This article investigates the due-window assignment scheduling problem with setup times on a single machine, where setup times of jobs are past-sequence-dependent. Under common, slack and unrestricted due-window assignment methods, the goal is to determine the optimal job sequence and due-window such that the cost function (i.e., the weighted sum of earliness and tardiness, number of early and tardy jobs, due-window starting time and size) is minimized. We solve the problem optimally by introducing a polynomial time algorithm. An extension to the problem with learning and deterioration effects is also studied.
Citation: Weiguo Liu, Xuyin Wang, Xiaoxiao Wang, Peizhen Zhao. Due-window assignment scheduling with past-sequence-dependent setup times[J]. Mathematical Biosciences and Engineering, 2022, 19(3): 3110-3126. doi: 10.3934/mbe.2022144
This article investigates the due-window assignment scheduling problem with setup times on a single machine, where setup times of jobs are past-sequence-dependent. Under common, slack and unrestricted due-window assignment methods, the goal is to determine the optimal job sequence and due-window such that the cost function (i.e., the weighted sum of earliness and tardiness, number of early and tardy jobs, due-window starting time and size) is minimized. We solve the problem optimally by introducing a polynomial time algorithm. An extension to the problem with learning and deterioration effects is also studied.
[1] | C. Koulamas, G. J. Kyparisis, Single-machine scheduling problems with past-sequence-dependent setup times, Eur. J. Oper. Res., 187 (2008), 1045–1049. https://doi.org/10.1016/j.ejor.2006.03.066 doi: 10.1016/j.ejor.2006.03.066 |
[2] | D. Biskup, J. Herrmann, Single-machine scheduling against due dates with past-sequence-dependent setup times, Eur. J. Oper. Res., 191 (2008), 587–592. https://doi.org/10.1016/j.ejor.2007.08.028 doi: 10.1016/j.ejor.2007.08.028 |
[3] | C. Koulamas, G. J. Kyparisis, New results for single-machine scheduling with past-sequence-dependent setup times and due date-related objectives, Eur. J. Oper. Res., 278 (2019), 149–159. https://doi.org/10.1016/j.ejor.2019.04.022 doi: 10.1016/j.ejor.2019.04.022 |
[4] | W. H. Kuo, D. L. Yang, Single machine scheduling with past-sequence-dependent setup times and learning effects, Inf. Process. Lett., 102 (2007), 22–26. https://doi.org/10.1016/j.ipl.2006.11.002 doi: 10.1016/j.ipl.2006.11.002 |
[5] | X. R. Wang, J. B. Wang, W. J. Gao, X. Huang, Scheduling with past-sequence-dependent setup times and learning effects on a single machine, Int. J. Adv. Manuf. Technol., 48 (2010), 739–746. https://doi.org/10.1007/s00170-009-2308-0 doi: 10.1007/s00170-009-2308-0 |
[6] | V. Mani, P. C. Chang, S. H. Chen, Single-machine scheduling with past-sequence-dependent setup times and learning effects: a parametric analysis, Int. J. Syst. Sci., 42 (2011), 2097–2102. https://doi.org/10.1080/00207721003718436 doi: 10.1080/00207721003718436 |
[7] | H. M. Soroush, Scheduling in bicriteria single machine systems with past-sequence-dependent setup times and learning effects, J. Oper. Res. Soc., 65 (2014), 1017–1036. https://doi.org/10.1057/jors.2013.43 doi: 10.1057/jors.2013.43 |
[8] | L. Y. Wang, X. Huang, W. W. Liu, Y. B. Wu, J. B. Wang, Scheduling with position-dependent weights, due-date assignment and past-sequence-dependent setup times, RAIRO-Oper. Res., 55 (2021), 2747–2758. https://doi.org/10.1051/ro/2020117 |
[9] | A. Allahverdi, The third comprehensive survey on scheduling problems with setup times/costs, Eur. J. Oper. Res., 246 (2015), 345–378. https://doi.org/10.1016/j.ejor.2015.04.004 doi: 10.1016/j.ejor.2015.04.004 |
[10] | J. Pei, X. Liu, P. M. Pardalos, W. Fan, S. Yang, Scheduling deteriorating jobs on a single serial-batching machine with multiple job types and sequence-dependent setup times, Ann. Oper. Res., 249 (2017), 175–195. https://doi.org/10.1007/s10479-015-1824-6 doi: 10.1007/s10479-015-1824-6 |
[11] | S. Muştu, T. Eren. The single machine scheduling problem with setup times under an extension of the general learning and forgetting effects, Optim. Lett., 15 (2020), 1327–1343. https://doi.org/10.1007/s11590-020-01641-9 doi: 10.1007/s11590-020-01641-9 |
[12] | M. D. Weerdt, R. Baart, L. He, Single-machine scheduling with release times, deadlines, setup times, and rejection, Eur. J. Oper. Res., 291 (2021), 629–639. https://doi.org/10.1016/j.ejor.2020.09.042 doi: 10.1016/j.ejor.2020.09.042 |
[13] | W. Wang, Single-machine due-date assignment scheduling with generalized earliness-tardiness penalties including proportional setup times, J. Appl. Math. Comput., 2021 (2021), 1–19. https://doi.org/10.1007/s12190-021-01555-4 doi: 10.1007/s12190-021-01555-4 |
[14] | A. Janiak, W. A. Janiak, T. Krysiak, T. Kwiatkowski, A survey on scheduling problems with due windows, Eur. J. Oper. Res., 242 (2015), 347–357. https://doi.org/10.1016/j.ejor.2014.09.043 doi: 10.1016/j.ejor.2014.09.043 |
[15] | G. A. Rolim, M. S. Nagano, Structural properties and algorithms for earliness and tardiness scheduling against common due dates and windows: A review, Comput. Ind. Eng., 149 (2020), 106803. https://doi.org/10.1016/j.cie.2020.106803 doi: 10.1016/j.cie.2020.106803 |
[16] | S. D. Liman, S. S. Panwalkar, S. Thongmee, Common due window size and location determination in a single machine scheduling problem, J. Oper. Res. Soc., 49 (1998), 1007–1010. https://doi.org/10.1057/palgrave.jors.2600601 doi: 10.1057/palgrave.jors.2600601 |
[17] | X. Huang, N. Yin, W. W. Liu, J. B. Wang, Common due window assignment scheduling with proportional linear deterioration effects, Asia-Pac. J. Oper. Res., 37 (2020), 1950031. https://doi.org/10.1142/S0217595919500313 doi: 10.1142/S0217595919500313 |
[18] | J. B. Wang, Y. Hu, B. Zhang, Common due-window assignment for single-machine scheduling with generalized earliness/tardiness penalties and a rate-modifying activity, Eng. Optim., 53 (2021), 496–512. https://doi.org/10.1080/0305215X.2020.1740921 doi: 10.1080/0305215X.2020.1740921 |
[19] | J. B. Wang, B. Zhang, L. Li, D. Bai, Y. B. Feng, Due window assignment scheduling problems with position-dependent weights on a single machine, Eng. Optim., 52 (2020), 185–193. https://doi.org/10.1080/0305215X.2019.1577411 doi: 10.1080/0305215X.2019.1577411 |
[20] | D. Wang, Y. Yin, T. C. E. Cheng, A bicriterion approach to common flow allowances due window assignment and scheduling with controllable processing times, Nav. Res. Logist., 64 (2017), 41–63. https://doi.org/10.1002/nav.21731 doi: 10.1002/nav.21731 |
[21] | Y. Yin, T. C. E. Cheng, C. C. Wu, S. R. Cheng, Single-machine due window assignment and scheduling with a common flow allowance and controllable job processing time, J. Oper. Res. Soc., 65 (2014), 1–13. https://doi.org/10.1057/jors.2012.161 doi: 10.1057/jors.2012.161 |
[22] | Y. Yin, D. Wang, T. C. E. Cheng, C. C. Wu, Bi-criterion single-machine scheduling and due-window assignment with common flow allowances and resource-dependent processing times, J. Oper. Res. Soc., 67 (2016), 1169–1183. https://doi.org/10.1057/jors.2016.14 doi: 10.1057/jors.2016.14 |
[23] | G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge University Press, 1988. https://doi.org/10.1017/s0025557200143451 |
[24] | J. B. Wang, A note on scheduling problems with learning effect and deteriorating jobs, Int. J. Syst. Sci., 37 (2006), 827–833. https://doi.org/10.1080/00207720600879260 doi: 10.1080/00207720600879260 |
[25] | D. L. Yang, W. H. Kuo, Some scheduling problems with deteriorating jobs and learning effects, Comput. Ind. Eng., 58 (2010), 25–28. https://doi.org/10.1016/j.cie.2009.06.016 doi: 10.1016/j.cie.2009.06.016 |
[26] | S. Gawiejnowicz, Models and algorithms of time-dependent scheduling, Berlin: Springer, 2020. https://doi.org/10.1007/978-3-662-59362-2 |
[27] | A. Azzouz, M. Ennigrou, L. B. Said, Scheduling problems under learning effects: classification and cartography, Int. J. Prod. Res., 56 (2018), 1642–1661. https://doi.org/10.1080/00207543.2017.1355576 doi: 10.1080/00207543.2017.1355576 |
[28] | J. B. Wang, J. Xu, J. Yang, Bi-criterion optimization for flow shop with a learning effect subject to release dates, Complexity, 2018 (2018), 9149510. https://doi.org/10.1155/2018/9149510 doi: 10.1155/2018/9149510 |
[29] | B. Cheng, J. Duan, X. Zhu, M. Zhou, Optimizing batch operations with batch-position-dependent learning effect and aging effect, Comput. Ind. Eng., 157 (2021), 107325. https://doi.org/10.1016/j.cie.2021.107325 doi: 10.1016/j.cie.2021.107325 |
[30] | Y. Ma, C. Chu, C. Zuo, A survey of scheduling with deterministic machine availability constraints, Comput. Ind. Eng., 58 (2010), 199–211. https://doi.org/10.1016/j.cie.2009.04.014 doi: 10.1016/j.cie.2009.04.014 |
[31] | J. B. Wang, L. Li, Machine scheduling with deteriorating jobs and modifying maintenance activities, Comput. J., 61 (2018), 47–53. https://doi.org/10.1093/comjnl/bxx032 doi: 10.1093/comjnl/bxx032 |
[32] | J. B. Wang, Y. Hu, B. Zhang, Common due-window assignment for single-machine scheduling with generalized earliness/tardiness penalties and a rate-modifying activity, Eng. Optim., 53 (2021), 496–512. https://doi.org/10.1080/0305215X.2020.1740921 doi: 10.1080/0305215X.2020.1740921 |