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Abstract: Although previous studies have applied artificial intelligence techniques to improve the 

accuracy and efficiency of ship selection in port state control (PSC) inspections, the new inspection 

regime (NIR) is still in effect and widely adopted by PSC authorities in the Tokyo Memorandum of 

Understanding to select ships for inspection. It considers seven features, and each candidate value of 

a certain feature is assigned a fixed weighting point. The sum of the weighting points of these seven 

features determines the risk level of a ship. The assumption behind the NIR is that ships with values 

attached with higher weighting points should have more deficiencies. However, this paper finds that 

Simpson’s paradox may exist for this assumption; that is, the average number of deficiencies of ships 

with values attached with higher weighting points is lower than that of ships with values attached with 

lower weighting points. Therefore, this paper examines the plausibility of the NIR’s weighted-sum 

method and further explores which feature flips the effect. Finally, we arrive at the conclusion that the 

features selected by NIR are coupled with each other, so we should not use a simple weighted-sum 

method to determine the risk level of a candidate ship. Based on the results, we further provide 

suggestions for PSC authorities with respect to the improvement of the ship selection scheme of NIR.  
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1. Introduction 

Oceangoing shipping transports a significant amount of different goods across the globe, which 

supports the development of the global economy [1–8]. In these years, sustainable shipping has also 
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become an important issue because of the air emissions released by ships, which adversely impact the 

marine environment [9–13]. To guarantee maritime safety and protect the marine environment, PSC is 

an international regime to inspect foreign visiting ships. It is designed to ensure that foreign visiting 

ships are seaworthy and comply with required international conventions, such as the international 

convention for the safety of life at sea (SOLAS) and the international convention for the prevention of 

pollution from ships (MARPOL). When a ship is selected to be inspected, the port state control officer 

(PSCO) first conducts an initial inspection, including the first impression of the ship, certificate check, 

and walking around to check the overall ship conditions. During a PSC inspection, conditions that do 

not comply with the relevant conventions are denoted as deficiencies. When the deficiencies identified 

are too many or severe, the PSCO will detain the ship until these deficiencies are rectified. 

To achieve uniform and efficient PSC inspections, regional Memorandum of Understandings 

(MoUs) on PSC are established through cooperation among their members. The goal of MoUs on PSC 

is to verify that the foreign visiting ships meet the international conventions’ requirements through a 

harmonized system of PSC, which allows for information sharing [14]. By the end of 2018, nine MoUs 

on PSC had been signed worldwide. And the inspection results, including the deficiencies identified and 

the detention outcome, combined with ship information, are recorded in the database of MoUs on PSC. 

One of the essential issues faced by PSC authorities is how to select ships for PSC inspections. 

Port states recognize that inspecting all foreign visiting ships would be impractical due to the resources 

it would take and unnecessary because not all ships are substandard. Therefore, port states started to 

select foreign visiting ships to inspect according to the features of ships. Taking Tokyo MoU as an 

example, it introduced a ship selection scheme in 2014, namely NIR, to evaluate the risk level of one 

ship, as shown in Table 1 [15]. It considers seven features related to the characteristics and historical 

inspection records of a ship, including ship type, ship age, ship flag performance, ship recognized 

organization (RO) performance, ship company performance, the number of deficiencies within the 

previous 36 months, and the number of detentions within the previous 36 months. Each candidate value 

of a certain feature is assigned a fixed weighting point, and a ship’s risk level is determined by the sum 

of seven features’ weighting points. Based on the total points, all ships are divided into three types: 

high-risk ship (HRS) (whose total weighting points is at least 4), standard-risk ship (SRS) (whose total 

weighting points is at most 3 and who does not meet all the criteria of low-risk ships), and low-risk 

ship (LRS) (whose total weighting points is at most 3 and who meets all the criteria for low-risk ships, 

including white ship flag performance, high ship RO performance, high ship company performance, 5 

or fewer deficiencies within the previous 36 months, and no detention within the previous 36 months); 

this scheme is easy to understand and implement. Thanks to the implementation of the NIR, maritime 

security, pollution prevention, and working conditions have all been improved [16]. 

Regarding the weighted-sum method of the NIR, the assumption is that ships with values attached 

with higher weighting points should have more deficiencies. For example, ships in high-risk types (i.e., 

chemical tankers, gas carriers, oil tankers, bulk carriers, etc.) are supposed to have higher numbers of 

deficiencies and thus have more chances to be inspected. However, by analyzing the dataset containing 

PSC inspection records that we collect (more information with respect to this dataset will be introduced 

in Section 3.2), we find that foreign visiting ships in low-risk ship types have a higher average number 

of deficiencies (4.02), while ships in high-risk ship types have a lower average number of deficiencies 

(3.77). A possible explanation for this finding is that those ships in high-risk types are registered under 

white flags to evade inspection, or the ages of these ships are young. Because the total weighting points 

of ships under white flags and at young ages are relatively low, even if those ships are in high-risk 
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types, they are not likely to be inspected. Therefore, selected ships in high-risk types might have lower 

numbers of deficiencies compared with ships in low-risk types. This finding indicates that the NIR’s 

weighted-sum method, which is based on the assumption that the values of the selected seven features 

are linear to the risk level of ships (i.e., the number of deficiencies) might not be reasonable. If the 

weighted-sum method does not consider the correlations of pairwise features among selected features, 

its effectiveness might be compromised. Therefore, the weighting method should not be established 

based on the linear total score of all considered features but consider a more comprehensive manner, 

such as considering the compound influence of pairwise features. 

Table 1. The weighted-sum method of the NIR of Tokyo MoU. 

Features High-risk Value Weighting Points Low-risk Value Weighting 

Points 

Ship type Chemical tanker, gas 

carrier, oil tanker, bulk 

carrier, passenger ship, 

container ship 

1 Other types 0 

Ship age All types with age > 12y 1 All types with age ≤ 

12y 

0 

Ship flag 

performance 

Black 1 Grey/white 0 

Ship RO 

performance 

Low/very low 2 High/medium 0 

Ship company 

performance 

Low/very low/no 

inspections within the 

previous 36 months 

2 High/medium 0 

Deficiencies 

within the previous 

36 months 

Number of inspections 

which recorded over 5 

deficiencies 

Number of 

inspections which 

recorded over 5 

deficiencies 

Number of inspections 

which recorded below 5 

deficiencies 

0 

Detentions within 

the previous 36 

months 

3 or more detentions 1 2 or fewer detentions 0 

The paper aims to investigate the correlations of pairwise features among selected features of the 

NIR and further investigate the plausibility of the NIR’s weighted-sum method. We require that when 

we classify ships according to the values of a certain feature, the values of the remaining features of 

ships should be identical. According to the NIR, the average number of deficiencies of ships in high-

risk values of a certain feature is assumed to be higher than the average number of deficiencies of ships 

in low-risk values of that feature. However, if the relationship reverses (i.e., the average number of 

deficiencies for ships in high-risk values is lower than that for ships in low-risk values) when the values 

of remaining features are identical, a paradox with respect to the NIR appears, which is termed 

Simpson’s paradox. If Simpson’s paradox exists, we further explore which feature flips the effect. By 

investigating Simpson’s paradox and analyzing the causes, we answer the question of whether it is 

reasonable to follow NIR’s weighted-sum method to select ships for inspection. 
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The contributions of the paper are as follows. First, the methodology used in our research 

identifies possible paradoxes of the NIR by analyzing a PSC dataset. To the best of our knowledge, 

identifying Simpson’s paradox by finding correlations of pairwise features among selected features of 

the NIR has not been considered in previous relevant research. Therefore, our research is the first one 

to examine the plausibility of the NIR. Second, based on the correlations of pairwise features revealed 

in this paper, we conclude that the values of selected features of NIR are nonlinear to the risk level of 

ships. Different from previous studies that propose machine learning (ML) models to invent a brand-

new ship selection scheme that requires great technological transformations, we mainly focus on 

diagnosing the intrinsic issues with respect to the current NIR, leading to managerial insights and 

suggestions that are easier to operate and implement for efficient and effective ship selections in PSC. 

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature. 

Section 3 presents a detailed description of our methods and materials. Section 4 shows the results. 

Finally, Section 5 concludes this study. 

2. Literature review 

2.1. Studies on PSC inspection 

A recent literature review classified the large body of literature on PSC into four main categories: 

targeted features influencing PSC inspection results, inspected ship selection scheme, PSC inspection 

effects, and suggestions for MoU management [17]. In this study, we focus on the literature about 

features influencing PSC inspection results and inspected ship selection schemes. 

For targeted features influencing PSC inspection results, several studies arrived at the conclusion 

that generic features, including ship age, ship flag, and ship type, were main determinants of ship 

deficiencies and detention [18–20]. As for non-generic features, Knapp and Franses [21] claimed that 

inspection areas and different backgrounds of inspectors would influence the inspection results. Ravira 

and Piniella [22] and Graziano et al. [23] both concluded that the professional profile of PSC inspectors 

might affect inspection results. These papers all used statistical models to analyze data and find out the 

determinant features of PSC inspection results. 

For ship selection scheme, relevant studies used ML models to select ships to be inspected or 

predict the number of deficiencies and detentions of foreign visiting ships. Xu et al. [24] introduced a 

risk assessment system based on a support vector machine (SVM) to classify foreign visiting ships as 

either high-risk or low-risk according to the target factors. Yang et al. [25] combined the Bayesian 

network model with the game model between PSC port authorities and ship owners to present an 

optimal PSC inspection scheme. In addition, several studies developed new ship selection models to 

predict the deficiencies and detentions of ships. Wang et al. [26] proposed a BN model to predict the 

number of ship deficiencies and compared it with the current NIR’s ship selection scheme in the Tokyo 

MoU, demonstrating the superiority of the BN model. Based on the static risk factors adopted by the 

NIR, Dinis et al. [27] developed a BN-based ship risk assessment model and conducted a quantitative 

assessment of the predictive validity of the model using historical PSC inspection records. Yan et al. 

[28] proposed a random forest-based model to predict the probability of ship detention. In a recent 

study, Yan and Wang [29] further proposed an anomaly detection model for ship detention prediction. 

These studies used ML models for ship selection in PSC inspections, which can identify substandard 

ships more efficiently and accurately. 
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2.2. Studies on the Simpson’s paradox in operations management 

Simpson first described the paradox in 1951 [30]. It is a statistical phenomenon that causes a 

potential bias in certain data analyses. The paradox occurs when a relationship between two variables 

reverses when a third variable, called a confounding variable, is introduced. The literature on 

Simpson’s paradox has focused on explaining the phenomenon, specifying its magnitude [31,32], the 

conditions where it vanishes [33], and its frequency [34]. The implications of Simpson’s paradox on 

managerial decision-making have been considered in operations management. Sunder [35] considered 

the paradox in the context of the allocation of indirect costs in the logistics system, which sharpened 

our intuition through deriving new rules of thumb. Mehrez et al. [36] discussed the paradox in the case 

of efficiency measures for firms or decision-making units. This research reminded us to exercise 

caution when developing models to deal with different technologies. Curley and Browne [37] observed 

the paradox in the background of on-time rate for delivery companies, where the judged relationship 

between two variables (e.g., company and performance) differs depending on whether that relationship 

is viewed within subcategories of a third variable (e.g., package size) or in the aggregate. Melumad 

and Ziv [38] looked at the relationship between product quality and increased production and found 

that under certain conditions, each individual firm’s average quality decreased while the overall market 

average quality increased. 

In summary, relevant studies have proposed ML models to improve the accuracy and efficiency of 

ship selection for PSC. Nevertheless, the NIR (i.e., weighted-sum method) is still in effect for Tokyo 

MoU. Although most existing studies propose new methods, they do not investigate the internal 

reasons for the drawbacks of the current weighted-sum method of the NIR. Therefore, our research 

studies the correlations between selected features of the NIR and investigates whether there are 

paradoxes with respect to the NIR, aiming to diagnose for the current scheme and provide suggestions 

for PSC authorities. 

3. Methods and materials 

3.1. Methods 

In this article, we aim to investigate the correlations of pairwise features among selected features of 

the NIR by studying whether ships with high-risk values of a certain feature have more deficiencies. To 

achieve this aim, we compare the average number of deficiencies of two categories divided by a splitting 

value of a certain feature. To examine the effect of a certain feature, we require that when we classify 

ships according to the values of a certain feature, the values of the remaining features of ships in these 

two subcategories should be identical. For example, ship age and ship flag performance are two features 

that affect the overall points of a visiting ship. If we first divide ships into two categories according to 

their ship flag performance, the total number of deficiencies, the total number of ships, and the average 

number of deficiencies, of the two categories are shown in Table 2. To examine the effect of ship flag 

performance on the number of deficiencies, we then require that the ships in these two categories have 

an identical range of ship age (i.e., above 12 or below 12). Therefore, by further stratifying the data, 

because we can divide ship age into two different range levels, we could get the corrected data, namely 

four subcategories, as shown in Table 3. Then pairwise comparisons of ships under the identical range 

level of age but with different values of the ship flag performance are conducted. 
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Table 2. The total number of deficiencies, the total number of ships, and the average 

number of deficiencies divided by ship flag performance. 

Ship flag performance Total deficiencies Total ships Average deficiencies 

Black 
1 3q q+  1 3p p+  1 3

1 3

q q

p p

+

+
 

Grey/white 
2 4q q+  2 4p p+  2 4

2 4

q q

p p

+

+
 

Table 3. The total number of deficiencies, the total number of ships, and the average 

number of deficiencies divided by ship age and ship flag performance. 

Ship age Ship flag performance Total deficiencies Total ships Average deficiencies 

>12 Black 
1q  1p  1

1

q

p
 

Grey/white 
2q  2p  2

2

q

p
 

≤12 Black 
3q  3p  3

3

q

p
 

Grey/white 
4q  4p  4

4

q

p
 

As shown in Tables 2 and 3, assume that we obtain the following results: 

 1 3 2 4

1 3 2 4

q q q q

p p p p

+ +


+ +
, (1) 

 1 2

1 2

q q

p p
 , (2) 

 3 4

3 4

q q

p p
 , (3) 

where Eq (1) indicates that the average number of deficiencies of ships under the black flag state is 

higher than that of ships under the white flag and grey flag when we do not require that the ships in 

each category have an identical range of ship age. However, Eqs (2) and (3) indicate that the average 

number of deficiencies of ships under the black flag states appear to be smaller than that of ships under 

the white flag and grey flag when we require that the ships in a subcategory should age below 12 or 

above. It means the relationship between the average number of deficiencies of ships and ship flag 

performance reverses after we divide the dataset into four subcategories by introducing a confounding 

feature ship age. The phenomenon observed is generally termed Simpson’s paradox. In this paradox, 

we assume that the ship flag is the basic categorical feature, the average number of deficiencies is the 

outcome, and the ship age is the introduced categorical confounding feature that causes the paradox. 

The reason for this Simpson’s paradox may be that the ages of ships under the black flag state are 

younger, so selected ships under the black flag state have lower average numbers of deficiencies.  

Since the NIR considers seven features, the influence of ship selection features on the ship 

conditions (deficiencies and detentions) is complex, and the categorical confounding features that may 

cause the paradox might be a combination of the other features. Therefore, we consider situations 

where the ships in the two subcategories only have different values in one basic categorical feature, 
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and the values of the remaining introduced categorical confounding features are identical. The 

classification of values of seven features according to the NIR is shown in Table 4. Then, we choose 

one feature as the basic categorical feature, group ships with identical values of remaining features into 

different subcategories, and conduct the analysis with subcategory data. The data analysis procedures 

for calculating the average number of deficiencies are shown in Algorithm 1, where the notation used 

is listed in Table 5. 

Table 4. Classification of seven features.  

Feature High-risk value Low-risk value 

Type of ship Chemical tanker, Gas Carrier, Oil tanker, Bulk 

carrier, passenger ship, and container ship 

Other types 

Ship age >12 ≤12 

Ship flag performance Black  Grey/white 

Ship company performance Low/very low High/medium 

Ship RO performance Low/very low High/medium 

Number of deficiencies within 

previous 36 months 

>5 ≤5 

Number of deficiencies 

within previous 36 months 

≥3 <3 

Table 5. Notation. 

Notation Meaning 

 1,..., ,...,j JQ q q q=  The set of J  features. 

 \j jQ Q q =  The set of features in Q  except for feature jq . 

( ) ( ) ( ) 1 1 2 2, , , ,..., ,n nD x y x y x y=  The dataset, where ( )1 2, ,..., kqq q

i i i ix x x x=  is a vector with J  feature values, 

and iy  is the number of deficiencies corresponding to ix . 

M  The number of subcategories for a basic categorical feature. 

m  The index of a subcategory, where {1,2,..., }m M . 

m

jI  The set of ships with identical values of features in 
jQ   and different values 

of the feature jq , where {1,2,..., }m M  and 2 jQ
M


= . 

jqa  The classification value of a numerical (categorical) feature jq  in the NIR. 

1 2,j jq q

m mY Y  The total number of deficiencies in two subcategories divided by feature jq . 

1 2,j jq q

m mn n  The total number of ships in two subcategories divided by feature jq . 

1 2,j jq q

m mavg avg  The average number of deficiencies in two subcategories divided by feature 

jq . 
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Algorithm 1: Data analysis procedures 

Input: ( ) ( ) ( ) 1 1 2 2, , , ,..., ,n nD x y x y x y= ,  1,..., ,...,j JQ q q q= ,  \j jQ Q q =  

Output: Six decision trees 

for jq Q  do 

Denote ships with the same jq
x


 by set m

jI , where j jq Q   

for {1,2,..., }m M  do 

1 2 1 20, 0, 0, 0j j j jq q q q

m m m mY Y n n= = = =              //initialize the total number of deficiencies and ships 

for m

ji I  do 

if jq  is a numerical feature then 

if j

j

q

i qx a then                //select ships in high-risk values of the numerical feature 

1 1 1

j j jq q q

m m mY Y y= + , 1 1 1j jq q

m mn n= +  

else                          //select ships in low-risk values of the numerical feature 

2 2 2

j j jq q q

m m mY Y y= + , 2 2 1j jq q

m mn n= +  

end if 

end if 

if jq  is a categorical feature then 

if j

j

q

i qx a= then                //select ships in high-risk values of the categorical feature 

1 1 1

j j jq q q

m m mY Y y= + , 1 1 1j jq q

m mn n= +  

else                          //select ships in low-risk values of the categorical feature 

2 2 2

j j jq q q

m m mY Y y= + , 2 2 1j jq q

m mn n= +  

end if 

end if 

return 1 2

1 2

1 2

,
j j

j j

j j

q q

q qm m

m mq q

m m

Y Y
avg avg

n n
= =       //one branch of the decision tree 

end for 

end for 

return the decision tree with the feature jq  as the basic categorical feature 

end for 

Return six decision trees 

3.2. Materials 

We collect PSC inspection records during January 2015 to December 2019 period at the Hong 

Kong port from the database of Tokyo MoU1. Data records with incomplete information are omitted, 

and we finally obtain 3026 PSC inspection records to be analyzed in this paper. The information we 

need comes from each PSC inspection record, including seven features that the NIR focuses on (i.e., 

ship type, ship age, ship flag performance, ship RO performance, ship company performance, the 

number of deficiencies within previous 36 months, and the number of detentions within previous 36 

months) and the number of deficiencies identified. The distributions of the seven features over the 

3026 cases are shown in Table 6. It is noticeable that the 3026 records do not have low and very low 

ship RO performance states. Because all ships in the dataset do not have to add points with respect to 

their ship RO performance, we ignore this feature in the following analysis. 

 
1
 https://www.tokyo-mou.org/inspections_detentions/psc_database.php 
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Table 6. The distributions of the seven features. 

Feature Explanation Distribution figure 

Ship type 

 

The main types of ships that have been 

inspected are chemical tanker, gas 

carrier, oil tanker, bulk carrier, 

passenger ship, and container ship. 

 

Ship age The age of a ship is the time difference 

(in years) between the keel laid date and 

the PSC inspection date. 

 

Ship flag 

performance 

 

The values of this variable are white, 

grey, black and not listed. Only flags 

that have been involved in more than 30 

PSC inspections during the previous 

three years are listed in the black-grey-

white lists; otherwise, the performance 

of the flag will not be listed. 

 

Ship RO 

performance 

 

Ship RO is the classification society that 

carries out surveys and issues or 

endorses statutory certificates on behalf 

of a flag state. The states of performance 

of the ship RO are high, medium, low, 

and not listed. 

 

 

Continued on next page 
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Feature Explanation Distribution figure 

Ship company 

performance 

 

The ship company refers to the 

International Safety Management (ISM) 

company for the ship. The states of ship 

company performance are high, 

medium, low, and very low. 

 

 

Number of 

deficiencies 

within previous 

36 months 

 

The sum of deficiencies identified in the 

PSC inspections within previous 36 

months. 

 

Number of 

detentions within 

previous 36 

months 

 

The sum of the detentions in the PSC 

inspections within previous 36 months. 

 

4. Results 

Based on the method described in Section 3.1, we classify ships according to the values of a certain 

basic categorical feature by restricting that the values of remaining confounding features are identical. 

Because we select six features of the NIR’s ship selection scheme, for each feature, the whole dataset 

could be divided into 32 ( 52 ) subcategories. In each subcategory, the values of all other features except 

for the chosen basic categorical feature are the same, so we can analyze whether there exists Simpson’s 

paradox for this basic categorical feature in this subcategory. For each subcategory of one certain basic 

categorical feature, we can divide the subcategory into two groups according to the risk value of the 

basic categorical feature. We compute the average number of deficiencies in each group and display it 

in a histogram. The left red side of the histogram is the average number of deficiencies of ships with 

the high-risk value of the basic categorical value, while the right green side of the histogram is that of 

ships with the low-risk value. If the left value of the histogram is smaller than the right value, 

Simpson’s paradox exists because this finding violates the assumption that ships with high-risk values 

should have more deficiencies than those with low-risk values. Then we present each subcategory as 
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a branch. The 32 branches construct a decision tree, and the leaf node of each branch shows the 

histogram mentioned above. By doing this for each feature, we obtain six decision trees in total, and 

further select the branch with Simpson’s paradox in each decision tree by blue boxes, as shown in 

Figures 1–6. In addition, we select the branches with Simpson’s paradox and show them in the table, 

as shown in Tables 7–12. In each table, we analyze which categorical confounding features cause 

Simpson’s paradox.  

In each decision tree, we classify ships according to the values of one basic categorical feature, 

the values of the remaining confounding features of the ships are identical in the same branch. 

According to Figures 1–6, we find 23, 11, 16, 8, 12 and 10 cases of Simpson’s paradox in six trees, 

respectively. Tables 7–12 show the average numbers of deficiencies of the branches showing 

Simpson’s paradox. 

Table 7. Branches showing Simpson’s paradox of decision tree 1 based on the basic 

categorical feature ship type. 

 

 

Branch 

no. 

Categorical confounding features Average 

deficiencies 

of ships in 

high-risk 

types 

Average 

deficiencies 

of ships in 

other types 

Ship 

age 

Ship 

flag 

performance 

Ship 

company 

performance 

Number of 

deficiencies 

within previous 

36 months 

Number of 

detentions 

within 

previous 36 

months 

1 >12 Black Low/very low >5 ≥3 /* 23 

3 ≤5 ≥3 / 21 

4 <3 7.33 11.11 

6 High/medium >5 <3 1 7 

7 ≤5 ≥3 5.33 23 

8 <3 2.5 9 

9 Grey/white Low/very low >5 ≥3 6.25 10 

10 <3 7.41 8.06 

11 ≤5 ≥3 6.92 8.61 

12 <3 4.69 6.49 

13 High/medium >5 ≥3 7 9.75 

15 ≤5 ≥3 5.72 6.65 

16 <3 3.52 3.91 

17 ≤12 Black Low/very low >5 ≥3 6 9 

18 <3 / 12.83 

19 ≤5 ≥3 / 11.5 

24 High/medium ≤5 <3 3.38 7.6 

25 Grey/white Low/very low >5 ≥3 6 14.08 

27 ≤5 ≥3 8.4 11.53 

28 <3 4.23 5.24 

29 High/medium >5 ≥3 6.5 7.6 

30 ≤5 <3 4.31 5.24 

32 <3 2.46 2.53 

Note: “/” means that there are no data samples in this subcategory. 
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Table 7 shows that, when we choose ship type as the basic categorical feature, there are 13 cases with 

other flag state performance and 12 cases with fewer than 5 deficiencies identified within previous 36 

months where Simpson’s paradox occurs. This result indicates that ship flag performance and the number 

of deficiencies within previous 36 months are two confounding features that are coupled with ship type. 

Table 8 shows that, when we choose ship age as the basic categorical feature, there are 6 cases under other 

flags and 6 cases with fewer than 3 detentions identified within previous 36 months where Simpson’s 

paradox occurs. This result indicates that ship flag performance and the number of detentions within 

previous 36 months are two confounding features that are coupled with ship age. Table 9 shows that, when 

we choose ship flag performance as the basic categorical feature, there are 9 cases with ship age below 12 

years old and 10 cases with fewer than 5 deficiencies identified within previous 36 months where 

Simpson’s paradox occurs. This result indicates that ship age and ship company performance are two 

confounding features that are coupled with ship flag performance. Table 10 shows that, when we choose 

ship company performance as the basic categorical feature, there are 5 cases with ship age below 12 years 

old and 5 cases with high or medium ship company performance where Simpson’s paradox occurs. This 

result indicates that ship age and the number of deficiencies within previous 36 months are two 

confounding features that are coupled with ship company performance. In Table 11, because all the 

numbers of cases with low-risk values of each confounding feature do not exceed half of the total 12 cases, 

it is hard to tell which features are coupled with the number of deficiencies within previous 36 months. 

Table 12 shows that, when we choose the number of detentions within previous 36 months as the basic 

categorical feature, there are 6 cases with ship age below 12 years old where Simpson’s paradox occurs, 

which indicates that ship age is coupled with the number of detentions within previous 36 months. This 

result may indicate that because young ships are assumed to have less possibility of being detained, 

shipping companies may neglect these ships, resulting in more deficiencies detected in official PSC 

inspections. At last, Figure 7 displays the correlation of pairwise features among six features based on the 

above results. 

Based on our results, we find that the selected features are nonlinear to the risk level of a ship, so 

the simple weighted-sum method could not identify ships’ conditions accurately. The PSC authorities 

can consider improving the ship selection scheme of NIR by reformulating a scoring system that 

considers the correlations between pairwise features. Based on the decision rules revealed in this paper, 

port states should pay attention to certain ship features when scoring ships. For example, for features 

such as ship age, ship flag performance, and ship company performance, even if one of them of a ship 

is in high-risk values, it does not indicate that this ship is supposed to have a large number of 

deficiencies. The reason is that those features are coupled with three other features (see Figure 7), 

respectively. For example, although some ships are registered under black flags, their ages might be 

below 12 years old, or their ship company performance is high or medium, leading to a lower average 

number of deficiencies. However, for features such as the number of detentions within previous 36 

months, they can reflect the actual condition of a ship because there is only one feature coupling to 

them. Therefore, these features should be given more attention during inspections. In addition, when 

developing advanced models for calculating ship risk level, e.g., statistical and ML models, the 

correlations between pairwise features can be further considered in the modeling procedures. 
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Figure 1. Decision tree 1 with ship type as the basic categorical feature. 

 

Figure 2. Decision tree 2 with ship age as the basic categorical feature. 
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Figure 3. Decision tree 3 with ship flag performance as the basic categorical feature. 

 

Figure 4. Decision tree 4 with ship company performance as the basic categorical feature. 
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Figure 5. Decision tree 5 with the number of deficiencies within previous 36 months as the basic categorical feature. 

 

Figure 6. Decision tree 6 with the number of detentions within previous 36 months as the basic categorical feature.
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Figure 7. Correlations of pairwise features among six features. 

Table 8. Branches showing Simpson’s paradox of decision tree 2 based on the basic 

categorical feature ship age. 

 

 

Branch no. 

Categorical confounding features Average 

deficiencies 

of ships in 

age > 12 

Average 

deficiencies 

of ships in 

age <= 12 

Ship 

type 

Ship 

flag 

perfor

mance 

Ship 

company 

performance 

Number of 

deficiencies 

within 

previous 36 

months 

Number of 

detentions 

within 

previous 

36 months 

1 Chemical 

tanker, 

Gas 

Carrier, 

Oil tanker, 

Bulk 

carrier, 

etc. 

Black Low/very low >5 ≥3 / 6 

4 ≤5 <3 7.33 12.67 

6 High/medium >5 <3 1 12 

8 ≤5 <3 2.5 3.38 

10 Grey/ 

white 

Low/very low >5 <3 7.41 8.62 

11 ≤5 ≥3 6.92 8.4 

15 High/medium ≤5 ≥3 5.73 9.2 

18 Other 

types 

Black Low/very low >5 <3 9.8 12.83 

25 Grey/ 

white 

Low/very low >5 ≥3 10 14.08 

27 ≤5 ≥3 8.62 11.53 

30 High/medium >5 <3 4.44 5.24 
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Table 9. Branches showing Simpson’s paradox of decision tree 3 based on the basic 

categorical feature ship flag performance. 

 

 

Branch 

no. 

Categorical confounding features Average 

deficiencies 

of ships under 

black flags 

Average 

deficiencies 

of ships 

under grey 

or white 

flags 

Ship 

type 

Ship 

age 

Ship 

company 

performance 

Number of 

deficiencies 

within 

previous 36 

months 

Number of 

detentions 

within 

previous 36 

months 

1 Chemical 

tanker, 

Gas 

Carrier, 

Oil tanker, 

Bulk 

carrier, 

etc. 

>12 Low/very low >5 ≥3 / 6.25 

3 ≤5 ≥3 / 6.92 

5 High/medium >5 ≥3 / 7 

6 <3 1 4.6 

7 ≤5 ≥3 5.33 5.73 

8 <3 2.5 3.53 

10 ≤12 Low/very low >5 <3 / 8.62 

11 ≤5 ≥3 / 8.4 

13 High/medium >5 ≥3 / 6.5 

15 ≤5 ≥3 3.5 9.2 

21 Other 

types 

>12 High/medium >5 ≥3 8 9.75 

25 ≤12 Low/very low >5 ≥3 9 14.08 

27  ≤5 ≥3 11.5 11.53 

29 High/medium >5 ≥3 / 7.6 

30 <3 3 5.24 

31 ≤5 ≥3 / 4 

Table 10. Branches showing Simpson’s paradox of decision tree 4 based on the basic 

categorical feature ship company performance. 

 

 

Branch 

no. 

Categorical confounding features Average 

deficiencies of 

ships with low 

or very low 

company 

performance 

Average 

deficiencies of 

ships 

with high or 

medium 

company 

performance 

Ship 

type 

Ship 

age 

Ship 

flag 

performance 

Number of 

deficiencies 

within 

previous 36 

months 

Number of 

detentions 

within 

previous 

36 months 

3 Chemical 

tanker, 

Gas 

Carrier, 

etc. 

>12 Black ≤5 ≥3 / 5.33 

5 Grey/white ＞5 ≥3 6.25 7 

10 ≤12 Black >5 <3 / 12 

11 ≤5 ≥3 / 3.5 

13 Grey/white >5 ≥3 6 6.5 

15 ≤5 ≥3 8.4 9.2 

19 Other 

types 

>12 Black ≤5 ≥3 21 23 

28 ≤12 Black ≤5 <3 6.33 7.6 
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Table 11. Branches showing Simpson’s paradox of decision tree 5 based on the basic 

categorical feature the number of deficiencies within previous 36 months. 

 

 

Branch 

no. 

Categorical confounding features Average 

deficiencies 

of ships 

with more 

than 5 

deficiencies 

Average 

deficienci

es of ships 

with at  

most 5 

deficienci

es 

Ship 

type 

Ship 

age 

Ship 

flag 

perfor

mance 

Ship 

company 

performance 

Number of 

detentions 

within 

previous 36 

months 

3 Chemical 

tanker, 

Gas 

Carrier, 

Oil tanker, 

Bulk 

carrier, 

etc. 

>12 Black High/medium ≥3 / 5.33 

4 <3 1 2.5 

5 Grey/ 

white 

Low/very low ≥3 6.25 6.92 

10 ≤12 Black Low/very low <3 / 12.67 

11 High/medium ≥3 / 3.5 

13 Grey/ 

white 

Low/very low ≥3 6 8.4 

15 High/medium ≥3 6.5 9.2 

18 Other 

types 

>12 Black Low/very low <3 9.8 11.11 

19 High/medium ≥3 8 23 

20 <3 7 9 

25 ≤12 Grey/ 

white 

Low/very low ≥3 9 11.5 

Table 12. Branches showing Simpson’s paradox of decision tree 6, based on the basic 

categorical feature the number of detentions within previous 36 months. 

 

 

Branch 

no. 

Categorical confounding features Average 

deficiencies 

of ships with 

at 

least 3 

detentions 

Average 

deficiencies 

of ships 

with fewer 

than 3 

detentions 

Ship 

type 

Ship 

age 

Ship 

flag 

performa

nce 

Ship company 

performance 

Number of 

deficiencies 

within previous 

36 months 

1 Chemical 

tanker, 

Gas 

Carrier, 

Oil tanker, 

Bulk 

carrier, 

etc. 

>12 Black Low/very low >5 / 22 

2 ≤5 / 7.33 

3 High/medium >5 / 1 

5 Grey/ 

white 

Low/very low >5 6.25 7.41 

10 ≤12 Black Low/very low >5 / 12.67 

11 High/medium >5 / 12 

13 Grey/ 

white 

Low/very low >5 6 8.62 

25 Other 

types 

≤12 Black Low/very low >5 9 12.83 

27 Low/very low >5 / 3 

28 ≤5 / 7.6 
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5. Conclusions 

Certain selection features, such as the ship’s flag, age, and type, are believed to directly influence 

how well a ship is likely to be operated. Currently, the ship selection method widely adopted by PSC 

authorities regulated by Tokyo MoU is the NIR’s simple weighted-sum scheme. This paper aims to 

investigate the plausibility of the NIR’s weighted-sum method; that is, investigating whether there are 

paradoxes with respect to it. If Simpson’s paradox exists, we could further explore which feature flips 

the effect. By observing the results, we find that many features selected by the NIR are coupled. Ship 

age, ship flag performance, and ship company performance are all coupled with three other features, 

respectively. Ship type and the number of deficiencies within previous 36 months are coupled with 

two other features, respectively. The number of detentions within previous 36 months is coupled with 

only one feature. 

The results of this study indicate that selected features of the NIR are nonlinear to the risk level 

of ships, so the weighted-sum method should be improved according to their nonlinear relationships. 

The finding suggests that PSC authorities should pay attention to certain features like ship age, ship 

flag performance and ship company performance, since none of them could reflect the condition of 

the ship directly and there exist at least three pairwise correlations between each of them and other 

features. If we apply the nonlinear models which consider the correlations between the features (e.g., 

ML models) to evaluate a ship’s risk level, the models can achieve better effectiveness in ship 

selection in PSC than the linear model (i.e., the weighted-sum method). Although this paper is the 

first study to examine the plausibility of the NIR, we do not quantitatively analyze the impact of 

compounding features on the final ship selection results. In the future, more advanced analytics 

techniques should be investigated for ship selection in PSC inspection based on the findings 

discovered in this paper, such as machine learning [39,40], online learning [41], prediction and 

optimization[42–44], evolutionary algorithms [45,46], multi-objective optimization [47], parameter 

control [48], and scheduling and routing [49], which have been applied as powerful solution 

approaches in many other domains.  
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