Research article

Due-window assignment scheduling with past-sequence-dependent setup times


  • Received: 29 September 2021 Revised: 02 January 2022 Accepted: 16 January 2022 Published: 19 January 2022
  • This article investigates the due-window assignment scheduling problem with setup times on a single machine, where setup times of jobs are past-sequence-dependent. Under common, slack and unrestricted due-window assignment methods, the goal is to determine the optimal job sequence and due-window such that the cost function (i.e., the weighted sum of earliness and tardiness, number of early and tardy jobs, due-window starting time and size) is minimized. We solve the problem optimally by introducing a polynomial time algorithm. An extension to the problem with learning and deterioration effects is also studied.

    Citation: Weiguo Liu, Xuyin Wang, Xiaoxiao Wang, Peizhen Zhao. Due-window assignment scheduling with past-sequence-dependent setup times[J]. Mathematical Biosciences and Engineering, 2022, 19(3): 3110-3126. doi: 10.3934/mbe.2022144

    Related Papers:

  • This article investigates the due-window assignment scheduling problem with setup times on a single machine, where setup times of jobs are past-sequence-dependent. Under common, slack and unrestricted due-window assignment methods, the goal is to determine the optimal job sequence and due-window such that the cost function (i.e., the weighted sum of earliness and tardiness, number of early and tardy jobs, due-window starting time and size) is minimized. We solve the problem optimally by introducing a polynomial time algorithm. An extension to the problem with learning and deterioration effects is also studied.



    加载中


    [1] C. Koulamas, G. J. Kyparisis, Single-machine scheduling problems with past-sequence-dependent setup times, Eur. J. Oper. Res., 187 (2008), 1045–1049. https://doi.org/10.1016/j.ejor.2006.03.066 doi: 10.1016/j.ejor.2006.03.066
    [2] D. Biskup, J. Herrmann, Single-machine scheduling against due dates with past-sequence-dependent setup times, Eur. J. Oper. Res., 191 (2008), 587–592. https://doi.org/10.1016/j.ejor.2007.08.028 doi: 10.1016/j.ejor.2007.08.028
    [3] C. Koulamas, G. J. Kyparisis, New results for single-machine scheduling with past-sequence-dependent setup times and due date-related objectives, Eur. J. Oper. Res., 278 (2019), 149–159. https://doi.org/10.1016/j.ejor.2019.04.022 doi: 10.1016/j.ejor.2019.04.022
    [4] W. H. Kuo, D. L. Yang, Single machine scheduling with past-sequence-dependent setup times and learning effects, Inf. Process. Lett., 102 (2007), 22–26. https://doi.org/10.1016/j.ipl.2006.11.002 doi: 10.1016/j.ipl.2006.11.002
    [5] X. R. Wang, J. B. Wang, W. J. Gao, X. Huang, Scheduling with past-sequence-dependent setup times and learning effects on a single machine, Int. J. Adv. Manuf. Technol., 48 (2010), 739–746. https://doi.org/10.1007/s00170-009-2308-0 doi: 10.1007/s00170-009-2308-0
    [6] V. Mani, P. C. Chang, S. H. Chen, Single-machine scheduling with past-sequence-dependent setup times and learning effects: a parametric analysis, Int. J. Syst. Sci., 42 (2011), 2097–2102. https://doi.org/10.1080/00207721003718436 doi: 10.1080/00207721003718436
    [7] H. M. Soroush, Scheduling in bicriteria single machine systems with past-sequence-dependent setup times and learning effects, J. Oper. Res. Soc., 65 (2014), 1017–1036. https://doi.org/10.1057/jors.2013.43 doi: 10.1057/jors.2013.43
    [8] L. Y. Wang, X. Huang, W. W. Liu, Y. B. Wu, J. B. Wang, Scheduling with position-dependent weights, due-date assignment and past-sequence-dependent setup times, RAIRO-Oper. Res., 55 (2021), 2747–2758. https://doi.org/10.1051/ro/2020117
    [9] A. Allahverdi, The third comprehensive survey on scheduling problems with setup times/costs, Eur. J. Oper. Res., 246 (2015), 345–378. https://doi.org/10.1016/j.ejor.2015.04.004 doi: 10.1016/j.ejor.2015.04.004
    [10] J. Pei, X. Liu, P. M. Pardalos, W. Fan, S. Yang, Scheduling deteriorating jobs on a single serial-batching machine with multiple job types and sequence-dependent setup times, Ann. Oper. Res., 249 (2017), 175–195. https://doi.org/10.1007/s10479-015-1824-6 doi: 10.1007/s10479-015-1824-6
    [11] S. Muştu, T. Eren. The single machine scheduling problem with setup times under an extension of the general learning and forgetting effects, Optim. Lett., 15 (2020), 1327–1343. https://doi.org/10.1007/s11590-020-01641-9 doi: 10.1007/s11590-020-01641-9
    [12] M. D. Weerdt, R. Baart, L. He, Single-machine scheduling with release times, deadlines, setup times, and rejection, Eur. J. Oper. Res., 291 (2021), 629–639. https://doi.org/10.1016/j.ejor.2020.09.042 doi: 10.1016/j.ejor.2020.09.042
    [13] W. Wang, Single-machine due-date assignment scheduling with generalized earliness-tardiness penalties including proportional setup times, J. Appl. Math. Comput., 2021 (2021), 1–19. https://doi.org/10.1007/s12190-021-01555-4 doi: 10.1007/s12190-021-01555-4
    [14] A. Janiak, W. A. Janiak, T. Krysiak, T. Kwiatkowski, A survey on scheduling problems with due windows, Eur. J. Oper. Res., 242 (2015), 347–357. https://doi.org/10.1016/j.ejor.2014.09.043 doi: 10.1016/j.ejor.2014.09.043
    [15] G. A. Rolim, M. S. Nagano, Structural properties and algorithms for earliness and tardiness scheduling against common due dates and windows: A review, Comput. Ind. Eng., 149 (2020), 106803. https://doi.org/10.1016/j.cie.2020.106803 doi: 10.1016/j.cie.2020.106803
    [16] S. D. Liman, S. S. Panwalkar, S. Thongmee, Common due window size and location determination in a single machine scheduling problem, J. Oper. Res. Soc., 49 (1998), 1007–1010. https://doi.org/10.1057/palgrave.jors.2600601 doi: 10.1057/palgrave.jors.2600601
    [17] X. Huang, N. Yin, W. W. Liu, J. B. Wang, Common due window assignment scheduling with proportional linear deterioration effects, Asia-Pac. J. Oper. Res., 37 (2020), 1950031. https://doi.org/10.1142/S0217595919500313 doi: 10.1142/S0217595919500313
    [18] J. B. Wang, Y. Hu, B. Zhang, Common due-window assignment for single-machine scheduling with generalized earliness/tardiness penalties and a rate-modifying activity, Eng. Optim., 53 (2021), 496–512. https://doi.org/10.1080/0305215X.2020.1740921 doi: 10.1080/0305215X.2020.1740921
    [19] J. B. Wang, B. Zhang, L. Li, D. Bai, Y. B. Feng, Due window assignment scheduling problems with position-dependent weights on a single machine, Eng. Optim., 52 (2020), 185–193. https://doi.org/10.1080/0305215X.2019.1577411 doi: 10.1080/0305215X.2019.1577411
    [20] D. Wang, Y. Yin, T. C. E. Cheng, A bicriterion approach to common flow allowances due window assignment and scheduling with controllable processing times, Nav. Res. Logist., 64 (2017), 41–63. https://doi.org/10.1002/nav.21731 doi: 10.1002/nav.21731
    [21] Y. Yin, T. C. E. Cheng, C. C. Wu, S. R. Cheng, Single-machine due window assignment and scheduling with a common flow allowance and controllable job processing time, J. Oper. Res. Soc., 65 (2014), 1–13. https://doi.org/10.1057/jors.2012.161 doi: 10.1057/jors.2012.161
    [22] Y. Yin, D. Wang, T. C. E. Cheng, C. C. Wu, Bi-criterion single-machine scheduling and due-window assignment with common flow allowances and resource-dependent processing times, J. Oper. Res. Soc., 67 (2016), 1169–1183. https://doi.org/10.1057/jors.2016.14 doi: 10.1057/jors.2016.14
    [23] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge University Press, 1988. https://doi.org/10.1017/s0025557200143451
    [24] J. B. Wang, A note on scheduling problems with learning effect and deteriorating jobs, Int. J. Syst. Sci., 37 (2006), 827–833. https://doi.org/10.1080/00207720600879260 doi: 10.1080/00207720600879260
    [25] D. L. Yang, W. H. Kuo, Some scheduling problems with deteriorating jobs and learning effects, Comput. Ind. Eng., 58 (2010), 25–28. https://doi.org/10.1016/j.cie.2009.06.016 doi: 10.1016/j.cie.2009.06.016
    [26] S. Gawiejnowicz, Models and algorithms of time-dependent scheduling, Berlin: Springer, 2020. https://doi.org/10.1007/978-3-662-59362-2
    [27] A. Azzouz, M. Ennigrou, L. B. Said, Scheduling problems under learning effects: classification and cartography, Int. J. Prod. Res., 56 (2018), 1642–1661. https://doi.org/10.1080/00207543.2017.1355576 doi: 10.1080/00207543.2017.1355576
    [28] J. B. Wang, J. Xu, J. Yang, Bi-criterion optimization for flow shop with a learning effect subject to release dates, Complexity, 2018 (2018), 9149510. https://doi.org/10.1155/2018/9149510 doi: 10.1155/2018/9149510
    [29] B. Cheng, J. Duan, X. Zhu, M. Zhou, Optimizing batch operations with batch-position-dependent learning effect and aging effect, Comput. Ind. Eng., 157 (2021), 107325. https://doi.org/10.1016/j.cie.2021.107325 doi: 10.1016/j.cie.2021.107325
    [30] Y. Ma, C. Chu, C. Zuo, A survey of scheduling with deterministic machine availability constraints, Comput. Ind. Eng., 58 (2010), 199–211. https://doi.org/10.1016/j.cie.2009.04.014 doi: 10.1016/j.cie.2009.04.014
    [31] J. B. Wang, L. Li, Machine scheduling with deteriorating jobs and modifying maintenance activities, Comput. J., 61 (2018), 47–53. https://doi.org/10.1093/comjnl/bxx032 doi: 10.1093/comjnl/bxx032
    [32] J. B. Wang, Y. Hu, B. Zhang, Common due-window assignment for single-machine scheduling with generalized earliness/tardiness penalties and a rate-modifying activity, Eng. Optim., 53 (2021), 496–512. https://doi.org/10.1080/0305215X.2020.1740921 doi: 10.1080/0305215X.2020.1740921
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1918) PDF downloads(52) Cited by(4)

Article outline

Figures and Tables

Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog