Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

On two sums related to the Lehmer problem over short intervals

  • In this article, we study sums related to the Lehmer problem over short intervals, and give two asymptotic formulae for them. The original Lehmer problem is to count the numbers coprime to a prime such that the number and the its number theoretical inverse are in different parities in some intervals. The numbers which satisfy these conditions are called Lehmer numbers. It prompts a series of investigations, such as the investigation of the error term in the asymptotic formula. Many scholars investigate the generalized Lehmer problems and get a lot of results. We follow the trend of these investigations and generalize the Lehmer problem.

    Citation: Yanbo Song. On two sums related to the Lehmer problem over short intervals[J]. AIMS Mathematics, 2021, 6(11): 11723-11732. doi: 10.3934/math.2021681

    Related Papers:

    [1] Zhao Xiaoqing, Yi Yuan . Square-free numbers in the intersection of Lehmer set and Piatetski-Shapiro sequence. AIMS Mathematics, 2024, 9(12): 33591-33609. doi: 10.3934/math.20241603
    [2] Lei Liu, Zhefeng Xu . Mean value of the Hardy sums over short intervals. AIMS Mathematics, 2020, 5(6): 5551-5563. doi: 10.3934/math.2020356
    [3] Jiankang Wang, Zhefeng Xu, Minmin Jia . On the generalized Cochrane sum with Dirichlet characters. AIMS Mathematics, 2023, 8(12): 30182-30193. doi: 10.3934/math.20231542
    [4] Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937
    [5] Xiaoqing Zhao, Yuan Yi . High-dimensional Lehmer problem on Beatty sequences. AIMS Mathematics, 2023, 8(6): 13492-13502. doi: 10.3934/math.2023684
    [6] Wenjia Guo, Xiaoge Liu, Tianping Zhang . Dirichlet characters of the rational polynomials. AIMS Mathematics, 2022, 7(3): 3494-3508. doi: 10.3934/math.2022194
    [7] Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo p. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638
    [8] Guohui Chen, Wenpeng Zhang . One kind two-term exponential sums weighted by third-order character. AIMS Mathematics, 2024, 9(4): 9597-9607. doi: 10.3934/math.2024469
    [9] Hu Jiayuan, Chen Zhuoyu . On distribution properties of cubic residues. AIMS Mathematics, 2020, 5(6): 6051-6060. doi: 10.3934/math.2020388
    [10] Zhuoyu Chen, Wenpeng Zhang . A new reciprocity formula of Dedekind sums and its applications. AIMS Mathematics, 2024, 9(5): 12814-12824. doi: 10.3934/math.2024626
  • In this article, we study sums related to the Lehmer problem over short intervals, and give two asymptotic formulae for them. The original Lehmer problem is to count the numbers coprime to a prime such that the number and the its number theoretical inverse are in different parities in some intervals. The numbers which satisfy these conditions are called Lehmer numbers. It prompts a series of investigations, such as the investigation of the error term in the asymptotic formula. Many scholars investigate the generalized Lehmer problems and get a lot of results. We follow the trend of these investigations and generalize the Lehmer problem.



    Let p be an odd primes, a be an integer coprime to p. So there exists a 0<¯ap such that a¯a1modp. Let N(p) denoted the number of integers a (0<a<p) such that a¯a1modp and 2a+¯a. D. H. Lehmer (see [1] problem F12 p. 381) asked a problem about the asymptotic formula of N(p). To give an answer to this problem, Professor W. P. Zhang proved the following two theorems (see [2,3,4]):

    Theorem 1.1. Let N(p) denoted the number of integers a (0<a<p) such that a¯a1modp and 2a+¯a. We have

    N(p)=12p+1π2p1a=1p1b=11ab(S(a,b;p)S(a,b;p)+4S(¯4a,b;p)4S(¯4a,b;p)4S(¯2a,b;p)+4S(¯2a,b;p))+O(log3p),

    where the S(a,b;p) are Kloosterman sums, defined as follows:

    S(m,n;p)=amodpe(ma+n¯ap).

    Theorem 1.2. For any odd number q, let N(q) denotes the number of integers a (0<a<q) which coprime to q such that a¯a1modq and 2a+¯a. We have

    N(q)=12ϕ(q)+O(q1/2τ2(q)log2q).

    For more about Lehmer problem, one can see [5,6,7,8,9,10,11,12]. In 2015, H. Zhang and W. P. Zhang [13] investigated two new sums:

    L(k,p)=12k   a1pa1ak1  akpmod
    S(k,p)=\frac{1}{{{2}^{k}}}\underset{n|{{a}_{1}}+\cdots +{{a}_{k}}}{\mathop{\sum\limits_{\begin{smallmatrix} \ \ \ {{a}_{1}}\le p \\ {{a}_{1}}\cdots {{a}_{k}}\equiv 1 \end{smallmatrix}}{\cdots }\sum\limits_{\begin{smallmatrix} \ \ {{a}_{k}}\le p \\ \bmod \ p \end{smallmatrix}}{{}}}}\,(1-{{(-1)}^{{{a}_{1}}+\overline{{{a}_{1}}}}})\cdots (1-{{(-1)}^{{{a}_{k}}+\overline{{{a}_{k}}}}}),

    which related to the Lehmer problem, and gave the asymptotic formulae for these new sums.

    In this paper, we give asymptotic formulae for these new sums over short intervals.

    Theorem 1.3. Let p be an odd primes, and k > 2 be an integer, and \varepsilon > 0 is a sufficient small real number. |A_i|\gg p^{1/2+1/k+\varepsilon} , A_i = \{1, 2, \cdots, t_i\} , [1, t_i]\in(0, p) , i = 1, 2, \cdots, k . Define N(k, p) as follows:

    N(k, p) = \frac{1}{2^k}\sum\limits_{\begin{smallmatrix} \ {{a}_{1}}\in {{A}_{1}} \\ {{a}_{1}}\cdots {{a}_{k}}\equiv 1 \end{smallmatrix}}{\cdots }\sum\limits_{\begin{smallmatrix} \ \ {{a}_{k}}\in {{A}_{k}} \\ \bmod \ p \end{smallmatrix}}{{}} (1-(-1)^{a_1+\overline{a_1}})\cdots(1-(-1)^{a_k+\overline{a_k}}),

    then we have

    N(k, p) = \frac{1}{2^k(p-1)}\prod\limits_{i = 1}^kt_i+O\left(p^{-1/2}\log^2 p\max\limits_{1\leq r\leq k}\left\{\prod\limits_{i\neq r}t_i\right\}\right)+O(p^{k/2+\varepsilon}),

    where the implied constant of the first and second big 'O' terms depends on k .

    Theorem 1.4. Let p be an odd primes, k > 4 be an integer, and \varepsilon > 0 is a sufficient small real number. p\geq n > p^{\frac{k+2}{2k-2}+\varepsilon} be an integer. A_i = \{1, 2, \cdots, t_i\} , i = 1, 2, \cdots, k-1 , p^{\frac{k+2}{2k-2}+\varepsilon} < t_i < n , A_k = \{1, 2, \cdots, n\} . Define M(k, p) as follows:

    M(k, p) = \frac{1}{2^k}\underset{n\mid {{a}_{1}}+\cdots +{{a}_{k}}}{\mathop{\sum\limits_{\begin{smallmatrix} \ {{a}_{1}}\in {{A}_{1}} \\ {{a}_{1}}\cdots {{a}_{k}}\equiv 1 \end{smallmatrix}}{\cdots }\sum\limits_{\begin{smallmatrix} \ \ {{a}_{k}}\in {{A}_{k}} \\ \bmod \ p \end{smallmatrix}}{{}}}}\,(1-(-1)^{a_1+\overline{a_1}})\cdots(1-(-1)^{a_k+\overline{a_k}}),

    then we have

    M(k, p) = \frac{1}{2^k(p-1)}\prod\limits_{i = 1}^{k-1}t_i+O\left(p^{-1/2}\log^2 p\max\limits_{1\leq r\leq k-1}\left\{ \underset{\begin{smallmatrix} \ \ i\ne r \\ 1\le i\le k-1 \end{smallmatrix}}{\mathop{\Pi }}\, t_i\right\}\right)+O(p^{k/2+\varepsilon}),

    where the implied constant of the first and second big 'O' terms depends on k .

    Remark 1.5. The short interval result is usually more difficult than the whole interval result. This is why this problem is interesting and meaningful, and use some technique which are often used to obtain a short interval result such as Lemma 2.4 and formula (2.1). We use 1-e\left(\frac{a+b}{2}\right) instead of (-1)^{a+b} to detect 2\mid a+b .

    Before we prove the theorem, we introduce some Lemmas, and through out the paper, p always denotes an odd prime number, and \chi and \psi always denote the character \mod p , \chi_0 denotes the principal character \mod p .

    We define the generalized Kloosterman sums, as follows:

    K(m, n;q) = \sum\limits_{a \mod q}\chi(a)e\left(\frac{ma+n\overline{a}}{q}\right),

    where m , n , q be integers and \chi is a Dirichlet character \mod q . And we define Gauss sums, as follows:

    G(a, \chi) = \sum\limits_{d \mod q}\chi(d)e\left(\frac{ad}{q}\right).

    We have following estimates.

    Lemma 2.1. Let p be an odd primes, then we have

    K(m, n;p)\leq p^{1/2+\varepsilon}(m, n, p)^{1/2}.

    Proof. See [14].

    Lemma 2.2. Let a , b , q be natural numbers, \chi runs through all the non-principal characters \mod q , then we have

    \sum\limits_{\chi\neq\chi_0}G(a, \chi)G(b, \chi)\ll q^{3/2}\tau(q)(a, q)^{1/2}(b, q)^{1/2}.

    Proof. See Lemma 3 in [15].

    Similarly, we have

    Lemma 2.3. Let p be an odd primes, and a , b be natural numbers, \psi runs through all the non-principal characters \mod p , \chi is a character \mod p , then we have

    \sum\limits_{\psi\neq\chi_0}G(a, \psi)G(b, \psi\chi)\ll p^{3/2+\varepsilon}(a, p)^{1/2}(b, p)^{1/2}.

    Lemma 2.4. Let N be a nature number, \alpha be a real number, then

    \sum\limits_{n\leq N}e(\alpha n)\ll \min\left(N, \frac{1}{2\|\alpha\|}\right),

    where \|\alpha\| denotes the distance from \alpha to the nearest integer.

    Proof. See [16].

    Lemma 2.5. Let U and \gamma be two positive real numbers, p be a nonzero natural number, then

    \sum\limits_{k = 1}^{p-1}\min\left(U, \frac{1}{\left\|\frac{k}{p}+\gamma\right\|}\right)\ll U+p\log p.

    Proof. Since the inequality

    \left\|\frac{k}{p}+\gamma\right\| < \frac{1}{p}

    hold for at most two k . They contribute at most 2U . The others contribute at most

    2\sum\limits_{j < p/2}p/j\ll p\log p.

    This completes the proof of the lemma.

    Lemma 2.6. Let p be an odd prime number, A = \{1, 2, \cdots, s\} , [1, s]\in(0, p) , then we have

    \sum\limits_{\begin{align} & \ a\in A \\ & 2\nmid a+\bar{a} \\ \end{align}}\chi(a)e\left(\frac{ta}{n}\right)\ll p^{1/2+\varepsilon},

    when \chi\neq\chi_0 , and

    \sum\limits_{\begin{align} & \ a\in A \\ & 2\nmid a+\bar{a} \\ \end{align}}\chi(a)e\left(\frac{ta}{n}\right) = \frac{1}{2}\sum\limits_{a\in A}e\left(\frac{ta}{n}\right)+ O(p^{1/2}\log^2 p),

    when \chi = \chi_0 .

    Proof. When \chi = \chi_0 , we have

    \sum\limits_{\begin{align} & \ a\in A \\ & 2\nmid a+\bar{a} \\ \end{align}} e\left(\frac{ta}{n}\right) = \underset{2\nmid a+b}{\mathop{\underset{ab\equiv 1\ \ \ \,\bmod \,p}{\mathop{\sum\limits_{a\in A}{\sum\limits_{b=1}^{p-1}{{}}}}}\,}}\,e\left(\frac{ta}{n}\right)\\ = \frac{1}{2p-2}\sum\limits_{\psi\mod p}\sum\limits_{a\in A}\sum\limits_{b = 1}^{p-1}\psi(ab)\left(1-e\left(\frac{a+b}{2}\right)\right)e\left(\frac{ta}{n}\right)\\ = \frac{1}{2p-2}\sum\limits_{a\in A}\sum\limits_{b = 1}^{p-1}e\left(\frac{ta}{n}\right)-\frac{1}{2p-2}\sum\limits_{a\in A}\sum\limits_{b = 1}^{p-1}e\left(\frac{a+b}{2}\right)e\left(\frac{ta}{n}\right)\\ +\frac{1}{2p-2}\sum\limits_{\psi\neq\chi_0}\sum\limits_{a\in A}\sum\limits_{b = 1}^{p-1}\psi(a)\psi(b)e\left(\frac{ta}{n}\right)-\frac{1}{2p-2}\sum\limits_{\psi\neq\chi_0}\sum\limits_{a\in A}\sum\limits_{b = 1}^{p-1}\psi(a)\psi(b)e\left(\frac{a+b}{2}\right)e\left(\frac{ta}{n}\right)\\ = \frac{1}{2}\sum\limits_{a\in A}e\left(\frac{ta}{n}\right)-\frac{1}{2p-2}\sum\limits_{\psi\neq\chi_0}\sum\limits_{a\in A}\sum\limits_{b = 1}^{p-1}\psi(a)\psi(b)e\left(\frac{a+b}{2}\right)e\left(\frac{ta}{n}\right).

    Let

    S = \frac{1}{p-1}\sum\limits_{\psi\neq\chi_0}\sum\limits_{a\in A}\sum\limits_{b = 1}^{p-1}\psi(a)\psi(b)e\left(\frac{a+b}{2}\right)e\left(\frac{ta}{n}\right).

    We note that for \psi\neq\chi_0 , we have

    \begin{align} \psi(a) = \frac{1}{p}\sum\limits_{r = 1}^{p-1}G(r, \psi)e\left(\frac{-ar}{p}\right). \end{align} (2.1)
    \begin{align*} \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; S = &\frac{1}{p-1}\sum\limits_{\psi\neq\chi_0}\sum\limits_{a\in A}\psi(a)e\left(\frac{a}{2}+\frac{ta}{n}\right)\sum\limits_{b = 1}^{p-1}\psi(b)e\left(\frac{b}{2}\right)\\ = &\frac{1}{p^2(p-1)}\sum\limits_{r = 1}^{p-1}\sum\limits_{a\in A}e\left(\frac{a}{2}+\frac{ta}{n}-\frac{ar}{p}\right)\sum\limits_{s = 1}^{p-1}\sum\limits_{b = 1}^{p-1}e\left(\frac{b}{2}-\frac{bs}{p}\right)\sum\limits_{\psi\neq\chi_0}G(r, \psi)G(s, \psi)\\ \end{align*}

    By Lemma 2.2 and 2.4, we have

    \begin{align*} S\ll\frac{1}{p^{3/2}}\sum\limits_{r = 1}^{p-1}\min\left(|A|, \left|\left|\frac{1}{2}+\frac{t}{n}-\frac{r}{p}\right|\right|^{-1}\right)\sum\limits_{s = 1}^{p-1}\min\left(p, \left|\left|\frac{1}{2}-\frac{s}{p}\right|\right|^{-1}\right). \end{align*}

    By Lemma 2.5, we have

    \begin{align*} S\ll p^{1/2}\log^2 p. \end{align*}

    So when \chi = \chi_0 , we have

    \sum\limits_{\begin{align} & \ a\in A \\ & 2\nmid a+\bar{a} \\ \end{align}} \chi(a)e\left(\frac{ta}{n}\right) = \frac{1}{2}\sum\limits_{a\in A}e\left(\frac{ta}{n}\right)+ O(p^{1/2}\log^2 p).

    When \chi\neq\chi_0 , we have

    \sum\limits_{\begin{align} & \ a\in A \\ & 2\nmid a+\bar{a} \\ \end{align}} \chi(a)e\left(\frac{ta}{n}\right) = \underset{2\nmid a+b}{\mathop{\underset{ab\equiv 1\ \ \ \,\bmod \,p}{\mathop{\sum\limits_{a\in A}{\sum\limits_{b=1}^{p-1}{{}}}}}\,}}\,\chi(a)e\left(\frac{ta}{n}\right)\\ = \frac{1}{2p-2}\sum\limits_{\psi\mod p}\sum\limits_{a\in A}\sum\limits_{b = 1}^{p-1}\chi(a)\psi(ab)e\left(\frac{ta}{n}\right)\\-\frac{1}{2p-2}\sum\limits_{\psi\mod p}\sum\limits_{a\in A}\chi(a)\psi(a)e\left(\frac{ta}{n}\right)\sum\limits_{b = 1}^{p-1}\psi(b)e\left(\frac{a+b}{2}\right)\\ : = S_1-S_2.

    We only estimate S_2 , the estimation of S_1 is similar.

    \begin{align*} S_2 = &\frac{1}{2p-2}\sum\limits_{\psi}\sum\limits_{a\in A}\chi(a)\psi(a)e\left(\frac{a}{2}+\frac{ta}{n}\right)\sum\limits_{b = 1}^{p-1}\psi(b)e\left(\frac{b}{2}\right)\\ = &\frac{1}{2p-2}\sum\limits_{\psi\neq\chi_0, \overline{\chi}}\sum\limits_{a\in A}\chi(a)\psi(a)e\left(\frac{a}{2}+\frac{ta}{n}\right)\sum\limits_{b = 1}^{p-1}\psi(b)e\left(\frac{b}{2}\right)\\ +&\frac{1}{2p-2}\sum\limits_{\psi = \chi_0}\sum\limits_{a\in A}\chi(a)\psi(a)e\left(\frac{a}{2}+\frac{ta}{n}\right)\sum\limits_{b = 1}^{p-1}\psi(b)e\left(\frac{b}{2}\right)\\ +&\frac{1}{2p-2}\sum\limits_{\psi = \overline{\chi}}\sum\limits_{a\in A}\chi(a)\psi(a)e\left(\frac{a}{2}+\frac{ta}{n}\right)\sum\limits_{b = 1}^{p-1}\psi(b)e\left(\frac{b}{2}\right)\\ : = & S_{21}+S_{22}+S_{23}. \end{align*}

    For S_{21} , by (2.1), we have

    \begin{align*} S_{21} = &\frac{1}{2p-2}\sum\limits_{\psi\neq\chi_0}\sum\limits_{a\in A}\chi\psi(a)e\left(\frac{a}{2}+\frac{ta}{n}\right)\sum\limits_{b = 1}^{p-1}\psi(b)e\left(\frac{b}{2}\right)-S_{23} \end{align*}

    So we have

    \begin{align*} S_{21}+S_{23} = \frac{1}{p^2(p-1)}\sum\limits_{r = 1}^{p-1}\sum\limits_{a\in A}e\left(\frac{a}{2}+\frac{ta}{n}-\frac{ar}{p}\right)\sum\limits_{s = 1}^{p-1}\sum\limits_{b = 1}^{p-1}e\left(\frac{b}{2}-\frac{bs}{p}\right)\sum\limits_{\psi\neq\chi_0}G(r, \chi\psi)G(s, \psi). \end{align*}

    By Lemma 2.3 and 2.4, we have

    \begin{align*} S_{21}+S_{23}\ll\frac{1}{p^{3/2-\varepsilon}}\sum\limits_{r = 1}^{p-1}\min\left(|A|, \left|\left|\frac{1}{2}+\frac{t}{n}-\frac{r}{p}\right|\right|^{-1}\right)\sum\limits_{s = 1}^{p-1}\min\left(p, \left|\left|\frac{1}{2}-\frac{s}{p}\right|\right|^{-1}\right). \end{align*}

    By Lemma 2.5, we have

    \begin{align*} S_{21}+S_{23}\ll p^{1/2+\varepsilon}. \end{align*}

    For S_{22} , it is simple, we have

    \begin{align*} S_{22}\ll p^{1/2+\varepsilon}. \end{align*}

    So when \chi\neq\chi_0 , we have

    \sum\limits_{\begin{align} & \ a\in A \\ & 2\nmid a+\bar{a} \\ \end{align}} \chi(a)e\left(\frac{ta}{n}\right)\ll p^{1/2+\varepsilon}.

    So we complete the proof of Lemma 2.6.

    For convenience, we record the following four special cases of Lemma 2.6.

    Corollary 2.7. Let p be an odd prime number, A = \{1, 2, \cdots, t\} , [1, t]\in(0, p) , then we have

    \sum\limits_{\begin{align} & \ a\in A \\ & 2\nmid a+\bar{a} \\ \end{align}} 1 = \frac{1}{2}|A|+O(p^{1/2}\log^2 p).

    Corollary 2.8. Let p be an odd prime number, A = \{1, 2, \cdots, t\} , [1, t]\in(0, p) , \chi\neq\chi_0 , then we have

    \sum\limits_{\begin{align} & \ a\in A \\ & 2\nmid a+\bar{a} \\ \end{align}} \chi(a)\ll p^{1/2+\varepsilon}.

    Corollary 2.9. Let p be an odd prime number, A = \{1, 2, \cdots, h\} , [1, h]\in(0, p) , then we have

    \sum\limits_{\begin{align} & \ a\in A \\ & 2\nmid a+\bar{a} \\ \end{align}} e\left(\frac{ta}{n}\right) = \frac{1}{2}\sum\limits_{a\in A}e\left(\frac{ta}{n}\right)+O(p^{1/2}\log^2 p).

    Corollary 2.10. Let p be an odd prime number, A = \{1, 2, \cdots, t\} , [1, t]\in(0, p) , \chi\neq\chi_0 , then we have

    \sum\limits_{\begin{align} & \ a\in A \\ & 2\nmid a+\bar{a} \\ \end{align}} \chi(a)e\left(\frac{ta}{n}\right)\ll p^{1/2+\varepsilon}.

    Now we prove Theorem 1.3, we give asymptotic formulae for two sums over short intervals.

    \begin{align*} N(k, p)& = \frac{1}{2^k}\sum\limits_{\begin{smallmatrix} \ {{a}_{1}}\in {{A}_{1}} \\ {{a}_{1}}\cdots {{a}_{k}}\equiv 1 \end{smallmatrix}}{\cdots }\sum\limits_{\begin{smallmatrix} \ \ {{a}_{k}}\in {{A}_{k}} \\ \bmod \ p \end{smallmatrix}}{{}} (1-(-1)^{a_1+\overline{a_1}})\cdots(1-(-1)^{a_k+\overline{a_k}})\\ & = \mathop{\mathop{\mathop{\sum\limits_{a_1\in A_1}}}_{2\nmid a_1+\overline{a_1}}\cdots\mathop{\mathop{\sum\limits_{a_k\in A_k}}_{2\nmid a_k+\overline{a_k}}}}_{a_1\cdots a_k\equiv1\mod p}1\\ & = \frac{1}{p-1}\sum\limits_{\chi}\mathop{\mathop{\sum\limits_{a_1\in A_1}}}_{2\nmid a_1+\overline{a_1}}\cdots\mathop{\mathop{\sum\limits_{a_k\in A_k}}_{2\nmid a_k+\overline{a_k}}}\chi(a_1\cdots a_k)\\ & = \frac{1}{p-1}\mathop{\mathop{\sum\limits_{a_1\in A_1}}}_{2\nmid a_1+\overline{a_1}}\cdots\mathop{\mathop{\sum\limits_{a_k\in A_k}}}_{2\nmid a_k+\overline{a_k}}1+\frac{1}{p-1}\sum\limits_{\chi\neq\chi_0}\mathop{\mathop{\sum\limits_{a_1\in A_1}}}_{2\nmid a_1+\overline{a_1}}\cdots\mathop{\mathop{\sum\limits_{a_k\in A_k}}}_{2\nmid a_k+\overline{a_k}}\chi(a_1\cdots a_k)\\ & = \frac{1}{p-1}\prod\limits_{i}\sum\limits_{\begin{smallmatrix} \ \ {{a}_{i}}\in {{A}_{i}} \\ 2\nmid {{a}_{i}}+\overline{{{a}_{i}}} \end{smallmatrix}}1+\frac{1}{p-1}\sum\limits_{\chi\neq\chi_0}\prod\limits_{i}\sum\limits_{\begin{smallmatrix} \ \ {{a}_{i}}\in {{A}_{i}} \\ 2\nmid {{a}_{i}}+\overline{{{a}_{i}}} \end{smallmatrix}}\chi(a_i). \end{align*}

    By Corollary 2.7, we have

    \sum\limits_{\begin{smallmatrix} \ \ {{a}_{i}}\in {{A}_{i}} \\ 2\nmid {{a}_{i}}+\overline{{{a}_{i}}} \end{smallmatrix}} 1 = \frac{1}{2}|A_i|+O(p^{1/2}\log^2 p).

    By Corollary 2.8, we have

    \sum\limits_{\begin{smallmatrix} \ \ {{a}_{i}}\in {{A}_{i}} \\ 2\nmid {{a}_{i}}+\overline{{{a}_{i}}} \end{smallmatrix}} \chi(a_i)\ll p^{1/2+\varepsilon}.

    So we have

    \begin{align*} N(k, p)& = \frac{1}{2^k}\sum\limits_{\begin{smallmatrix} \ {{a}_{1}}\in {{A}_{1}} \\ {{a}_{1}}\cdots {{a}_{k}}\equiv 1 \end{smallmatrix}}{\cdots }\sum\limits_{\begin{smallmatrix} \ \ {{a}_{k}}\in {{A}_{k}} \\ \bmod \ p \end{smallmatrix}}{{}} (1-(-1)^{a_1+\overline{a_1}})\cdots(1-(-1)^{a_k+\overline{a_k}})\\ & = \frac{1}{2^k(p-1)}\prod\limits_{i = 1}^k(t_i+O(p^{1/2}\log^2 p))+O(p^{k/2+\varepsilon})\\ & = \frac{1}{2^k(p-1)}\prod\limits_{i = 1}^kt_i+O\left(p^{-1/2}\log^2 p\max\limits_{1\leq r\leq k}\left\{\prod\limits_{i\neq r}t_i\right\}\right)+O(p^{k/2+\varepsilon}). \end{align*}

    Note that the implied constant of the first big 'O' term is dependent on k . This completes the proof of Theorem 1.3.

    Now we prove Theorem 1.4, we have

    \begin{align*} M(k, p)& = \frac{1}{2^k}\mathop{\sum\limits_{\begin{smallmatrix} \ {{a}_{1}}\in {{A}_{1}} \\ {{a}_{1}}\cdots {{a}_{k}}\equiv 1 \end{smallmatrix}}{\cdots }\sum\limits_{\begin{smallmatrix} \ \ {{a}_{k}}\in {{A}_{k}} \\ \bmod \ p \end{smallmatrix}}{{}} }_{n\mid a_1+\cdots + a_k}(1-(-1)^{a_1+\overline{a_1}})\cdots(1-(-1)^{a_k+\overline{a_k}})\\ & = \mathop{\mathop{\mathop{\mathop{\sum\limits_{a_1\in A_1}}}_{2\nmid a_1+\overline{a_1}}\cdots\mathop{\mathop{\sum\limits_{a_k\in A_k}}_{2\nmid a_k+\overline{a_k}}}}_{a_1\cdots a_k\equiv1\mod p}}_{n\mid a_1+\cdots + a_k}1\\ & = \frac{1}{n(p-1)}\sum\limits_{t = 1}^n\sum\limits_{\chi}\mathop{\mathop{\mathop{\sum\limits_{a_1\in A_1}}}_{2\nmid a_1+\overline{a_1}}\cdots\mathop{\mathop{\sum\limits_{a_k\in A_k}}_{2\nmid a_k+\overline{a_k}}}}\chi(a_1\cdots a_k)e\left(\frac{t(a_1+\cdots + a_k)}{n}\right)\\ & = \frac{1}{n(p-1)}\sum\limits_{t = 1}^n\mathop{\mathop{\sum\limits_{a_1\in A_1}}}_{2\nmid a_1+\overline{a_1}}\cdots\mathop{\mathop{\sum\limits_{a_k\in A_k}}}_{2\nmid a_k+\overline{a_k}}e\left(\frac{t(a_1+\cdots + a_k)}{n}\right)\\ &+\frac{1}{n(p-1)}\sum\limits_{t = 1}^n\sum\limits_{\chi\neq\chi_0}\mathop{\mathop{\sum\limits_{a_1\in A_1}}}_{2\nmid a_1+\overline{a_1}}\cdots\mathop{\mathop{\sum\limits_{a_k\in A_k}}}_{2\nmid a_k+\overline{a_k}}\chi(a_1\cdots a_k)e\left(\frac{t(a_1+\cdots + a_k)}{n}\right)\\ & = \frac{1}{n(p-1)}\sum\limits_{t = 1}^n\prod\limits_{i = 1}^k\sum\limits_{\begin{smallmatrix} \ \ {{a}_{i}}\in {{A}_{i}} \\ 2\nmid {{a}_{i}}+\overline{{{a}_{i}}} \end{smallmatrix}} e\left(\frac{ta_i}{n}\right)+\frac{1}{n(p-1)}\sum\limits_{t = 1}^n\sum\limits_{\chi\neq\chi_0}\prod\limits_{i = 1}^k\sum\limits_{\begin{smallmatrix} \ \ {{a}_{i}}\in {{A}_{i}} \\ 2\nmid {{a}_{i}}+\overline{{{a}_{i}}} \end{smallmatrix}} \chi(a_i)e\left(\frac{ta_i}{n}\right). \end{align*}

    By Corollary 2.9 and 2.10, we have

    \begin{align*} &\mathop{\mathop{\sum\limits_{a_i\in A}}}_{2\nmid a_i+\overline{a_i}}e\left(\frac{ta_i}{n}\right) = \frac{1}{2}\sum\limits_{a_i\in A}e\left(\frac{ta_i}{n}\right)+O(p^{1/2}\log^2 p), \\ &\mathop{\mathop{\sum\limits_{a_i\in A}}}_{2\nmid a_i+\overline{a_i}}\chi(a_i)e\left(\frac{ta_i}{n}\right)\ll p^{1/2+\varepsilon}. \end{align*}

    By the following formula

    \begin{eqnarray} \sum\limits_{a = 0}^{p-1}e\left(\frac{ma}{p}\right) = \left\{ \begin{array}{ll} p, & \text{ if } p\mid m ; \\ 0, & \text{ otherwise, }\end{array}\right. \end{eqnarray}

    and the definition of interval A_k , we have

    \begin{align*} M(k, p) = \frac{1}{2^k(p-1)}\prod\limits_{i = 1}^{k-1}t_i+O\left(p^{-1/2}\log^2 p\max\limits_{1\leq r\leq k-1}\left\{ \underset{\begin{smallmatrix} \ \ i\ne r \\ 1\le i\le k-1 \end{smallmatrix}}{\mathop{\Pi }}\, t_i\right\}\right)+O(p^{k/2+\varepsilon}). \end{align*}

    Note that the implied constant of the first big 'O' term is dependent on k . This completes the proof of Theorem 1.4.

    In this paper, we investigated two problems which related to the Lehmer problem, and gave the asymptotic formulae for these new sums over short intervals.

    The author would like to express his heartfelt thanks to the reviewers for their valuable comments and suggestions.

    The author declares that there are no conflicts of interest regarding the publication of this paper.



    [1] R. K. Guy, Unsolved problems in number theory, New York: Springer-Verlag, 2004.
    [2] W. P. Zhang, On D. H. Lehmer problem, Chin. Sci. Bull., 21 (1992), 1765–1769.
    [3] W. P. Zhang, On a problem of D. H. Lehmer and its generalization, Compos. Math., 86 (1993), 307–316.
    [4] W. P. Zhang, A problem of D. H. Lehmer and its generalization (II), Compos. Math., 91 (1994), 47–56.
    [5] Y. Yi, W. P. Zhang, On the generalization of a problem of D. H. Lehmer, Kyushu J. Math., 56 (2002), 235–241. doi: 10.2206/kyushujm.56.235
    [6] I. E. Shparlinski, On a generalised Lehmer problem for arbitrary powers, East-West J. Math., 2008.
    [7] I. E. Shparlinski, On a generalisation of a Lehmer problem, Math. Z., 263 (2009), 619–631. doi: 10.1007/s00209-008-0434-2
    [8] Y. Lu, Y. Yi, On the generalization of the D. H. Lehmer problem, Acta Math. Sinica, Engl. Ser., 25 (2009), 1269–1274. doi: 10.1007/s10114-009-7652-3
    [9] Z. F. Xu, W. P. Zhang, On a problem of D. H. Lehmer over short intervals, J. Math. Anal. Appl., 320 (2006), 756–770. doi: 10.1016/j.jmaa.2005.07.054
    [10] H. N. Liu, W. P. Zhang, On a problem of D. H. Lehmer, Acta Math. Sinica, Engl. Ser., 22 (2006), 61–68.
    [11] Z. Y. Zheng, On the ordinary problem of D. H. Lehmer, Chin. Sci. Bull., 38 (1993), 1060–1065. doi: 10.1360/csb1993-38-12-1060
    [12] P. Xi, Y. Yi, Kloosterman sums and a problem of D. H. Lehmer, Chin. Ann. Math. Ser. B, 41 (2020), 361–370. doi: 10.1007/s11401-020-0203-z
    [13] H. Zhang, W. P. Zhang, Some new sums related to D. H. Lehmer problem, Czech. Math. J., 65 (2015), 915–922. doi: 10.1007/s10587-015-0217-y
    [14] S. Chowla, On Kloosterman's Sum, Norske Vid. Selsk. Forh., 40 (1967), 70–72.
    [15] P. Xi, Y. Yi, Generalized D. H. Lehmer problem over short intervals, Glasgow Math. J., 53 (2011), 293–299. doi: 10.1017/S0017089510000704
    [16] C. D. Pan, C. B. Pan, Goldbach conjecture, Beijing: Science Press, 1981.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2566) PDF downloads(100) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog