In this paper, the representations of meromorphic solutions for three types of non-linear difference equations of form
$ f^{n}(z)+P_{d}(z, f) = u(z)e^{v(z)}, $
$ f^{n}(z)+P_{d}(z, f) = p_{1}e^{\lambda z}+p_{2}e^{-\lambda z} $
and
$ f^{n}(z)+P_{d}(z, f) = p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z} $
are investigated, where $ n\geq 2 $ is an integer, $ P_{d}(z, f) $ is a difference polynomial in $ f $ of degree $ d\leq n-1 $ with small coefficients, $ u(z) $ is a non-zero polynomial, $ v(z) $ is a non-constant polynomial, $ \lambda, p_{j}, \alpha_{j}\; (j = 1, 2) $ are non-zero constants. Some examples are also presented to show our results are best in certain sense.
Citation: Min Feng Chen, Zhi Bo Huang, Zong Sheng Gao. Meromorphic solutions of three certain types of non-linear difference equations[J]. AIMS Mathematics, 2021, 6(11): 11708-11722. doi: 10.3934/math.2021680
In this paper, the representations of meromorphic solutions for three types of non-linear difference equations of form
$ f^{n}(z)+P_{d}(z, f) = u(z)e^{v(z)}, $
$ f^{n}(z)+P_{d}(z, f) = p_{1}e^{\lambda z}+p_{2}e^{-\lambda z} $
and
$ f^{n}(z)+P_{d}(z, f) = p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z} $
are investigated, where $ n\geq 2 $ is an integer, $ P_{d}(z, f) $ is a difference polynomial in $ f $ of degree $ d\leq n-1 $ with small coefficients, $ u(z) $ is a non-zero polynomial, $ v(z) $ is a non-constant polynomial, $ \lambda, p_{j}, \alpha_{j}\; (j = 1, 2) $ are non-zero constants. Some examples are also presented to show our results are best in certain sense.
[1] | J. Clunie, On integral and meromorphic functions, J. London Math. Soc., 37 (1962), 17–27. |
[2] | Z. X. Chen, C. C. Yang, On entire solutions of certain type of differential-difference equations, Taiwan. J. Math., 18 (2014), 677–685. |
[3] | M. F. Chen, Z. S. Gao, J. L. Zhang, Entire solutions of certain type of non-linear difference equations, Comput. Methods Funct. Theory, 19 (2019), 17–36. doi: 10.1007/s40315-018-0250-6 |
[4] | W. Chen, P. C. Hu, Q. Wang, Entire solutions of two certain types of non-linear differential-difference equations, Comput. Methods Funct. Theory, 21 (2021), 199–218. doi: 10.1007/s40315-020-00343-8 |
[5] | Y. M. Chiang, S. J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan. J., 16 (2008), 105–129. doi: 10.1007/s11139-007-9101-1 |
[6] | W. K. Hayman, Meromorphic function, Oxford: Clarendon Press, 1964. |
[7] | W. K. Hayman, J. Miles, On the growth of a meromorphic function and its derivatives, Complex Variables, Theory and Application: An International Journal, 12 (1989), 245–260. doi: 10.1080/17476938908814369 |
[8] | R. G. Halburd, R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 314 (2006), 477–487. doi: 10.1016/j.jmaa.2005.04.010 |
[9] | I. Laine, Nevanlinna theory and complex differential equations, Berlin: W. de Gruyter, 1993. |
[10] | P. Li, W. J. Wang, Entire functions that share a small function with its derivative, J. Math. Anal. Appl., 328 (2007), 743–751. doi: 10.1016/j.jmaa.2006.04.083 |
[11] | P. Li, Entire solutions of certain type of differential equations II, J. Math. Anal. Appl., 375 (2011), 310–319. doi: 10.1016/j.jmaa.2010.09.026 |
[12] | L. W. Liao, C. C. Yang, J. J. Zhang, On meromorphic solutions of certain type of non-linear differential equations, Ann. Acad. Sci. Fenn. Math., 38 (2013), 581–593. doi: 10.5186/aasfm.2013.3840 |
[13] | H. F. Liu, Z. Q. Mao, On entire solutions of some type of nonlinear difference equations, Acta. Math. Sci., 38B (2018), 819–828. |
[14] | H. F. Liu, Z. Q. Mao, Meromorphic solutions of certain types of non-linear differential equations, Comput. Methods Funct. Theory, 20 (2020), 319–332. doi: 10.1007/s40315-020-00313-0 |
[15] | K. Liu, C. J. Song, Meromorphic solutions of complex differential-difference equations, Results Math., 72 (2017), 1759–1771. doi: 10.1007/s00025-017-0736-y |
[16] | Y. Tumura, On the extensions of Borel's theorem and Saxer-Csillag's theorem, Proc. Phys. Math. Soc., 19 (1937), 29–35. |
[17] | L. H. Wu, R. R. Zhang, Z. B. Huang, Entire solutions of certain type of differential-difference equations, Acta. Math. Sin., 64 (2021), 1–8. |
[18] | C. C. Yang, H. X. Yi, Uniqueness theory of meromorphic functions, Dordrecht: Kluwer Academic, 2003. |
[19] | L. Yang, Value distribution theory, Berlin-Heidelberg: Springer-Verlag, 1993. |
[20] | R. R. Zhang, Z. B. Huang, On meromorphic solutions of non-linear difference equations, Comput. Methods Funct. Theory, 18 (2018), 389–408. doi: 10.1007/s40315-017-0223-1 |