π2ϰπ2ϰ)α]F(ϰ)Γ(α+1)[1ϰ+Jα(Fg)(1π1)+1ϰJα(Fg)(1π2)].

    This is proved by İşcan in [31].

    Corollary 3.4. In Lemma 3.1, if we set φ(σ)=σαkkΓ(α), then we have thefollowing new equality for k-Riemann-Liouville fractional integrals:

    (ϰπ1)α+kk(π1ϰ)αkk10σαk(σπ1+(1σ)ϰ)2F(π1ϰσπ1+(1σ)ϰ)dσ(π2ϰ)α+kk(ϰπ2)αkk10σαk(σπ2+(1σ)ϰ)2F(π2ϰσπ2+(1σ)ϰ)dσ=[(ϰπ1π1ϰ)αk+(π2ϰπ2ϰ)αk]F(ϰ)Γk(α+k)[1ϰ+Jα,k(Fg)(1π1)+1ϰJα,k(Fg)(1π2)].

    Theorem 3.5. We assume that the conditions of Lemma 3.1 are valid. If |F|q is harmonicallyconvex on [π1,π2] for some q1, then the followinginequality holds for the generalized fractional integrals:

    |(Δ(1)+Λ(1))F(ϰ)[1ϰ+Iφ(Fg)(1π1)+1ϰIφ(Fg)(1π2)]|π1ϰ(ϰπ1)Θ11q1(Θ2|F(ϰ)|q+Θ3|F(π1)|q)1q+π2ϰ(π2ϰ)Θ11q4(Θ5|F(ϰ)|q+Θ6|F(π2)|q)1q,

    where

    Θ1=10Δ(σ)(σπ1+(1σ)ϰ)2dσ,Θ2=10σΔ(σ)(σπ1+(1σ)ϰ)2dσ,Θ3=10(1σ)Δ(σ)(σπ1+(1σ)ϰ)2dσ,Θ4=10Λ(σ)(σπ2+(1σ)ϰ)2dσ,Θ5=10σΛ(σ)(σπ2+(1σ)ϰ)2dσ,

    and

    Θ6=10(1σ)Λ(σ)(σπ2+(1σ)ϰ)2dσ.

    Proof. Taking absolute in Lemma 3.1 and then applying the well known power mean inequality, we have

    |(Δ(1)+Λ(1))F(ϰ)[1ϰ+Iφ(Fg)(1π1)+1ϰIφ(Fg)(1π2)]|π1ϰ(ϰπ1)10Δ(σ)(σπ1+(1σ)ϰ)2|F(π1ϰσπ1+(1σ)ϰ)|dσ+π2ϰ(π2ϰ)10Λ(σ)(σπ2+(1σ)ϰ)2|F(π2ϰσπ2+(1σ)ϰ)|dσπ1ϰ(ϰπ1)(10Δ(σ)(σπ1+(1σ)ϰ)2dσ)11q×(10Δ(σ)(σπ1+(1σ)ϰ)2|F(π1ϰσπ1+(1σ)ϰ)|qdσ)1q+π2ϰ(π2ϰ)(10Λ(σ)(σπ2+(1σ)ϰ)2dσ)11q×(10Λ(σ)(σπ2+(1σ)ϰ)2|F(π2ϰσπ2+(1σ)ϰ)|qdσ)1q.

    Now from harmonically convexity of |F|q, we have

    (10Δ(σ)(σπ1+(1σ)ϰ)2dσ)11q(10Δ(σ)(σπ1+(1σ)ϰ)2|F(π1ϰσπ1+(1σ)ϰ)|qdσ)1qΘ11q1(|F(ϰ)|q10σΔ(σ)(σπ1+(1σ)ϰ)2dσ+|F(π1)|q10(1σ)Δ(σ)(σπ1+(1σ)ϰ)2dσ)1q=Θ11q1(Θ2|F(ϰ)|q+Θ3|F(π1)|q)1q.

    and

    (10Λ(σ)(σπ2+(1σ)ϰ)2dσ)11q(10Λ(σ)(σπ2+(1σ)ϰ)2|F(π2ϰσπ2+(1σ)ϰ)|qdσ)1qΘ11q4(|F(ϰ)|q10σΛ(σ)(σπ2+(1σ)ϰ)2dσ+|F(π2)|q10(1σ)Λ(σ)(σπ2+(1σ)ϰ)2dσ)1q=Θ11q4(Θ5|F(ϰ)|q+Θ6|F(π2)|q)1q.

    Thus, the proof is completed.

    Remark 3.6. In Theorem 3.5, if we assume φ(σ)=σ, then we have the following Ostrowski type inequalities:

    |F(ϰ)π1π2π2π1π2π1F(u)u2du|π1π2π2π1{χ11q1(π1,ϰ)(ϰπ1)2(χ2(π1,ϰ,1,1)|F(ϰ)|q+χ3(π1,ϰ,1,1)|F(π1)|q)1q+χ11q1(π2,ϰ)(π2ϰ)2(χ4(π2,ϰ,1,1)|F(ϰ)|q+χ5(π2,ϰ,1,1)|F(π2)|q)1q},

    where

    χ1(υ,ϰ)=1ϰν[1υlnϰlnυϰυ],χ2(π1,ϰ,υ,μ)=β(μ+2,1)ϰ2υ2F1(2υ,μ+2;μ+3;1π1ϰ),χ3(π1,ϰ,υ,μ)=β(μ+1,1)ϰ2υ2F1(2υ,μ+1;μ+3;1π1ϰ),χ4(π2,ϰ,υ,μ)=β(1,μ+2)π2υ22F1(2υ,1;μ+3;1ϰπ2),χ5(π2,ϰ,υ,μ)=β(2,μ+1)π2υ22F1(2υ,2;μ+3;1ϰπ2).

    This is proved by İşcan in [19,Theorem 2.4 for s=1].

    Corollary 3.7. In Theorem 3.5, if we set |F(ϰ)|M, ϰ[π1,π2], then we obtain the following Ostrowski typeinequality for generalized fractional integrals:

    |(Δ(1)+Λ(1))F(ϰ)[1ϰ+Iφ(Fg)(1π1)+1ϰIφ(Fg)(1π2)]|M{π1ϰ(ϰπ1)Θ11q1(Θ2+Θ3)1q+π2ϰ(π2ϰ)Θ11q4(Θ5+Θ6)1q}.

    Remark 3.8. In Theorem 3.5, if we set φ(σ)=σαΓ(α), then we obtain the following Ostrowski type inequality for Riemann-Liouville fractional integrals:

    |[(ϰπ1π1ϰ)α+(π2ϰπ2ϰ)α]F(ϰ)+Γ(α+1)[1ϰ+Jα(Fg)(1π1)+1ϰJα(Fg)(1π2)]|(ϰπ1)α+1(π1ϰ)α1Ω11q1(π1,ϰ,α)(Ω3(π1,ϰ,α)|F(ϰ)|q+Ω4(π1,ϰ,α)|F(π1)|q)1q+(π2ϰ)α+1(π2ϰ)α1Ω11q2(π2,ϰ,α)(Ω5(π2,ϰ,α)|F(ϰ)|q+Ω6(π2,ϰ,α)|F(π2)|q)1q,

    where

    Ω1(π1,ϰ,α)=ϰ22F1(2,α+1;α+2;1π1ϰ),Ω2(π2,ϰ,α)=π222F1(2,1;α+2;1ϰπ2)Ω3(π1,ϰ,α)=β(α+2,1)ϰ22F1(2,α+2;α+3;1π1ϰ),Ω4(π1,ϰ,α)=Ω1(π1,ϰ,α)Ω3(π1,ϰ,α),Ω5(π2,ϰ,α)=β(1,α+2)π222F1(2,1;α+3;1ϰπ2),Ω6(π2,ϰ,α)=Ω2(π2,ϰ,α)Ω5(π2,ϰ,α).

    This is proved by İşcan in [31].

    Corollary 3.9. In Theorem 3.5, if we set φ(σ)=σαkkΓk(α), then we obtain the followingnew Ostrowski type inequality for k-Riemann-Liouville fractional integrals:

    |[(ϰπ1π1ϰ)αk+(π2ϰπ2ϰ)αk]F(ϰ)+Γk(α+k)[1ϰ+Jα,k(Fg)(1π1)+1ϰJα,k(Fg)(1π2)]|(ϰπ1)α+kk(π1ϰ)αkkΩ11q1(π1,ϰ,αk)(Ω3(π1,ϰ,αk)|F(ϰ)|q+Ω4(π1,ϰ,αk)|F(π1)|q)1q+(π2ϰ)α+kk(π2ϰ)αkkΩ11q2(π2,ϰ,αk)(Ω5(π2,ϰ,αk)|F(ϰ)|q+Ω6(π2,ϰ,αk)|F(π2)|q)1q,

    where

    Ω1(π1,ϰ,αk)=ϰ22F1(2,αk+1;αk+2;1π1ϰ),Ω2(π2,ϰ,αk)=π222F1(2,1;αk+2;1ϰπ2)Ω3(π1,ϰ,αk)=β(αk+2,1)ϰ22F1(2,αk+2;αk+3;1π1ϰ),Ω4(π1,ϰ,αk)=Ω1(π1,ϰ,αk)Ω3(π1,ϰ,αk),Ω5(π2,ϰ,αk)=β(1,αk+2)π222F1(2,1;αk+3;1ϰπ2),Ω6(π2,ϰ,αk)=Ω2(π2,ϰ,αk)Ω5(π2,ϰ,αk).

    Theorem 3.10. We assume that the conditions of Lemma 3.1 are valid. If |F|q is harmonicallyconvex on [π1,π2] for some q>1, then the followinginequality holds for the generalized fractional integrals:

    |(Δ(1)+Λ(1))F(ϰ)[1ϰ+Iφ(Fg)(1π1)+1ϰIφ(Fg)(1π2)]|π1ϰ(ϰπ1)Θ1p7(|F(ϰ)|q+|F(π1)|q2)1q+π2ϰ(π2ϰ)Θ1p8(|F(ϰ)|q+|F(π2)|q2)1q,

    where 1p+1q=1 and

    Θ7=10(Δ(σ)(σπ1+(1σ)ϰ)2)pdσ,Θ8=10(Λ(σ)(σπ2+(1σ)ϰ)2)pdσ.

    Proof. From Lemma 3.1 and applying well-known Hölder's inequality, we have

    |(Δ(1)+Λ(1))F(ϰ)[1ϰ+Iφ(Fg)(1π1)+1ϰIφ(Fg)(1π2)]|π1ϰ(ϰπ1)10Δ(σ)(σπ1+(1σ)ϰ)2|F(π1ϰσπ1+(1σ)ϰ)|dσ+π2ϰ(π2ϰ)10Λ(σ)(σπ2+(1σ)ϰ)2|F(π2ϰσπ2+(1σ)ϰ)|dσπ1ϰ(ϰπ1)(10(Δ(σ)(σπ1+(1σ)ϰ)2)pdσ)1p(10|F(π1ϰσπ1+(1σ)ϰ)|qdσ)1q+π2ϰ(π2ϰ)(10(Λ(σ)(σπ2+(1σ)ϰ)2)pdσ)1p(10|F(π2ϰσπ2+(1σ)ϰ)|qdσ)1q.

    Now from harmonically convexity of |F|q, we have

    (10(Δ(σ)(σπ1+(1σ)ϰ)2)pdσ)1p(10|F(π1ϰσπ1+(1σ)ϰ)|qdσ)1qΘ1p7(|F(ϰ)|q10σdσ+|F(π1)|q10(1σ)dσ)1q=Θ1p7(|F(ϰ)|q+|F(π1)|q2)1q.

    and

    (10(Λ(σ)(σπ2+(1σ)ϰ)2)pdσ)1p(10|F(π2ϰσπ2+(1σ)ϰ)|qdσ)1qΘ1p8(|F(ϰ)|q10σdσ+|F(π2)|q10(1σ)dσ)1q=Θ1p8(|F(ϰ)|q+|F(π2)|q2)1q.

    Thus, the proof is completed.

    Remark 3.11. In Theorem 3.10, if we set φ(σ)=σ, then we obtain the following Ostrowski type inequality:

    |F(ϰ)π1π2π2π1π2π1F(u)u2du|π1π2π2π1{(χ2(π1,ϰ,υ,μ))1p(ϰπ1)2(|F(ϰ)|q+|F(π1)|q2)1q+(χ4(π2,ϰ,υ,μ))1p(π2ϰ)2(|F(ϰ)|q+|F(π2)|q2)1q},

    where

    χ2(π1,ϰ,υ,μ)=β(μ+1,1)ϰ2υ2F1(2υ,μ+1;μ+2;1π1ϰ),χ4(π2,ϰ,υ,μ)=β(1,μ+1)π2υ22F1(2υ,1;μ+2;1ϰπ2).

    This is proved by İşcan in [19,Theorem 2.6 for s=1].

    Corollary 3.12. In Theorem 3.5, if we set |F(ϰ)|M, ϰ[π1,π2], then we obtain the following Ostrowski typeinequality for generalized fractional integrals:

    |(Δ(1)+Λ(1))F(ϰ)[1ϰ+Iφ(Fg)(1π1)+1ϰIφ(Fg)(1π2)]|M{π1ϰ(ϰπ1)Θ1p7+π2ϰ(π2ϰ)Θ1p8}.

    Remark 3.13. In Theorem 3.10, if we set φ(σ)=σαΓ(α), then we obtain the following Ostrowski type inequalities for Riemann-Liouville fractional integrals:

    |[(ϰπ1π1ϰ)α+(π2ϰπ2ϰ)α]F(ϰ)+Γ(α+1)[1ϰ+Jα(Fg)(1π1)+1ϰJα(Fg)(1π2)]|(ϰπ1)α+1(π1ϰ)α1Ω1p7(π1,ϰ,α,p)(|F(ϰ)|q+|F(π1)|q2)1q+(π2ϰ)α+1(π2ϰ)α1Ω1p7(π2,ϰ,α,p)(|F(ϰ)|q+|F(π2)|q2)1q,

    where

    Ω7(υ,ϰ,α,p)=ϰ2αp+12F1(2p,αp+1;αp+2;1υϰ).

    This is proved by İşcan in [31].

    Corollary 3.14. In Theorem 3.5, if we set φ(σ)=σαkkΓk(α), then we obtain the followingnew Ostrowski type inequality for k-Riemann-Liouville fractional integrals:

    |[(ϰπ1π1ϰ)αk+(π2ϰπ2ϰ)αk]F(ϰ)+Γk(α+k)[1ϰ+Jα,k(Fg)(1π1)+1ϰJα,k(Fg)(1π2)]|(ϰπ1)α+kk(π1ϰ)αkkΩ1p7(π1,ϰ,αk,p)(|F(ϰ)|q+|F(π1)|q2)1q+(π2ϰ)α+kk(π2ϰ)αkkΩ1p7(π2,ϰ,αk,p)(|F(ϰ)|q+|F(π2)|q2)1q,

    where

    Ω7(υ,ϰ,αk,p)=kϰ2αp+k2F1(2p,αp+kk;αp+2kk;1υϰ).

    In this section, we discuss more special cases of the results proved in the last section.

    Remark 4.1. In Corollary 3.7, if we set φ(σ)=σ, then we obtain the following Ostrowski type inequality:

    |F(ϰ)π1π2π2π1π2π1F(u)u2du|Mπ1π2π2π1{χ11q1(π1,ϰ)(ϰπ1)2(χ2(π1,ϰ,1,1)+χ3(π1,ϰ,1,1))1q+χ11q1(π2,ϰ)(π2ϰ)2(χ4(π2,ϰ,1,1)+χ5(π2,ϰ,1,1))1q}. (4.1)

    This is proved by İşcan in [19,Corollary 2.3 for s=1].

    Remark 4.2. In Corollary 3.7, if we set φ(σ)=σαΓ(α), then we obtain the following Ostrowski type inequality for Riemann-Liouville fractional integrals:

    |[(ϰπ1π1ϰ)α+(π2ϰπ2ϰ)α]F(ϰ)+Γ(α+1)[1ϰ+Jα(Fg)(1π1)+1ϰJα(Fg)(1π2)]|M[(ϰπ1)α+1(π1ϰ)α1Ω11q1(π1,ϰ,α)(Ω3(π1,ϰ,α)+Ω4(π1,ϰ,α))1q+(π2ϰ)α+1(π2ϰ)α1Ω11q2(π2,ϰ,α)(Ω5(π2,ϰ,α)+Ω6(π2,ϰ,α))1q].

    This is proved by İşcan in [31].

    Remark 4.3. In Corollary 3.7, if we set φ(σ)=σαkkΓk(α), then we obtain the following new Ostrowski type inequality for k-Riemann-Liouville fractional integrals:

    |[(ϰπ1π1ϰ)αk+(π2ϰπ2ϰ)αk]F(ϰ)+Γk(α+k)[1ϰ+Jα,k(Fg)(1π1)+1ϰJα,k(Fg)(1π2)]|M[(ϰπ1)α+kk(π1ϰ)αkkΩ11q1(π1,ϰ,αk)(Ω3(π1,ϰ,αk)+Ω4(π1,ϰ,αk))1q+(π2ϰ)α+kk(π2ϰ)αkkΩ11q2(π2,ϰ,αk)(Ω5(π2,ϰ,αk)+Ω6(π2,ϰ,αk))1q].

    Remark 4.4. In Corollary 3.12, if we set φ(σ)=σ, then we obtain the following Ostrowski type inequality:

    |F(ϰ)π1π2π2π1π2π1F(u)u2du|Mπ1π2π2π1{(χ2(π1,ϰ,υ,μ))1p(ϰπ1)2+(χ4(π2,ϰ,υ,μ))1p(π2ϰ)2}. (4.2)

    This is proved by İşcan in [19,Corollary 2.5 for s=1].

    Remark 4.5. In Corollary 3.12, if we set φ(σ)=σαΓ(α), then we obtain the following Ostrowski type inequality for Riemann-Liouville fractional integrals:

    |[(ϰπ1π1ϰ)α+(π2ϰπ2ϰ)α]F(ϰ)+Γ(α+1)[1ϰ+Jα(Fg)(1π1)+1ϰJα(Fg)(1π2)]|M[(ϰπ1)α+1(π1ϰ)α1Ω1p7(π1,ϰ,α,p)+(π2ϰ)α+1(π2ϰ)α1Ω1p7(π2,ϰ,α,p)].

    This is proved by İşcan in [31].

    Remark 4.6. In Corollary 3.12, if we set φ(σ)=σαkkΓk(α), then we obtain the following new Ostrowski type inequality for k-Riemann-Liouville fractional integrals:

    |[(ϰπ1π1ϰ)αk+(π2ϰπ2ϰ)αk]F(ϰ)+Γk(α+k)[1ϰ+Jα,k(Fg)(1π1)+1ϰJα,k(Fg)(1π2)]|M[(ϰπ1)α+kk(π1ϰ)αkkΩ1p7(π1,ϰ,αk,p)+(π2ϰ)α+kk(π2ϰ)αkkΩ1p7(π2,ϰ,αk,p)].

    Remark 4.7. If we set q=1 in Theorem 3.5 and Corollaries 3.7–3.14, then we obtain some new Ostrowski type inequlities for the harmonically convexity of |F|. Moreover, for different choices of φ in the generalized fractional integrals, one can obtain several Ostrowski type inequalities via Katugampola fractional integrals, conformable fractional integral, Hadamard fractional integrals, etc.

    For arbitrary positive numbers π1,π2(π1π2), we consider the means as follows:

    (1) The arithmatic mean

    A=A(π1,π2)=π1+π22.

    (2) The geometric mean

    G=G(π1,π2)=π1π2.

    (3) The harmonic means

    H=H(π1,π2)=2π1π2π1+π2.

    (4) The logarithmic mean

    L=L(π1,π2)=π2π1lnπ2lnπ1.

    (5) The generalize logarithmic mean

    Lp=Lp(π1,π2)=[π2π1(π2π1)(p+1)]1p,pR{1,0}.

    (6) The identric mean

    I=I(π1,π2)={1e(π2π1)1π2π1, if π1π2,π1,              if π1=π2,π1,π2>0.

    These means are often employed in numerical approximations and other fields. However, the following straightforward relationship has been stated in the literature.

    HGLIA.

    Proposition 5.1. For π1,π2(0,) with π1<π2, then the following inequality holds:

    |A(π1,π2)G2(π1,π2)L(π1,π2)|MG2(π1,π2)(π2π1)4×{χ11q1(π1,A(π1,π2))(χ2(π1,A(π1,π2),1,1)+χ3(π1,A(π1,π2),1,1))1q+χ11q1(π2,A(π1,π2))(χ4(π2,A(π1,π2),1,1)+χ5(π2,A(π1,π2),1,1))1q}.

    Proof. The inequality (4.1) with ϰ=π1+π22 for mapping F:(0,)R, F(ϰ)=ϰ leads to this conclusion.

    Proposition 5.2. For π1,π2(0,) with π1<π2, then the following inequality holds:

    |H(π1,π2)G2(π1,π2)L(π1,π2)|MG2(π1,π2)π2π1×{χ11q1(π1,H(π1,π2))(G2(π1,π2)π212A(π1,π2))2(χ2(π1,H(π1,π2),1,1)+χ3(π1,H(π1,π2),1,1))1q+χ11q1(π2,H(π1,π2))(π22G2(π1,π2)2A(π1,π2))2(χ4(π2,H(π1,π2),1,1)+χ5(π2,H(π1,π2),1,1))1q}.

    Proof. The inequality (4.1) with ϰ=2π1π2π1+π2 for mapping F:(0,)R, F(ϰ)=ϰ leads to this conclusion.

    Proposition 5.3. For π1,π2(0,) with π1<π2, then the following inequality holds:

    |Ap+2(π1,π2)G2(π1,π2)Lpp(π1,π2)|MG2(π1,π2)(π2π1)4×{χ11q1(π1,A(π1,π2))(χ2(π1,A(π1,π2),1,1)+χ3(π1,A(π1,π2),1,1))1q+χ11q1(π2,A(π1,π2))(χ4(π2,A(π1,π2),1,1)+χ5(π2,A(π1,π2),1,1))1q}.

    Proof. The inequality (4.1) with ϰ=π1+π22 for mapping F:(0,)R, F(ϰ)=ϰp+2,p(1,){0} leads to this conclusion.

    Proposition 5.4. For π1,π2(0,) with π1<π2, then the following inequality holds:

    |Hp+2(π1,π2)G2(π1,π2)Lpp(π1,π2)|MG2(π1,π2)π2π1×{χ11q1(π1,H(π1,π2))(G2(π1,π2)π212A(π1,π2))2(χ2(π1,H(π1,π2),1,1)+χ3(π1,H(π1,π2),1,1))1q+χ11q1(π2,H(π1,π2))(π22G2(π1,π2)2A(π1,π2))2(χ4(π2,H(π1,π2),1,1)+χ5(π2,H(π1,π2),1,1))1q}.

    Proof. The inequality (4.1) with ϰ=2π1π2π1+π2 for mapping F:(0,)R, F(ϰ)=ϰp+2, p(1,){0} leads to this conclusion.

    Proposition 5.5. For π1,π2(0,) with π1<π2, then the following inequality holds:

    |A2(π1,π2)ln(A(π1,π2))G2(π1,π2)ln(I(π1,π2))|MG2(π1,π2)(π2π1)4×{χ11q1(π1,A(π1,π2))(χ2(π1,A(π1,π2),1,1)+χ3(π1,A(π1,π2),1,1))1q+χ11q1(π2,A(π1,π2))(χ4(π2,A(π1,π2),1,1)+χ5(π2,A(π1,π2),1,1))1q}.

    Proof. The inequality (4.1) with ϰ=π1+π22 for mapping F:(0,)R, F(ϰ)=ϰ2lnϰ, leads to this conclusion.

    Proposition 5.6. For π1,π2(0,) with π1<π2, then the following inequality holds:

    |H2(π1,π2)ln(H(π1,π2))G2(π1,π2)ln(I(π1,π2))|MG2(π1,π2)π2π1×{χ11q1(π1,H(π1,π2))(G2(π1,π2)π212A(π1,π2))2(χ2(π1,H(π1,π2),1,1)+χ3(π1,H(π1,π2),1,1))1q+χ11q1(π2,H(π1,π2))(π22G2(π1,π2)2A(π1,π2))2(χ4(π2,H(π1,π2),1,1)+χ5(π2,H(π1,π2),1,1))1q}.

    Proof. The inequality (4.1) with ϰ=2π1π2π1+π2 for mapping F:(0,)R, F(ϰ)=ϰ2lnϰ leads to this conclusion.

    In this paper, we have proved several new Ostrowski type inequalities for differentiable harmonically convex functions via the generalized fractional integrals. Moreover, we have proved that the established inequalities are the extensions of some existing inequalities in the literature. It is an interesting and new problem that the upcoming researchers can offer similar inequalities for different type of harmonically and co-ordinated harmonically convexity.

    This research was funded by King Mongkut's University of Technology North Bangkok. Contract No. KMUTNB-63-KNOW-22.

    The authors declare no conflict of interest.



    [1] O. F. Abioye, M. A. Dulebenets, M. Kavoosi, J. Pasha, O. Theophilus, Vessel schedule recovery in liner shipping: Modeling alternative recovery options, IEEE Trans. Intell. Transp. Syst., 22 (2021), 6420–6434. https://doi.org/10.1109/TITS.2020.2992120 doi: 10.1109/TITS.2020.2992120
    [2] S. Baştuğ, H. Haralambides, S. Esmer, E. Eminoğlu, Port competitiveness: Do container terminal operators and liner shipping companies see eye to eye?, Mar. Policy., 135 (2022), 104866. https://doi.org/10.1016/j.marpol.2021.104866 doi: 10.1016/j.marpol.2021.104866
    [3] M. A. Dulebenets, Multi-objective collaborative agreements amongst shipping lines and marine terminal operators for sustainable and environmental-friendly ship schedule design, J. Clean. Prod., 342 (2022), 130897. https://doi.org/10.1016/j.jclepro.2022.130897 doi: 10.1016/j.jclepro.2022.130897
    [4] Z. Elmi, P. Singh, V. K. Meriga, K. Goniewicz, M. Borowska-Stefańska, S. Wiśniewski, M. A. Dulebenets, Uncertainties in liner shipping and ship schedule recovery: A state-of-the-art review, J. Mar. Sci. Eng., 10 (2022), 563. https://doi.org/10.3390/jmse10050563 doi: 10.3390/jmse10050563
    [5] K. Wang, S. Wang, L. Zhen, X. Qu, Cruise service planning considering berth availability and decreasing marginal profit, Transp. Res. Part B Methodol., 95 (2017), 1–18. https://doi.org/10.1016/j.trb.2016.10.020 doi: 10.1016/j.trb.2016.10.020
    [6] L. Zhen, Y. Hu, S. Wang, G. Laporte, Y. Wu, Fleet deployment and demand fulfillment for container shipping liners, Transp. Res. Part B Methodol., 120 (2019), 15–32. https://doi.org/10.1016/j.trb.2018.11.011 doi: 10.1016/j.trb.2018.11.011
    [7] L. Zhen, Q. Sun, W. Zhang, K. Wang, W. Yi, Column generation for low carbon berth allocation under uncertainty, J. Oper. Res. Soc., 72 (2021), 2225–2240. https://doi.org/10.1080/01605682.2020.1776168 doi: 10.1080/01605682.2020.1776168
    [8] L. Wu, Y. Adulyasak, J. F. Cordeau, S. Wang, Vessel service planning in seaports, Oper. Res., 70 (2022), 2032–2053. https://doi.org/10.1287/opre.2021.2228 doi: 10.1287/opre.2021.2228
    [9] S. Wang, L. Zhen, D. Zhuge, Dynamic programming algorithms for selection of waste disposal ports in cruise shipping, Transp. Res. Part B Methodol., 108 (2018), 235–248. https://doi.org/10.1016/j.trb.2017.12.016 doi: 10.1016/j.trb.2017.12.016
    [10] L. Zhen, Y. Wu, S. Wang, G. Laporte, Green technology adoption for fleet deployment in a shipping network, Transp. Res. Part B Methodol., 139 (2020), 388–410. https://doi.org/10.1016/j.trb.2020.06.004 doi: 10.1016/j.trb.2020.06.004
    [11] W. Yi, L. Zhen, Y. Jin, Stackelberg game analysis of government subsidy on sustainable off-site construction and low-carbon logistics, Clean. Logist. Supply Chain., 2 (2021), 100013. https://doi.org/10.1016/j.clscn.2021.100013 doi: 10.1016/j.clscn.2021.100013
    [12] W. Yi, S. Wu, L. Zhen, G. Chawynski, Bi-level programming subsidy design for promoting sustainable prefabricated product logistics, Clean. Logist. Supply Chain., 1 (2021), 100005. https://doi.org/10.1016/j.clscn.2021.100005 doi: 10.1016/j.clscn.2021.100005
    [13] S. Wang, D. Zhuge, L. Zhen, C. Y. Lee, Liner shipping service planning under sulfur emission Regulations, Transp. Sci., 55 (2021), 491–509. https://doi.org/10.1287/trsc.2020.1010 doi: 10.1287/trsc.2020.1010
    [14] Paris MoU, Organization of Paris MoU, 2019. Available form: https://www.parismou.org/about-us/organisation
    [15] Tokyo MoU, Information Sheet of the New Inspection Regime (NIR), 2014. Available from: http://www.tokyo-mou.org/doc/NIR-information%20sheet-r.pdf
    [16] European Commission, Ex-post evaluation of Directive 2009/16/EC on Port State Control: Final Report, 2018. Available from: https://data.europa.eu/doi/10.2832/154686
    [17] R. Yan, S. Wang, Ship inspection by port state control—review of current research, Smart Transp. Syst., (2019), 233–241. https://doi.org/10.1007/978-981-13-8683-1_24 doi: 10.1007/978-981-13-8683-1_24
    [18] P. Cariou, M. Q. Mejia, F. C. Wolff, An econometric analysis of deficiencies noted in port state control inspections, Marit. Policy Manag., 34 (2007), 243–258. https://doi.org/10.1080/03088830701343047 doi: 10.1080/03088830701343047
    [19] P. Cariou, M. Q. Mejia, F. C. Wolff, Evidence on target factors used for port state control inspections, Mar. Policy., 33 (2009), 847–859. https://doi.org/10.1016/j.marpol.2009.03.004 doi: 10.1016/j.marpol.2009.03.004
    [20] M. C. Tsou, Big data analysis of port state control ship detention database, J. Mar. Eng. Technol., 18 (2019), 113–121. https://doi.org/10.1080/20464177.2018.1505029 doi: 10.1080/20464177.2018.1505029
    [21] S. Knapp, P. H. Franses, A global view on port state control: Econometric analysis of the differences across port state control regimes, Marit. Policy Manag., 34 (2007), 453–482. https://doi.org/10.1080/03088830701585217 doi: 10.1080/03088830701585217
    [22] F. J. Ravira, F. Piniella, Evaluating the impact of PSC inspectors' professional profile: A case study of the Spanish Maritime Administration, WMU J. Marit. Aff., 15 (2016), 221–236. https://doi.org/10.1007/s13437-015-0096-y doi: 10.1007/s13437-015-0096-y
    [23] A. Graziano, P. Cariou, F. C. Wolff, M. Q. Mejia, J. U. Schröder-Hinrichs, Port state control inspections in the European Union: Do inspector's number and background matter?, Mar. Policy., 88 (2018), 230–241. https://doi.org/10.1016/j.marpol.2017.11.031 doi: 10.1016/j.marpol.2017.11.031
    [24] R. F. Xu, Q. Lu, W. J. Li, K. X. Li, H. S. Zheng, A risk assessment system for improving port state control inspection, in: Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, (2007), 818–823. https://doi.org/10.1109/ICMLC.2007.4370255
    [25] Z. Yang, Z. Yang, J. Yin, Z. Qu, A risk-based game model for rational inspections in port state control, Transp. Res. Part E Logist. Transp. Rev., 118 (2018), 477–495. https://doi.org/10.1016/j.tre.2018.08.001 doi: 10.1016/j.tre.2018.08.001
    [26] S. Wang, R. Yan, X. Qu, Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation, Transp. Res. Part B Methodol., 128 (2019), 129–157. https://doi.org/10.1016/j.trb.2019.07.017 doi: 10.1016/j.trb.2019.07.017
    [27] D. Dinis, A. P. Teixeira, C. Guedes Soares, Probabilistic approach for characterising the static risk of ships using Bayesian networks, Reliab. Eng. Syst. Saf., 203 (2020), 107073. https://doi.org/10.1016/j.ress.2020.107073 doi: 10.1016/j.ress.2020.107073
    [28] R. Yan, S. Wang, C. Peng, An artificial intelligence model considering data imbalance for ship selection in port state control based on detention probabilities, J. Comput. Sci., 48 (2021), 101257. https://doi.org/10.1016/j.jocs.2020.101257 doi: 10.1016/j.jocs.2020.101257
    [29] R. Yan, S. Wang, Ship detention prediction using anomaly detection in port state control: model and explanation, Electron. Res. Arch., 30 (2022), 3679–3691. https://doi.org/10.3934/era.2022188 doi: 10.3934/era.2022188
    [30] E. H. Simpson, The interpretation of interaction in contingency tables, J. R. Stat. Soc. Ser. B Methodol., 13 (1951), 238–241. https://doi.org/10.1111/j.2517-6161.1951.tb00088.x doi: 10.1111/j.2517-6161.1951.tb00088.x
    [31] C. R. Blyth, On Simpson's paradox and the sure-thing principle, J. Am. Stat. Assoc., 67 (1972), 364–366. https://doi.org/10.1080/01621459.1972.10482387 doi: 10.1080/01621459.1972.10482387
    [32] J. Zidek, Maximal Simpson-disaggregations of 2 × 2 tables, Biometrika., 71 (1984), 187–190. https://doi.org/10.2307/2336411 doi: 10.2307/2336411
    [33] Y. Bishop, S. Fienberg, P. Holland, R. Light, F. Mosteller, Discrete multivariate analysis: Theory and practice, Appl. Psychol. Meas., 1 (1977). https://doi.org/10.1177/014662167700100218 doi: 10.1177/014662167700100218
    [34] M. G. Pavlides, M. D. Perlman, How likely is Simpson's paradox?, Am. Stat., 63 (2009), 226–233. https://www.jstor.org/stable/25652271
    [35] S. Sunder, Simpson's reversal paradox and cost allocation, J. Account. Res., 21 (1983), 222–233. https://doi.org/10.2307/2490944 doi: 10.2307/2490944
    [36] A. Mehrez, J. R. Brown, M. Khouja, Aggregate efficiency measures and Simpson's Paradox, Contemp. Account. Res., 9 (1992), 329–342. https://doi.org/10.1111/j.1911-3846.1992.tb00884.x doi: 10.1111/j.1911-3846.1992.tb00884.x
    [37] S. P. Curley, G. J. Browne, Normative and descriptive analyses of Simpson's paradox in decision making, Organ. Behav. Hum. Decis. Process., 84 (2001), 308–333. https://doi.org/10.1006/obhd.2000.2928 doi: 10.1006/obhd.2000.2928
    [38] N. D. Melumad, A. Ziv, Reduced quality and an unlevel playing field could make consumers happier, Manag. Sci., 50 (2004), 1646–1659. https://doi.org/10.1287/mnsc.1040.0277 doi: 10.1287/mnsc.1040.0277
    [39] W. Zhu, J. Wu, T. Fu, J. Wang, J. Zhang, Q. Shangguan, Dynamic prediction of traffic incident duration on urban expressways: a deep learning approach based on LSTM and MLP, J. Intell. Connect. Veh., 4 (2021), 80–91. https://doi.org/10.1108/JICV-03-2021-0004 doi: 10.1108/JICV-03-2021-0004
    [40] N. Lyu, Y. Wang, C. Wu, L. Peng, A. F. Thomas, Using naturalistic driving data to identify driving style based on longitudinal driving operation conditions, J. Intell. Connect. Veh., 5 (2022), 17–35. https://doi.org/10.1108/JICV-07-2021-0008 doi: 10.1108/JICV-07-2021-0008
    [41] H. Zhao, C. Zhang, An online-learning-based evolutionary many-objective algorithm, Inf. Sci., 509 (2020), 1–21. https://doi.org/10.1016/j.ins.2019.08.069 doi: 10.1016/j.ins.2019.08.069
    [42] S. Wang, R. Yan, A global method from predictive to prescriptive analytics considering prediction error for "Predict, then optimize" with an example of low-carbon logistics, Clean. Logist. Supply Chain., 4 (2022), 100062. https://doi.org/10.1016/j.clscn.2022.100062 doi: 10.1016/j.clscn.2022.100062
    [43] R. Yan, S. Wang, Integrating prediction with optimization: Models and applications in transportation management, Multimodal Transp., 1 (2022), 100018. https://doi.org/10.1016/j.multra.2022.100018 doi: 10.1016/j.multra.2022.100018
    [44] S. Wang, X. Tian, R. Yan, Y. Liu, A deficiency of prescriptive analytics—No perfect predicted value or predicted distribution exists, Electron. Res. Arch., 30 (2022), 3586–3594. https://doi.org/10.3934/era.2022183 doi: 10.3934/era.2022183
    [45] M. A. Dulebenets, R. Moses, E. E. Ozguven, A. Vanli, Minimizing carbon dioxide emissions due to container handling at marine container terminals via hybrid evolutionary algorithms, IEEE Access., 5 (2017), 8131–8147. https://doi.org/10.1109/ACCESS.2017.2693030 doi: 10.1109/ACCESS.2017.2693030
    [46] M. Dulebenets, A diploid evolutionary algorithm for sustainable truck scheduling at a cross-docking facility, Sustainability., 10 (2018), 1333. https://doi.org/10.3390/su10051333 doi: 10.3390/su10051333
    [47] J. Pasha, A. L. Nwodu, A. M. Fathollahi-Fard, G. Tian, Z. Li, H. Wang, et al., Exact and metaheuristic algorithms for the vehicle routing problem with a factory-in-a-box in multi-objective settings, Adv. Eng. Inform., 52 (2022), 101623. https://doi.org/10.1016/j.aei.2022.101623 doi: 10.1016/j.aei.2022.101623
    [48] M. Kavoosi, M. A. Dulebenets, O. F. Abioye, J. Pasha, H. Wang, H. Chi, An augmented self-adaptive parameter control in evolutionary computation: A case study for the berth scheduling problem, Adv. Eng. Inf., 42 (2019), 100972. https://doi.org/10.1016/j.aei.2019.100972 doi: 10.1016/j.aei.2019.100972
    [49] M. Rabbani, N. Oladzad-Abbasabady, N. Akbarian-Saravi, Ambulance routing in disaster response considering variable patient condition: NSGA-Ⅱ and MOPSO algorithms, J. Ind. Manag. Optim., 18 (2022), 1035. https://doi.org/10.3934/jimo.2021007 doi: 10.3934/jimo.2021007
  • This article has been cited by:

    1. Muhammad Amer Latif, Mappings related to Hermite-Hadamard type inequalities for harmonically convex functions, 2022, 1016-2526, 665, 10.52280/pujm.2022.541101
    2. YONGFANG QI, GUOPING LI, FRACTIONAL OSTROWSKI TYPE INEQUALITIES FOR (s,m)-CONVEX FUNCTION WITH APPLICATIONS, 2023, 31, 0218-348X, 10.1142/S0218348X23501281
    3. Muhammad Tariq, Sotiris K. Ntouyas, Bashir Ahmad, Ostrowski-Type Fractional Integral Inequalities: A Survey, 2023, 3, 2673-9321, 660, 10.3390/foundations3040040
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1925) PDF downloads(92) Cited by(4)

Figures and Tables

Figures(7)  /  Tables(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog