It has been noticed that heartbeats can display different patterns according to situations faced by a human. It has been indicated that, those passages from one pattern to another cannot be modelled using a single differential operator, either classical, fractional, or stochastic. In 2021, alternative concepts were introduced and called piecewise differentiation and integration, these concepts were applied in several complex problems with great insight. It is strongly believed that such will be leading concepts to modelling real-world problems with crossover behaviors. Crossover behaviors have been observed in heart rhythm, therefore, in this paper, the well-known van Der Pol equation will be subjected to piecewise analysis. Several simulations will be obtained using a numerical scheme based on Newton polynomial interpolation. Obtained figures show real world behaviors of heart rhythm with piecewise patterns.
Citation: Abdon Atangana, Seda İĞRET ARAZ. Rhythmic behaviors of the human heart with piecewise derivative[J]. Mathematical Biosciences and Engineering, 2022, 19(3): 3091-3109. doi: 10.3934/mbe.2022143
[1] | Tingting Du, Zhengang Wu . Some identities of the generalized bi-periodic Fibonacci and Lucas polynomials. AIMS Mathematics, 2024, 9(3): 7492-7510. doi: 10.3934/math.2024363 |
[2] | Tingting Du, Zhengang Wu . Some identities involving the bi-periodic Fibonacci and Lucas polynomials. AIMS Mathematics, 2023, 8(3): 5838-5846. doi: 10.3934/math.2023294 |
[3] | Hong Kang . The power sum of balancing polynomials and their divisible properties. AIMS Mathematics, 2024, 9(2): 2684-2694. doi: 10.3934/math.2024133 |
[4] | Utkal Keshari Dutta, Prasanta Kumar Ray . On the finite reciprocal sums of Fibonacci and Lucas polynomials. AIMS Mathematics, 2019, 4(6): 1569-1581. doi: 10.3934/math.2019.6.1569 |
[5] | Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori . New expressions for certain polynomials combining Fibonacci and Lucas polynomials. AIMS Mathematics, 2025, 10(2): 2930-2957. doi: 10.3934/math.2025136 |
[6] | Kritkhajohn Onphaeng, Prapanpong Pongsriiam . Exact divisibility by powers of the integers in the Lucas sequence of the first kind. AIMS Mathematics, 2020, 5(6): 6739-6748. doi: 10.3934/math.2020433 |
[7] | Ala Amourah, B. A. Frasin, G. Murugusundaramoorthy, Tariq Al-Hawary . Bi-Bazilevič functions of order $ \vartheta +i\delta $ associated with $ (p, q)- $ Lucas polynomials. AIMS Mathematics, 2021, 6(5): 4296-4305. doi: 10.3934/math.2021254 |
[8] | Can Kızılateş, Halit Öztürk . On parametric types of Apostol Bernoulli-Fibonacci, Apostol Euler-Fibonacci, and Apostol Genocchi-Fibonacci polynomials via Golden calculus. AIMS Mathematics, 2023, 8(4): 8386-8402. doi: 10.3934/math.2023423 |
[9] | Abdulmtalb Hussen, Mohammed S. A. Madi, Abobaker M. M. Abominjil . Bounding coefficients for certain subclasses of bi-univalent functions related to Lucas-Balancing polynomials. AIMS Mathematics, 2024, 9(7): 18034-18047. doi: 10.3934/math.2024879 |
[10] | Waleed Mohamed Abd-Elhameed, Amr Kamel Amin, Nasr Anwer Zeyada . Some new identities of a type of generalized numbers involving four parameters. AIMS Mathematics, 2022, 7(7): 12962-12980. doi: 10.3934/math.2022718 |
It has been noticed that heartbeats can display different patterns according to situations faced by a human. It has been indicated that, those passages from one pattern to another cannot be modelled using a single differential operator, either classical, fractional, or stochastic. In 2021, alternative concepts were introduced and called piecewise differentiation and integration, these concepts were applied in several complex problems with great insight. It is strongly believed that such will be leading concepts to modelling real-world problems with crossover behaviors. Crossover behaviors have been observed in heart rhythm, therefore, in this paper, the well-known van Der Pol equation will be subjected to piecewise analysis. Several simulations will be obtained using a numerical scheme based on Newton polynomial interpolation. Obtained figures show real world behaviors of heart rhythm with piecewise patterns.
Fibonacci polynomials and Lucas polynomials are important in various fields such as number theory, probability theory, numerical analysis, and physics. In addition, many well-known polynomials, such as Pell polynomials, Pell Lucas polynomials, Tribonacci polynomials, etc., are generalizations of Fibonacci polynomials and Lucas polynomials. In this paper, we extend the linear recursive polynomials to nonlinearity, that is, we discuss some basic properties of the bi-periodic Fibonacci and Lucas polynomials.
The bi-periodic Fibonacci {fn(t)} and Lucas {ln(t)} polynomials are defined recursively by
f0(t)=0,f1(t)=1,fn(t)={ayfn−1(t)+fn−2(t)n≡0(mod2),byfn−1(t)+fn−2(t)n≡1(mod2),n≥2, |
and
l0(t)=2,l1(t)=at,ln(t)={byln−1(t)+ln−2(t)n≡0(mod2),ayln−1(t)+ln−2(t)n≡1(mod2),n≥2, |
where a and b are nonzero real numbers. For t=1, the bi-periodic Fibonacci and Lucas polynomials are, respectively, well-known bi-periodic Fibonacci {fn} and Lucas {ln} sequences. We let
ς(n)={0n≡0(mod2),1n≡1(mod2),n≥2. |
In [1], the scholars give the Binet formulas of the bi-periodic Fibonacci and Lucas polynomials as follows:
fn(t)=aς(n+1)(ab)⌊n2⌋(σn(t)−τn(t)σ(t)−τ(t)), | (1.1) |
and
ln(t)=aς(n)(ab)⌊n+12⌋(σn(t)+τn(t)), | (1.2) |
where n≥0, σ(t), and τ(t) are zeros of λ2−abtλ−ab. This is σ(t)=abt+√a2b2t2+4ab2 and τ(t)=abt−√a2b2t2+4ab2. We note the following algebraic properties of σ(t) and τ(t):
σ(t)+τ(t)=abt,σ(t)−τ(t)=√a2b2t2+4ab,σ(t)τ(t)=−ab. |
Many scholars studied the properties of bi-periodic Fibonacci and Lucas polynomials; see [2,3,4,5,6]. In addition, many scholars studied the power sums problem of second-order linear recurrences and its divisible properties; see [7,8,9,10].
Taking a=b=1 and t=1, we obtain the Fibonacci {Fn} or Lucas {Ln} sequence. Melham [11] proposed the following conjectures:
Conjecture 1. Let m≥1 be an integer, then the sum
L1L3L5⋯L2m+1n∑k=1F2m+12k |
can be represented as (F2n+1−1)2R2m−1(F2n+1), including R2m−1(t) as a polynomial with integer coefficients of degree 2m−1.
Conjecture 2. Let m≥1 be an integer, then the sum
L1L3L5⋯L2m+1n∑k=1L2m+12k |
can be represented as (L2n+1−1)Q2m(L2n+1), where Q2m(t) is a polynomial with integer coefficients of degree 2m.
In [12], the authors completely solved the Conjecture 2 and discussed the Conjecture 1. Using the definition and properties of bi-periodic Fibonacci and Lucas polynomials, the power sums problem and their divisible properties are studied in this paper. The results are as follows:
Theorem 1. We get the identities
n∑k=1f2m+12k(t)=a2m+1b(a2b2t2+4ab)mm∑j=0(−1)m−j(2m+1m−j)(f(2n+1)(2j+1)(t)−f2j+1(t)l2j+1(t)), | (1.3) |
n∑k=1f2m+12k+1(t)=(ab)m(a2b2t2+4ab)mm∑j=0(2m+1m−j)(f(2n+2)(2j+1)(t)−f2(2j+1)(t)l2j+1(t)), | (1.4) |
n∑k=1l2m+12k(t)=m∑j=0(2m+1m−j)(l(2n+1)(2j+1)(t)−l2j+1(t)l2j+1(t)), | (1.5) |
n∑k=1l2m+12k+1(t)=am+1bm+1m∑j=0(−1)m−j(2m+1m−j)(l(2n+2)(2j+1)(t)−l2(2j+1)(t)l2j+1(t)), | (1.6) |
where n and m are positive integers.
Theorem 2. We get the identities
n∑k=1f2m2k(t)=a2m(a2b2t2+4ab)mm∑j=0(−1)m−j(2mm−j)f2j(2n+1)(t)f2j(t)−a2m(a2b2t2+4ab)m(2mm)(−1)m(n+12), | (1.7) |
n∑k=1f2m2k+1(t)=(ab)m(a2b2t2+4ab)mm∑j=0(2mm−j)(f2j(2n+2)(t)−f4j(t)f2j(t))−(ab)m(a2b2t2+4ab)m(2mm)n, | (1.8) |
n∑k=1l2m2k(t)=m∑j=0(2mm−j)f2j(2n+1)(t)l2j+1(t)−22m−1−(2mm)(n+12), | (1.9) |
n∑k=1l2m2k+1(t)=ambmm∑j=0(−1)m−j(2mm−j)(f2j(2n+2)(t)−f4j(t)f2j(t))−ambm(2mm)(−1)mn, | (1.10) |
where n and m are positive integers.
As for application of Theorem 1, we get the following:
Corollary 1. We get the congruences:
bl1(t)l3(t)⋯l2m+1(t)n∑k=1f2m+12k(t)≡0(modf2n+1(t)−1), | (1.11) |
and
al1(t)l3(t)⋯l2m+1(t)n∑k=1l2m+12k(t)≡0(modl2n+1(t)−at), | (1.12) |
where n and m are positive integers.
Taking t=1 in Corollary 1, we have the following conclusions for bi-periodic Fibonacci {fn} and Lucas {ln} sequences.
Corollary 2. We get the congruences:
bl1l3⋯l2m+1n∑k=1f2m+12k≡0(modf2n+1−1), | (1.13) |
and
al1l3⋯l2m+1n∑k=1l2m+12k≡0(modl2n+1−a), | (1.14) |
where n and m are nonzero real numbers.
Taking a=b=1 and t=1 in Corollary 1, we have the following conclusions for bi-periodic Fibonacci {Fn} and Lucas {Ln} sequences.
Corollary 3. We get the congruences:
L1L3⋯L2m+1n∑k=1F2m+12k≡0(modF2n+1−1), | (1.15) |
and
L1L3⋯L2m+1n∑k=1L2m+12k≡0(modL2n+1−1), | (1.16) |
where n and m are nonzero real numbers.
To begin, we will give several lemmas that are necessary in proving theorems.
Lemma 1. We get the congruence
f(2n+1)(2j+1)(t)−f2j+1(t)≡0(modf2n+1(t)−1), |
where n and m are nonzero real numbers.
Proof. We prove it by complete induction for j≥0. This clearly holds when j=0. If j=1, we note that abf3(2n+1)(t)=(a2b2t2+4ab)f32n+1(t)−3abf2n+1(t) and we obtain
f3(2n+1)(t)−f3(t)=(abt2+4)f32n+1(t)−3f2n+1(t)−(abt2+4)f31(t)+3f1(t)=(abt2+4)(f2n+1(t)−f1(t))(f22n+1(t)+f2n+1(t)f1(t)+f21(t))−3(f2n+1(t)−f1(t))=(abt2+4)(f2n+1(t)−1)(f22n+1(t)+f2n+1(t)f1(t)+f21(t))−3(f2n+1(t)−1)≡0(modf2n+1(t)−1). |
This is obviously true when j=1. Assuming that Lemma 1 holds if j=1,2,…,k, that is,
f(2n+1)(2j+1)(t)−f2j+1(t)≡0(modf2n+1(t)−1). |
If j=k+1≥2, we have
l2(2n+1)(t)f(2n+1)(2j+1)(t)=f(2n+1)(2j+3)(t)+abf(2n+1)(2j−1)(t), |
and
abl2(2n+1)(t)=(a2b2t2+4ab)f22n+1(t)−2ab≡(a2b2t2+4ab)f21(t)−2ab(modf2n+1(t)−1). |
We have
f(2n+1)(2k+3)(t)−f2k+3(t)=l2(2n+1)(t)f(2n+1)(2k+1)(t)−abf(2n+1)(2k−1)(t)−l2(t)f2k+1(t)+abf2k−1(t)≡((abt2+4)f21(t)−2)f(2n+1)(2k+1)(t)−abf(2n+1)(2k−1)(t)−((abt2+4)f21(t)−2)f2k+1(t)+abf2k−1(t)≡((abt2+4)f21(t)−2)(f(2n+1)(2k+1)(t)−f2k+1(t))−ab(f(2n+1)(2k−1)(t)−f2k−1(t))≡0(modf2n+1(t)−1). |
This completely proves Lemma 1.
Lemma 2. We get the congruence
al(2n+1)(2j+1)(t)−al2j+1(t)≡0(modl2n+1(t)−at), |
where n and m are nonzero real numbers.
Proof. We prove it by complete induction for j≥0. This clearly holds when j=0. If j=1, we note that al3(2n+1)(t)=bl32n+1(t)+3al2n+1(t) and we obtain
al3(2n+1)(t)−al3(t)=bl32n+1(t)+3al2n+1(t)−bl31(t)−3al1(t)=(l2n+1(t)−l1(t))(bl22n+1(t)+bl2n+1(t)l1(t)+bl21(t))−3a(l2n+1(t)−l1(t))=(l2n+1(t)−at)(bl22n+1(t)+bayl2n+1(t)+ba2t2)−3a(l2n+1(t)−at)≡0(modl2n+1(t)−at). |
This is obviously true when j=1. Assuming that Lemma 2 holds if j=1,2,…,k, that is,
al(2n+1)(2j+1)(t)−al2j+1(t)≡0(modl2n+1(t)−at). |
If j=k+1≥2, we have
l2(2n+1)(t)l(2n+1)(2j+1)(t)=l(2n+1)(2j+3)(t)+l(2n+1)(2j−1)(t), |
and
al2(2n+1)(t)=bl22n+1(t)+2a≡bl21(t)+2a(modl2n+1(t)−at). |
We have
al(2n+1)(2k+3)(t)−al(2k+3)(t)=a(l2(2n+1)(t)l(2n+1)(2k+1)(t)−l(2n+1)(2k−1)(t))−a(l2(t)l2k+1(t)−l2k−1(t))≡(bl21(t)+2a)l(2n+1)(2k+1)(t)−al(2n+1)(2k−1)(t)−(bl21(t)+2a)l2k+1(t)+al2k−1(t)≡(abt2+2)(al(2n+1)(2k+1)(t)−al2k+1(t))−(al(2n+1)(2k−1)(t)−al2k−1(t))≡0(modl2n+1(t)−at). |
This completely proves Lemma 2.
Proof of Theorem 1. We only prove (1.3), and the proofs for other identities are similar.
n∑k=1f2m+12k(t)=n∑k=1(aς(2k+1)(ab)⌊2k2⌋⋅(σ2k(t)−τ2k(t)σ(t)−τ(t)))2m+1=a2m+1(σ(t)−τ(t))2m+1n∑k=1(σ2k(t)−τ2k(t))2m+1(ab)(2m+1)k=a2m+1(σ(t)−τ(t))2m+1n∑k=12m+1∑j=0(−1)j(2m+1j)σ2k(2m+1−j)(t)τ2kj(t)(ab)(2m+1)k=a2m+1(σ(t)−τ(t))2m+12m+1∑j=0(−1)j(2m+1j)(1−σ2n(2m+1−2j)(t)(ab)(2m+1−2j)n(ab)2m+1−2jσ2(2m+1−2j)(t)−1)=a2m+1(σ(t)−τ(t))2m+1m∑j=0(−1)j(2m+1j)(1−σ2n(2m+1−2j)(t)(ab)(2m+1−2j)n(ab)2m+1−2jσ2(2m+1−2j)(t)−1−1−σ2n(2j−1−2m)(t)(ab)(2j−1−2m)n(ab)2j−1−2mσ2(2j−1−2m)(t)−1)=a2m+1(σ(t)−τ(t))2m+1m∑j=0(−1)j(2m+1j)(σ2(2m+1−2j)(t)(ab)2m+1−2j−σ(2n+2)(2m+1−2j)(t)(ab)(n+1)(2m+1−2j)+1−σ2n(2j−1−2m)(t)(ab)(2j−1−2m)n1−σ2(2m+1−2j)(t)(ab)(2m+1−2j))=a2m+1(σ(t)−τ(t))2m+1m∑j=0(−1)j(2m+1j)×(σ2m+1−2j(t)−τ2m+1−2j(t)−σ(2n+1)(2m+1−2j)(t)(ab)(2m+1−2j)n+τ(2n+1)(2m+1−2j)(t)(ab)(2m+1−2j)n−σ2m+1−2j(t)−τ2m+1−2j(t))=a2m+1b(a2b2t2+4ab)mm∑j=0(−1)m−j(2m+1m−j)(f(2n+1)(2j+1)(t)−f2j+1(t)l2j+1(t)). |
Proof of Theorem 2. We only prove (1.7), and the proofs for other identities are similar.
n∑k=1f2m2k(t)=n∑k=1(aς(2k+1)(ab)⌊2k2⌋⋅(σ2k(t)−τ2k(t)σ(t)−τ(t)))2m=a2m(σ(t)−τ(t))2mn∑k=1(σ2k(t)−τ2k(t))2m(ab)2mk=a2m(σ(t)−τ(t))2mn∑k=12m∑j=0(−1)j(2mj)σ2k(2m−j)(t)τ2kj(t)(ab)2mk=a2m(σ(t)−τ(t))2m2m∑j=0(−1)j(2mj)(1−σ2n(2m−2j)(t)(ab)(2m−2j)n(ab)2m−2jσ2(2m−2j)(t)−1) |
=a2m(σ(t)−τ(t))2mm∑j=0(−1)j(2mj)(1−σ2n(2m−2j)(t)(ab)(2m−2j)n(ab)2m−2jσ2(2m−2j)(t)−1+1−σ2n(2j−2m)(t)(ab)(2j−2m)n(ab)2j−2mσ2(2j−2m)(t)−1)+a2m(σ(t)−τ(t))2m(−1)m+1(2mm)n=a2m(σ(t)−τ(t))2mm∑j=0(−1)j(2mj)(σ2(2m−2j)(t)(ab)2m−2j−σ(2n+2)(2m−2j)(t)(ab)(n+1)(2m−2j)−1+σ2n(2j−2m)(t)(ab)(2j−2m)n1−σ2(2m−2j)(t)(ab)2m−2j)+a2m(σ(t)−τ(t))2m(−1)m+1(2mm)n=a2m(σ(t)−τ(t))2mm∑j=0(−1)j(2mj)(σ2m−2j(t)−τ2m−2j(t)−σ(2n+1)(2m−2j)(t)(ab)n(2m−2j)+τ(2n+1)(2m−2j)(t)(ab)n(2m−2j)τ2m−2j(t)−σ2m−2j(t))+a2m(σ(t)−τ(t))2m(−1)m+1(2mm)n=a2m(a2b2t2+4ab)mm∑j=0(−1)m−j(2mm−j)(f2j(2n+1)(t)−f2j(t)f2j(t))+a2m(a2b2t2+4ab)m(−1)m+1(2mm)n. |
Proof of Corollary 1. First, from the definition of fn(t) and binomial expansion, we easily prove (f2n+1(t)−1,a2b2t2+4ab)=1. Therefore, (f2n+1(t)−1,(a2b2t2+4ab)m)=1. Now, we prove (1.11) by Lemma 1 and (1.3):
bl1(t)l3(t)⋯l2m+1(t)n∑k=1f2m+12k(t)=l1(t)l3(t)⋯l2m+1(t)(a2m+1(σ(t)−τ(t))2mm∑j=0(−1)m−j(2m+1m−j)(f(2n+1)(2j+1)(t)−f2j+1(t)l2j+1(t)))≡0(modf2n+1(t)−1). |
Now, we use Lemma 2 and (1.5) to prove (1.12):
al1(t)l3(t)⋯l2m+1(t)n∑k=1l2m+12k(t)=l1(t)l3(t)⋯l2m+1(t)(m∑j=0(2m+1m−j)(al(2n+1)(2j+1)(t)−al2j+1(t)l2j+1(t)))≡0(modl2n+1(t)−at). |
In this paper, we discuss the power sums of bi-periodic Fibonacci and Lucas polynomials by Binet formulas. As corollaries of the theorems, we extend the divisible properties of the sum of power of linear Fibonacci and Lucas sequences to nonlinear Fibonacci and Lucas polynomials. An open problem is whether we extend the Melham conjecture to nonlinear Fibonacci and Lucas polynomials.
The authors declare that they did not use Artificial Intelligence (AI) tools in the creation of this paper.
The authors would like to thank the editor and referees for their helpful suggestions and comments, which greatly improved the presentation of this work. All authors contributed equally to the work, and they have read and approved this final manuscript. This work is supported by Natural Science Foundation of China (12126357).
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] | D. Baleanu, S. S. Sajjadi, A. Jajarmi, Ö. Defterli, J. H. Asad, The fractional dynamics of a linear triatomic molecule, Rom. Rep. Phys., 73 (2021), 1–13. |
[2] |
A. Jajarmi, D. Baleanu, K. Z. Vahid, S. Mobayen, A general fractional formulation and tracking control for immunogenic tumor dynamics, Math. Methods Appl. Sci., 73 (2021). https://doi.org/10.1002/mma.7804 doi: 10.1002/mma.7804
![]() |
[3] | A. Atangana, S. Igret Araz, Deterministic-Stochastic modeling: A new direction in modeling real world problems with crossover effect, preprint, hal.archieves-ouverteshal-0320.1318. |
[4] |
S. Nazari, A. Heydari, J. Khaligh, Modified modeling of the heart by applying nonlinear oscillators and designing proper control signal, Appl. Math., 4 (2013), 972–978. https://doi.org/10.4236/am.2013.47134 doi: 10.4236/am.2013.47134
![]() |
[5] |
A. Atangana, S. Igret Araz, Mathematical model of Covid-19 spread in Turkey and South Africa: Theory, methods and applications, Adv. Differ. Equ., 659 (2020). https://doi.org/10.1186/s13662-020-03095-w doi: 10.1186/s13662-020-03095-w
![]() |
[6] |
S. Igret Araz, Analysis of a Covid-19 model: Optimal control, stability and simulations Alexandria Eng. J., 60 (2020), 647–658. https://doi.org/10.1016/j.aej.2020.09.058 doi: 10.1016/j.aej.2020.09.058
![]() |
[7] |
A. Khan, R. Zarin, I Ahmed, A. Yusuf, U. W. Humphries, Numerical and theoretical analysis of Rabies model under the harmonic mean type incidence rate, Results Phys., 29 (2021), 104652. https://doi.org/10.1016/j.rinp.2021.104652 doi: 10.1016/j.rinp.2021.104652
![]() |
[8] |
D. Baleanu, S. S. Sajjadi, J. H. Asad, A. Jajarmi, E. Estiri, Hyperchaotic behaviors, optimal control, and synchronization of a nonautonomous cardiac conduction system, Adv. Differ. Equ., 157 (2021). https://doi.org/10.1186/s13662-021-03320-0 doi: 10.1186/s13662-021-03320-0
![]() |
[9] |
K. Göküs, M. Heinke, J. Hörth, Heart rhythm model for the simulation of electric fields in transesophageal atrial pacing and cardiac resynchronization therapy, Curr. Dir. Biomed. Eng., 4 (2018), 443–445. https://doi.org/10.1515/cdbme-2018-0105 doi: 10.1515/cdbme-2018-0105
![]() |
[10] |
M. Balakrishnan, V. S. Chakravarthy, S. Guhathakurta, Simulation of cardiac arrhythmias using a 2D heterogeneous whole heart model, Front. Physiol., 6 (2015), 374. https://doi.org/10.3389/fphys.2015.00374 doi: 10.3389/fphys.2015.00374
![]() |
[11] |
N. A. Trayanova, B. M. Tice, Integrative computational models of cardiac arrhythmias–simulating the structurally realistic heart, Drug Discov. Today Dis. Models, 6 (2009), 85–91. https://doi.org/10.1016/j.ddmod.2009.08.001 doi: 10.1016/j.ddmod.2009.08.001
![]() |
[12] |
J. Lian, H. Krätschmer, D. Müssig, Open Source Modeling of Heart Rhythm and Cardiac Pacing, Open Pacing Electrophysiol. Ther., 3 (2010), 28–44. https://doi.org/10.2174/1876536X01003010028 doi: 10.2174/1876536X01003010028
![]() |
[13] |
O. J. Peter, A. Yusuf, K. Oshinubi, F. A. Oguntolu, J. O. Lawal, A. I. Abioye, et. al., Fractional order of pneumococcal pneumonia infection model with Caputo Fabrizio operator, Results Phys. 29 (2021), 104581. https://doi.org/10.1016/j.rinp.2021.104581 doi: 10.1016/j.rinp.2021.104581
![]() |
[14] | D. Kaplan, L. Glass, Understanding nonlinear dynamics, Springer, (1995), 240–244. |
[15] | G. M. V. Ladeira, G. V. Lima, J. M. Balthazar, A. M. Tusset, A. M.Bueno, P and T waves heart modeling with Van Der Pol Oscillator, 24th ABCM International Congress of Mechanical Engineering, (2017), Brazil. https://doi.org/10.26678/ABCM.COBEM2017.COB17-1151 |
[16] | E. Ryzhii, M. Ryzhii, Modeling of Heartbeat Dynamics with a System of Coupled Nonlinear Oscillators, Commun. Comput. Inf. Sci., 404 (2014), 67–75. |
[17] |
D. D. Bernardo, M. G. Signorini, S. Cerutti, A model of two nonlinear coupled oscillators for the study of heartbeat dynamics, Int. J. Bifurc. Chaos, 8 (1998), 1975–1985. https://doi.org/10.1142/S0218127498001637 doi: 10.1142/S0218127498001637
![]() |
[18] |
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
![]() |
[19] |
A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.98/TSCI160111018A doi: 10.98/TSCI160111018A
![]() |
[20] |
A Atangana, S. Igret Araz, Modeling third waves of Covid-19 spread with piecewise differential and integral operators: Turkey, Spain and Czechia, Results Phys., 20 (2021), 104694. https://doi.org/10.1016/j.rinp.2021.104694 doi: 10.1016/j.rinp.2021.104694
![]() |
[21] |
A. Atangana, S. Igret Araz, New concept in calculus: Piecewise differential and integral operators, Chaos Solit. Fract., 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638 doi: 10.1016/j.chaos.2020.110638
![]() |
[22] |
A. Atangana, S. Igret Araz, New numerical scheme with Newton polynomial: Theory, Methods and Applications, Academic Press, (2021). https://doi.org/10.1016/B978-0-12-775850-3.50017-0 doi: 10.1016/B978-0-12-775850-3.50017-0
![]() |