Research article Special Issues

Thermal and dielectric fingerprints of self-assembling elastin peptides derived from exon30

  • Received: 18 May 2021 Accepted: 07 June 2021 Published: 15 June 2021
  • Three elastin peptides derived from a peculiar elastin sequence (exon 30) were investigated by Infra-red spectroscopy (IRTF), differential scanning calorimetry (DSC) and dielectric spectroscopy (DDS) to clarify the relationship between structural organization and physical properties of these peptides in the solid state. If a great majority of elastin derived peptides form organized structures, only few are able to coacervate, and only one, that is encoded by Exon 30, gives rise to an irreversible precipitation into amyloid fibers. The peptides studied in this work are constituted by 17, 18 or 22 amino acids whose sequences are contained in the longer exon 30. They all contain the XGGZG sequence (where X, Z = V, L) previously suspected to be responsible for amyloid formation in elastin peptides. Two of them gave rise to amyloid fibers while the other one was able to coacervate. In this work we attempted to correlate vibrational, thermal and dielectric behavior of these peptides in the solid state with the propensity to lead to reversible or irreversible aggregation in vivo.

    Citation: J. Dandurand, E. Dantras, C. Lacabanne, A. Pepe, B. Bochicchio, V. Samouillan. Thermal and dielectric fingerprints of self-assembling elastin peptides derived from exon30[J]. AIMS Biophysics, 2021, 8(3): 236-247. doi: 10.3934/biophy.2021018

    Related Papers:

    [1] Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288
    [2] Abdelatif Boutiara, Mohammed S. Abdo, Manar A. Alqudah, Thabet Abdeljawad . On a class of Langevin equations in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions. AIMS Mathematics, 2021, 6(6): 5518-5534. doi: 10.3934/math.2021327
    [3] Arjumand Seemab, Mujeeb ur Rehman, Jehad Alzabut, Yassine Adjabi, Mohammed S. Abdo . Langevin equation with nonlocal boundary conditions involving a ψ-Caputo fractional operators of different orders. AIMS Mathematics, 2021, 6(7): 6749-6780. doi: 10.3934/math.2021397
    [4] Rizwan Rizwan, Jung Rye Lee, Choonkil Park, Akbar Zada . Qualitative analysis of nonlinear impulse langevin equation with helfer fractional order derivatives. AIMS Mathematics, 2022, 7(4): 6204-6217. doi: 10.3934/math.2022345
    [5] Qun Dai, Shidong Liu . Stability of the mixed Caputo fractional integro-differential equation by means of weighted space method. AIMS Mathematics, 2022, 7(2): 2498-2511. doi: 10.3934/math.2022140
    [6] Shayma A. Murad, Zanyar A. Ameen . Existence and Ulam stability for fractional differential equations of mixed Caputo-Riemann derivatives. AIMS Mathematics, 2022, 7(4): 6404-6419. doi: 10.3934/math.2022357
    [7] Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438
    [8] Kaihong Zhao, Shuang Ma . Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses. AIMS Mathematics, 2022, 7(2): 3169-3185. doi: 10.3934/math.2022175
    [9] Dongming Nie, Usman Riaz, Sumbel Begum, Akbar Zada . A coupled system of p-Laplacian implicit fractional differential equations depending on boundary conditions of integral type. AIMS Mathematics, 2023, 8(7): 16417-16445. doi: 10.3934/math.2023839
    [10] J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues . Ulam-Hyers stabilities of fractional functional differential equations. AIMS Mathematics, 2020, 5(2): 1346-1358. doi: 10.3934/math.2020092
  • Three elastin peptides derived from a peculiar elastin sequence (exon 30) were investigated by Infra-red spectroscopy (IRTF), differential scanning calorimetry (DSC) and dielectric spectroscopy (DDS) to clarify the relationship between structural organization and physical properties of these peptides in the solid state. If a great majority of elastin derived peptides form organized structures, only few are able to coacervate, and only one, that is encoded by Exon 30, gives rise to an irreversible precipitation into amyloid fibers. The peptides studied in this work are constituted by 17, 18 or 22 amino acids whose sequences are contained in the longer exon 30. They all contain the XGGZG sequence (where X, Z = V, L) previously suspected to be responsible for amyloid formation in elastin peptides. Two of them gave rise to amyloid fibers while the other one was able to coacervate. In this work we attempted to correlate vibrational, thermal and dielectric behavior of these peptides in the solid state with the propensity to lead to reversible or irreversible aggregation in vivo.



    At Wisconsin university, Ulam raised a question about the stability of functional equations in the year 1940. The question of Ulam was: Under what conditions does there exist an additive mapping near an approximately additive mapping [28]? In 1941, Hyers was the first mathematician who gave partial answer to Ulam's question [11], over Banach space. Afterwards, stability of such form is known as Ulam-Hyers stability. In 1978, Rassias [18], provided a remarkable generalization of the Ulam-Hyers stability of mappings by considering variables. For more information about the topic, we refer the reader to [21,25,26,29,39,40,42].

    Fractional Langevin differential equations have been one of the important subject in physics, chemistry and electrical engineering. The Langevin equation (first formulated by Langevin in 1908) is found to be an effective tool to describe the evolution of physical phenomena in fluctuating environments. For instance, Brownian motion is well described by the Langevin equation when the random fluctuation force is assumed to be white noise. In case the random fluctuation force is not white noise, the motion of the particle is described by the generalized Langevin equation. For systems in complex media, ordinary Langevin equation does not provide the correct description of the dynamics. Various generalizations of Langevin equations have been proposed to describe dynamical processes in a fractal medium. One such generalization is the generalized Langevin equation which incorporates the fractal and memory properties with a dissipative memory kernel into the Langevin equation. Another possible extension requires the replacement of ordinary derivative by a fractional derivative in the Langevin equation to give the fractional Langevin equation. For more details, see [2,10,15,16,19,33,34,35].

    Fractional order differential equations are the generalizations of the classical integer order differential equations. Fractional calculus has become a speedily developing area and its applications can be found in diverse fields ranging from physical sciences, porous media, electrochemistry, economics, electromagnetics, medicine and engineering to biological sciences. Progressively, fractional differential equations play a very important role in fields such as thermodynamics, statistical physics, nonlinear oscillation of earthquakes, viscoelasticity, defence, optics, control, signal processing, electrical circuits, astronomy etc. There are some outstanding articles which provide the main theoretical tools for the qualitative analysis of this research field, and at the same time, shows the interconnection as well as the distinction between integral models, classical and fractional differential equations, see [1,12,17,20,23,27,32].

    Impulsive fractional differential equations are used to describe both physical, social sciences and many dynamical systems such as evolution processes pharmacotherpy. There are two types of impulsive fractional differential equations the first one is instantaneous impulsive fractional differential equations while the other one is non-instantaneous impulsive fractional differential equations. In last few decades, the theory of impulsive fractional differential equations are well utilized in medicine, mechanical engineering, ecology, biology and astronomy etc. see [3,8,13,24,30,36,38,41].

    Recently, many mathematicians received a considerable attention to the existence, uniqueness and different types of Hyres-Ulam stability of the solutions of nonlinear implicit fractional differential equations with Caputo fractional derivative, see [5,7,22,26].

    Wang et al. [31], studied generalized Ulam-Hyers-Rassias stability of the following fractional differential equation:

    {cDν0,wz(w)=f(w,z(w)),w(wk,sk],k=0,1,,m,0<ν<1,z(w)=gk(w,z(w)),w(sk1,wk],k=1,2,,m.

    Zada et al. [37], studied existence and uniqueness of solutions by using Diaz Margolis's fixed point theorem and presented different types of Ulam-Hyers stability for a class of nonlinear implicit fractional differential equation with non-instantaneous integral impulses and nonlinear integral boundary conditions:

    {cDν0,wz(w)=f(w,z(w),cDν0,wz(w)), w(wk,sk], k=0,1,,m, 0<ν<1, w(0,1],z(w)=Iνsk1,wk(ξk(w,z(w))), w(sk1,wk],k=1,2,,m,z(0)=1ΓνT0(Ts)ν1η(s,z(s))ds.

    In recent years, many researchers paid much attention to the coupled system of fractional differential equations due to its applications in different fields [3,6,32].

    Ali et al. [4], studied the existence, uniqueness of solutions by using using the classical fixed point theorems such as Banach contraction principle and Leray-Schauder of cone type and presented various kinds of Ulam stability including Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability of the solutions to a nonlinear coupled systems of implicit fractional differential equations involving Caputo derivative of the form:

    {cDνu(w)f(w,v(w),cDνu(w))=0,ν(2,3], wJ, cDμv(w)f(w,u(w),cDνv(w))=0,μ(2,3], wJ, ˊu(w)|w=0=ˊˊu(w)|w=0,u(w)|w=1=λu(η), λ,η(0,1),ˊv(w)|w=0=ˊˊv(w)|w=0,v(w)|w=1=λv(η), λ,η(0,1)

    In this paper, we study switched coupled system of nonlinear impulsive Langevin equations with mixed derivatives of the form:

    {{cDν0,w(D+λ1)u(w)=f1(w,v(w),u(w)),w(wk,sk],k=0,1,,m,u(w)=gk(w,u(w)),w(sk1,wk],k=1,2,,m,u(0)=u0,u(T)=η101Γp1(η1s)p11u(s)ds,0<η1<T,{cDμ0,w(D+λ2)v(w)=f2(w,u(w),v(w)),w(wk,sk],k=0,1,,m,v(w)=gk(w,v(w)),w(sk1,wk],k=1,2,,m,v(0)=v0,v(T)=η201Γp2(η2s)p21v(s)ds,0<η2<T, (1.1)

    where cDν0,w and cDμ0,w represents classical Caputo derivative [12], of order ν and μ respectively with the lower bound zero, 0=w0<s0<w1<s1<<wm<sm=T, T is the pre–fixed number and λ1,λ2R{0}, 0<ν<1, p1,p2>0, u0,v0 are constants, f1,f2:[0,T]×R×RR is continuous and gk:[sk1,wk]×RR is continuous for all k=1,2,,m.

    In the second section of this paper, we create a uniform framework to originate appropriate formula of solutions for our proposed model. In section 3, we implement the concept of generalized Ulam-Hyers-Rassias stability of Eq (1.1). Finally, we give an example which supports our main result.

    Let J=[0,T] and C(J,R) be the space of all continuous functions from J to R, and the piecewise continuous function space PC(J,R)={z:JR:zC((wk,wk1],R),k=0,,m and there exist z(wk) and z(w+k), k=1,2,,m with z(wk)=z(wk)}.

    In the current section, we create a uniform framework to originate appropriate formula for the solution of impulsive fractional differential equation of the form:

    {cDν0,w(D+λ1)u(w)=f1(w),w(wk,sk],k=0,1,,m, u(w)=gk(w),w(sk1,wk],k=1,2,,m,u(0)=u0,u(T)=η101Γp1(η1s)p11u(s)ds,0<η1<T, (2.1)

    We recall some definitions of fractional calculus from [12] as follows:

    Definition 2.1. The fractional integral of order ν from 0 to w for the function f is defined by

    Iν0,wf(w)=1Γ(ν)w0f(s)(ws)ν1ds,w>0, ν>0,

    where Γ() is the Gamma function.

    Definition 2.2. The Riemman-Liouville fractional derivative of fractional order ν from 0 to w for a function f can be written as

    LDν0,wf(w)=1Γ(nν)dndtnw0f(s)(ws)ν+1nds,w>0, n1<ν<n,

    where Γ() is the Gamma function.

    Definition 2.3. The Caputo derivative of fractional order ν from 0 to w for a function f can be defined as

    cDν0,wf(w)=1Γ(nν)w0(ws)nν1f(n)(s)ds, where  n=[ν]+1.

    Definition 2.4. The general form of classical Caputo derivative of order ν of a function f can be given as

    cDν0,w=LDν0,w(f(w)n1k=0wkk!f(k)(0)),w>0, n1<ν<n.

    Remark 2.5. (i) If f()Cm([0,),R), then

    LDν0,wf(w)=1Γ(mν)w0f(m)(s)(ws)ν+1mds=Imν0,wf(m)(w),w>0, m1<ν<m.

    (ii) In Definition 2.4, the integrable function f can be discontinuous function. This fact can support us to consider impulsive fractional problems in the sequel.

    Definition 2.6. The Hilfer fractional derivative of order 0<α<1 and 0γ1 of function f(x) is

    Dα,γf(x)=(Iγ(1α)D(I(1γ)(1α)(f))(x).

    The Hilfer fractional derivative is used as an interpolator between the Riemman-Liouville and Caputo derivative.

    Remark 2.7. (a) Operator Dα,γ also can be written as

    Dα,γf(x)=(Iγ(1α)D(I(1γ)(1α)f)(x))=Iγ(1α)Dηf(x),η=α+γαγ.

    (b) If γ=0, then Dα,γ=Dα,0 is called the Riemman-Liouville fractional derivative.

    (c) If γ=1, then Dα,γ=I1αD is called the Caputo fractional derivative.

    Lemma 2.8. [12] The fractional differential equation cDαf(x)=0 with α>0, involving Caputo differential operator cDα have a solution in the following form:

    f(x)=c0+c1x+c2x2++cm1xm1,

    where ckR, k=0,1,,m1 and m=[α]+1.

    Lemma 2.9. [17] Let α>0 and γ>0, fL1([a,b]).

    Then  IαIγf(x)=Iα+γf(x),cDα0,x(cDγ0,xf(x))=cDα+γ0,xf(x)   and   IαDα0,xf(x)=f(x),x[a,b].

    Lemma 2.10. [24] The function uPC(J,R) is a solution of (2.1) if and only if

    u(w)={{w0eλ1(ws)Iνf1(s)ds+A11Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνf1(s)dsA11T0eλ1(Ts)Iνf1(s)ds+(A11(ηp11E(1,p1+1)(aw)eλ1T)+eλ1T)u0,w(0,s0],{gk(w),w(sk1,wk],k=1,2,,m,{w0eλ1(ws)Iνf1(s)ds+Mk1Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνf1(s)dsMk1T0eλ1(Ts)Iνf1(s)ds+Nk1wk0eλ1(wks)Iνf1(s)ds+Nk1gk(wk),w(wk,sk],k=0,1,,m,

    where

    A11=λΓ(p1+1)(1eλT)Γ(p1+1)η1p1+Γ(p1+1)η1p1E(1,p1+1)(aw),Bk1=λΓ(p1+1)(η1p1E(1,p1+1)(aw)eλT)δk1,Ak1=δk1λΓ(p1+1)Γ(p1+1)(1eλwk)(λΓ(p1+1)(η1p1E(1,p1+1)(aw)eλT))δk1((1eλT)Γ(p1+1)η1p1+Γ(p1+1)η1p1E(1,p1+1)(aw)),Mk1=Ak1(1eλw)λΓ(p1+1)eλw(1eλwk)δk1,Nk1=Bk1(1eλw)λ(1eλT)Γ(p1+1)η1p1+Γ(p1+1)η1p1E(1,p1+1)(aw)δk1eλw,δk1=2Γ(p1+1)(eλwkeλ(wk+T)+η1p1E(1,p1+1)(aw)eλwk)η1p1eλwkΓ(p1+1)E(1,p1+1)(aw).

    In view of Lemma 2.10 the solution form of proposed system (1.1) is given by

    {u(w)={w0eλ1(ws)Iνf1(s,v(s),u(s))ds+A11Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνf1(s,v(s),u(s))dsA11T0eλ1(Ts)Iνf1(s,v(s),u(s))ds+(A11(ηp11E(1,p1+1)(aw)eλ1T)+eλ1T)u0, w(0,s0],gk(w,u(w)),w(sk1,wk],k=1,2,,m,w0eλ1(ws)Iνf1(s,v(s),u(s))ds+Mk1Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνf1(s,v(s),u(s))dsMk1T0eλ1(Ts)Iνf1(s,v(s),u(s))ds+Nk1wk0eλ1(wks)Iνf1(s,v(s),u(s))ds+Nk1gk(wk,u(wk)),w(wk,sk],k=0,1,,m,v(w)={w0eλ2(ws)Iμf2(s,u(s),v(s))ds+A22Γ(p2+1)η20(η2s)p2eλ2(η2s)Iμf2(s,u(s),v(s))dsA22T0eλ2(Ts)Iμf2(s,u(s),v(s))ds+(A22(ηp22E(1,p2+1)(aw)eλ2T)+eλ2T)v0, w(0,s0],gk(w,v(w)),w(sk1,wk],k=1,2,,m,w0eλ2(ws)Iμf2(s,u(s),v(s))ds+Mk2Γ(p2+1)η20(η2s)p2eλ2(η2s)Iμf2(s,u(s),v(s))dsMk2T0eλ2(Ts)Iμf2(s,u(s),v(s))ds+Nk2wk0eλ2(wks)Iμf2(s,u(s),v(s))ds+Nk2gk(wk,v(wk)),w(wk,sk],k=0,1,,m, (2.2)

    By the ideas of stability in [25,29], we can generate a generalized Ulam-Hyers-Rassias stability concept for Eq (1.1).

    {|cDν0,w(D+λ1)u(w)f1(w,v(w),u(w))|φu(w),w(wk,sk],k=0,1,,m, 0<ν<1,|u(w)Nk1gk(w,u(w))|ψ,w(sk1,wk], k=1,2,,m.|cDμ0,w(D+λ2)v(w)f2(w,u(w),v(w))|φv(w),w(wk,sk],k=0,1,,m, 0<μ<1,|v(w)Nk2gk(w,v(w))|ψ,w(sk1,wk], k=1,2,,m. (3.1)

    Definition 3.1. Equation (1.1) is generalized Ulam-Hyers-Rassias stable with respect to (φu,φv,ψ) if there exists Cu,Cv>0 such that for each solution (u,v)PC(J,R)×PC(J,R) of inequality (3.1) there is a solution (u0,v0)PC(J,R)×PC(J,R) of Eq (1.1) with

    |(u,v)(w)(u0,v0)(w)|Cφ(φu(w)+φv(w))+Lgk(Cu+Cv)ψ,wJ.

    Remark 3.2. A function u,vPC(J,R) is a solution of the inequality (3.1) if and only if there is GPC(J,R) and a sequence Gk, k=1,2,,m (which depends on z) such that

    (i) |G(w)|φ(w), wJ and |Gk|ψ,k=1,2,,m,

    (ii) cDν0,w(D+λ1)u(w)=f1(w,v(w),u(w))+G(w), w(wk,sk],k=0,1,,m,

    (iii) cDμ0,w(D+λ2)v(w)=f2(w,u(w),v(w))+G(w), w(wk,sk],k=0,1,,m,

    (iv) u(w)=Nk1gk(w,u(w))+Gk, w(sk1,wk],k=1,2, ,m.

    Remark 3.3. (1) If uPC(J,R) is a solution of the inequality (3.1) then u is a solution of the following integral inequality,

    {{|u(w)w0eλ1(ws)Iνf1(w,v(w),u(w))dsA11Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνf1(s,v(s),u(s))ds+A11T0eλ1(Ts)Iνf1(s,v(s),u(s))ds(A11(η1pE(1,p1+1)(aw)eλ1T)+eλ1T)u0|,w0eλ1(ws)Iνφu(s)dsA11Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνφu(s)ds+A11T0eλ1(Ts)Iνφu(s)ds,w(0,s0];{|u(w)Nk1gk(w,u(w))|ψ,w(sk1,wk],k=1,2,,m;{|u(w)w0eλ1(ws)Iνf1(s,v(s),u(s))dsMk1Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνf1(s,v(s),u(s))ds+Mk1T0eλ1(Ts)Iνf1(s,v(s),u(s))dsNk1wk0eλ1(wks)Iνf1(s,v(s),u(s))dsNk1gk(wk,u(wk))|w0eλ1(ws)Iνφu(s)ds+Mk1Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνφu(s)ds+Mk1T0eλ1(Ts)Iνφu(s)ds+Nk1wk0eλ1(wks)Iνφu(s)ds+ψ, w(wk,sk], k=0,1,,m. (3.2)

    In fact by Remark 3.2, we get

    {cDν0,w(D+λ1)u(w)=f1(w,v(w),u(w))+G(w),w(wk,sk], k=0,1,,m,0<ν<1,u(w)=Nk1gk(w,u(w))+Gk,w(sk1,wk],k=1,2,,m. (3.3)

    Clearly, the solution of Eq (3.5) is given by

    u(w)={{w0eλ1(ws)Iν(f1(s,v(s),u(s))+G(s))ds+A11Γ(p1+1)η10(η1s)p1eλ1(η1s)Iν(f1(s,v(s),u(s))+G(s))dsA11T0eλ1(Ts)Iν(f1(s,v(s),u(s))+G(s))ds+(A11(η1p1E(1,p1+1)(aw)eλ1T)+eλ1T)u0,w(0,s0];{Nk1gk(w,u(w)),w(sk1,wk],k=1,2,,m;{w0eλ1(ws)Iν(f1(s,v(s),u(s))+G(s))ds+Mk1Γ(p1+1)η10(η1s)p1eλ1(η1s)Iν(f1(s,v(s),u(s))+G(s))dsMk1T0eλ1(Ts)Iν(f1(s,v(s),u(s))+G(s))ds+Nk1wk0eλ1(wks)Iν(f1(s,v(s),u(s))+G(s))ds+Nk1gk(wk,u(wk))+Gk,w(wk,sk],k=0,1,,m.

    For w(wk,sk],k=0,1,,m, we get

    |u(w)w0eλ1(ws)Iνf1(s,v(s),u(s))dsMk1Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνf1(s,v(s),u(s))ds+Mk1T0eλ1(Ts)Iνf1(s,v(s),u(s))dsNk1wk0eλ1(wks)Iνf1(s,v(s),u(s))dsNk1gk(wk,u(wk))||w0eλ1(ws)IνG(s)ds|+|Mk1Γ(p1+1)η10(η1s)p1eλ1(η1s)IνG(s)ds|+|Mk1T0eλ1(Ts)IνG(s)ds|+|Nk1wk0eλ1(wks)IνG(s)ds|+|Gk|w0eλ1(ws)Iνφu(s)ds+Mk1Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνφu(s)ds+Mk1T0eλ1(Ts)Iνφ(s)ds+Nk1wk0eλ1(wks)Iνφu(s)ds+ψ.

    Proceeding the above, we derive that

    |u(w)Nk1gk(w,u(w))||Gk|ψ,w(sk1,wk],k=1,2,,m,

    and

    |u(w)w0eλ1(ws)Iνf1(s,v(s),u(s))dsA11Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνf1(s,v(s),u(s))ds+A11T0eλ1(Ts)Iνf1(s,v(s),u(s))ds(A11(η1p1E(1,p1+1)(aw)eλ1T)+eλ1T)u0|
    |w0eλ1(ws)IνG(s)ds|+|A11Γ(p1+1)η10(η1s)p1eλ1(η1s)IνG(s)ds|+|A11T0eλ1(Ts)IνG(s)ds|w0eλ1(ws)Iνφu(s)ds+A11Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνφu(s)ds+A11T0eλ1(Ts)Iνφu(s)ds, w(0,s0].

    Similarly

    (2) If vPC(J,R) is a solution of the inequality (3.1) then v is a solution of the following integral inequality,

    {{|v(w)w0eλ2(ws)Iμf2(s,u(s),v(s)dsA22Γ(p2+1)η20(η2s)p2eλ2(η2s)Iμf2(s,u(s),v(s)ds+A22T0eλ2(Ts)Iμf2(s,u(s),v(s)ds(A22(η2p2E(1,p2+1)(aw)eλ2T)+eλ2T)v0|,w0eλ2(ws)Iμφv(s)dsA22Γ(p2+1)η20(η2s)p2eλ2(η2s)Iμφv(s)ds+A22T0eλ2(Ts)Iμφv(s)ds,w(0,s0];{|v(w)Nk2gk(w,v(w))|ψ,w(sk1,wk],k=1,2,,m;{|v(w)w0eλ2(ws)Iμf2(s,u(s),v(s)dsMk2Γ(p2+1)η20(η2s)p2eλ2(η2s)Iμf2(s,u(s),v(s)ds+Mk2T0eλ2(Ts)Iμf2(s,u(s),v(s)dsNk2wk0eλ2(wks)Iμf2(s,u(s),v(s)dsNk2gk(wk,v(wk))|w0eλ2(ws)Iμφv(s)ds+Mk2Γ(p2+1)η20(η2s)p2eλ2(η2s)Iμφv(s)ds+Mk2T0eλ2(Ts)Iμφv(s)ds+Nk2wk0eλ2(wks)Iμφv(s)ds+ψ, w(wk,sk], k=0,1,,m. (3.4)

    In fact by Remark 3.2, we get

    {cDμ0,w(D+λ2)v(w)=f2(w,u(w),v(w))+G(w),w(wk,sk], k=0,1,,m,0<μ<1,v(w)=Nk2gk(w,v(w))+Gk,w(sk1,wk],k=1,2,,m. (3.5)

    Clearly, the solution of Eq (3.5) is given by

    v(w)={{w0eλ2(ws)Iμ(f2(s,u(s),v(s)+G(s))ds+A22Γ(p2+1)η20(η2s)p2eλ2(η2s)Iμ(f2(s,u(s),v(s)+G(s))dsA22T0eλ2(Ts)Iμ(f2(s,u(s),v(s)+G(s))ds+(A22(η2p2E(1,p2+1)(aw)eλ2T)+eλ2T)u0,w(0,s0];{Nk2gk(w,v(w)),w(sk1,wk],k=1,2,,m;{w0eλ2(ws)Iμ(f2(s,u(s),v(s)+G(s))ds+Mk2Γ(p2+1)η20(η2s)p2eλ2(η2s)Iμ(f2(s,u(s),v(s)+G(s))dsMk2T0eλ2(Ts)Iμ(f2(s,u(s),v(s)+G(s))ds+Nk2wk0eλ2(wks)Iμ(f2(s,u(s),v(s)+G(s))ds+Nk2gk(wk,v(wk))+Gk,w(wk,sk],k=0,1,,m.

    For w(wk,sk],k=0,1,,m, we get

    |v(w)w0eλ2(ws)Iμf2(s,u(s),v(s)dsMk2Γ(p2+1)η20(η2s)p2eλ2(η2s)Iμf2(s,u(s),v(s)ds+Mk2T0eλ2(Ts)Iμf2(s,u(s),v(s)dsNk2wk0eλ2(wks)Iμf2(s,u(s),v(s)dsNk2gk(wk,v(wk))||w0eλ2(ws)IμG(s)ds|+|Mk2Γ(p2+1)η20(η2s)p2eλ2(η2s)IμG(s)ds|+|Mk2T0eλ2(Ts)IμG(s)ds|+|Nk2wk0eλ2(wks)IμG(s)ds|+|Gk|w0eλ2(ws)Iμφv(s)ds+Mk2Γ(p2+1)η20(η2s)p2eλ2(η2s)Iμφv(s)ds+Mk2T0eλ2(Ts)Iμφv(s)ds+Nk2wk0eλ2(wks)Iμφv(s)ds+ψ.

    Proceeding the above, we derive that

    |v(w)Nk2gk(w,v(w))||Gk|ψ,w(sk1,wk],k=1,2,,m,

    and

    |v(w)w0eλ2(ws)Iμf2(s,u(s),v(s))dsA22Γ(p2+1)η20(η2s)p2eλ2(η2s)Iμf2(s,u(s),v(s))ds+A22T0eλ2(Ts)Iμf2(s,u(s),v(s))ds(A22(η2p2E(1,p2+1)(aw)eλ2T)+eλ2T)v0|
    |w0eλ2(ws)IμG(s)ds|+|A22Γ(p2+1)η20(η2s)p2eλ2(η2s)IμG(s)ds|+|A22T0eλ2(Ts)IμG(s)ds|w0eλ2(ws)Iμφv(s)ds+A22Γ(p2+1)η20(η2s)p2eλ2(η2s)Iμφv(s)ds+A22T0eλ2(Ts)Iμφv(s)ds, w(0,s0].

    In order to apply a fixed point theorem of the alternative, for contractions on a generalized complete metric space to achieve our main result, we want to collect the following realities.

    Definition 4.1. For a non empty set V, a function d:V×V[0,] is called a generalized metric on V if and only if d satisfies:

    d(υ1,υ2)=0 if and only if υ1=υ2;

    d(υ1,υ2)=d(υ2,υ1) for all υ1,υ2V;

    d(υ1,υ3)d(υ1,υ2)+d(υ2,υ3) for all υ1,υ2,υ3V.

    Lemma 4.2. (see [9] (Generalized Diaz-Margolis's fixed point theorem)). Let (V,d) be a generalized complete metric space. Assume that T:VV is a strictly contractive operator with the Lipschitz constant L<1. If there exists a k0 such that d(Tk+1v,Tkv)< for some v in V, then the followings statements are true:

    (B1) The sequence {Tnv} converges to a fixed point v of T;

    (B2) The unique fixed point of T is vV={uVsuch  thatd(Tkv,u)<};

    (B3) uV, then d(u,v)11Ld(Tu,u).

    We introduced some assumptions as follows:

    (H1) fC(J×R,R).

    (H2)There exists positive constants 0<Lfu1<1 and 0<Lfu2<1, such that |f1(w,u,m)f1(w,v,n)|Lfu1|uv|+Lfu2|mn|, for each wJ and all u,v,m,nR.

    There exists positive constants 0<Lfv1<1 and 0<Lfv2<1, such that |f2(w,u,m)f2(w,v,n)|Lfv1|uv|+Lfv2|mn|, for each wJ and all u,v,m,nR.

    (H3)gkC((sk1,wk]×R,R) and there are positive constant Lgk1, k=1,2,,m such that |gk(w,v)gk(w,v)|Lgk1|uv|, for each w(sk1,wk], and all u,vR.

    gkC((sk1,wk]×R,R) and there are positive constant Lgk2, k=1,2,,m such that |gk(w,v)gk(w,v)|Lgk2|uv|, for each w(sk1,wk], and all u,vR.

    (H4)Let φuC(J,R+) be a nondecreasing function, there exists cφ>0 such that

    w0Iν(φ(s))dsCφφu(w)for  each  wJ.

    Let φvC(J,R+) be a nondecreasing function, there exists cφ>0 such that

    w0Iν(φ(s))dsCφφv(w)for  eachwJ.

    Theorem 4.3. Suppose that (H1)(H4) are satisfied and also a function u,vPC(J,R) satisfies (3.1). Then there exists unique solutions u0,v0 of Eq (1.1) such that

    u0(w)={{w0eλ1(ws)Iνf1(s,v0(s),u0(s))ds+A11Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνf1(s,v0(s),u0(s))dsA11T0eλ1(Ts)Iνf1(s,v0(s),u0(s))ds+(A11(η1p1E(1,p1+1)(aw)eλ1T)+eλ1T)u0,w(0,s0];{gk(w,u0(w)),w(sk1,wk],k=1,2,,m;{w0eλ1(ws)Iνf1(s,v0(s),u0(s))ds+Mk1Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνf1(s,v0(s),u0(s))dsMk1T0eλ1(Ts)Iνf1(s,v0(s),u0(s))ds+Nk1wk0eλ1(wks)Iνf1(s,v0(s),u0(s))ds+Nk1gk(wk,u0(wk)),w(wk,sk],k=0,1,,m, (4.1)

    similarly

    v0(w)={{w0eλ2(ws)Iνf2(s,u0(s),v0(s))ds+A22Γ(p2+1)η20(η2s)p2eλ2(η2s)Iνf2(s,u0(s),v0(s))dsA22T0eλ2(Ts)Iνf2(s,u0(s),v0(s))ds+(A22(η2p2E(1,p2+1)(aw)eλ2T)+eλ2T)v0,w(0,s0];{gk(w,v0(w)),w(sk1,wk],k=1,2,,m;{w0eλ2(ws)Iνf2(s,u0(s),v0(s))ds+Mk2Γ(p2+1)η20(η2s)p2eλ2(η2s)Iνf2(s,u0(s),v0(s))dsMk2T0eλ2(Ts)Iνf2(s,u0(s),v0(s))ds+Nk2wk0eλ2(wks)Iνf2(s,u0(s),v0(s))ds+Nk2gk(wk,v0(wk)),w(wk,sk],k=0,1,,m, (4.2)

    and

    |(u,v)(w)(u0,v0)(w)|{((1eλwλ)+MkΓ(p+1)ηp+1p+1(1eληλ)+Mk(1eλTλ)+Nk(1eλwkλ))(CuLfu11Lfu2+CvLfv11Lfv2)}(Cφ(φu(w)+φv(w))+Lgk(Cu+Cv)ψ1Ł). (4.3)

    for all wJ, if 0<ν<1 and

    Ł=max{Ł1,Ł2}<1, (4.4)

    where

    Ł1=max{((1eλwλ)+MkΓ(p+1)ηp+1p+1(1eληλ)+Mk(1eλTλ)+Nk(1eλwkλ))(CuLfu11Lfu2+CvLfv11Lfv2)such  thatk=1,2,,m},Ł2=max{((1eλwλ)(wνΓ(ν+1))+MkΓ(p+1)ηp+1p+1(1eληλ)(ηνΓ(ν+1))+Mk(1eλTλ)(TνΓ(ν+1))+Nk(1eλwkλ)(wνkΓ(ν+1)))(CuLfu11Lfu2+CvLfv11Lfv2),such  thatk=0,1,,m}.

    Proof. Consider the space of piecewise continuous functions

    V={u,v:JR   such that   u,vPC(J,R)},

    endowed with the generalized metric on V, defined by

    d((u,v)(ˉu,ˉv))=inf{Cu+Cv[0,+]such that|(u,v)(w)(ˉu,ˉv)(w)|Cφ(φu(w)+φv(w))+Lgk(Cu+Cv)ψfor allwJ}, (4.5)

    where

    Cu{C[0,] : |(u,v)(w)(ˉu,ˉv)(w)|Cφ(φu(w)+φv(w))  w(wk,sk], k=0,1,,m}

    and

    Cv{C[0,] : |(u,v)(w)(ˉu,ˉv)(w)|(Cu+Cv)ψ  w(sk1,wk], k=1,2,,m}.

    It is easy to verify that (V,d) is a complete generalized metric space [14].

    Define an operator Λ:VV by

    (Λu)(w)={{w0eλ1(ws)Iνf1(s,v(s),u(s))ds+A11Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνf1(s,v(s),u(s))dsA11T0eλ1(Ts)Iνf1(s,v(s),u(s))ds+(A11(η1p1E(1,p1+1)(aw)eλ1T)+eλ1T)u0,w(0,s0];{gk(w,u(w)),w(sk1,wk],k=1,2,,m;{w0eλ1(ws)Iνf1(s,v(s),u(s))ds+Mk1Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνf1(s,v(s),u(s))dsMk1T0eλ1(Ts)Iνf1(s,v(s),u(s))ds+Nk1wk0eλ1(tks)Iνf1(s,v(s),u(s))ds+Nk1gk(wk,u(wk)),w(wk,sk],k=0,1,,m, (4.6)

    for all u belongs to V and wJ. Obviously, according to (H1), Λ is well defined operator.

    Next we shall verify that Λ is strictly contractive on V. Note that according to definition of (V,d), for any μ,υV, it is possible to find C1,C2[0,] such that

    {|u(w)ˉu(w)|{Cuφu(w),w(wk,sk],k=0,,m,Cuψ,w(sk1,wk],k=1,,m.|v(w)ˉv(w)|{Cvφv(w),w(wk,sk],k=0,,m,Cvψ,w(sk1,wk],k=1,,m. (4.7)

    From the definition of Λ in Eq (4.6), (H2), (H3) and (4.7), we obtain that

    Case 1: For w[0,s0],

    |(Λu)(w)(Λˉu)(w)|=|w0eλ1(ws)Iνu(s)ds+A11Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνu(s)dsA11T0eλ1(Ts)Iνu(s)ds+(A11(η1p1E(1,p1+1)(aw)eλ1T)+eλ1T)u0w0eλ1(ws)Iνˉu(s)dsA11Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνˉu(s)ds+A11T0eλ1(Ts)Iνˉu(s)ds(A11(η1p1E(1,p1+1)(aw)eλ1T)+eλ1T)u0|
    |w0eλ1(ws)Iνu(s)dsw0eλ1(ws)Iνˉu(s)ds|+|A11Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνu(s)dsA11Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνˉu(s)ds|+|A11T0eλ1(Ts)Iνˉu(s)dsA11T0eλ1(Ts)Iνu(s)ds|
    |(Λu)(w)(Λˉu)(w)|w0eλ1(ws)Iν|u(s)ˉu(s)|ds+A11T0eλ1(Ts)Iν|ˉu(s)u(s)|ds+A11Γ(p1+1)η10(η1s)p1eλ1(η1s)Iν|u(s)ˉu(s)|ds (4.8)

    where, we use the following notations for convenience

    u(w):=f1(w,v(w),u(w))
    ˉu(w):=f1(w,v(w),ˉu(w))
    |u(w)ˉu(w)|=|f1(w,v(w),u(w))f1(w,ˉv(w),ˉu(w))|Lfu1|v(w)ˉv(w)|+Lfu2|u(w)ˉu(w)|,

    which further gives

    |u(w)ˉu(w)|Lfu11Lfu2|v(w)ˉv(w)|, (4.9)

    similarly

    |v(w)ˉv(w)|Lfv11Lfv2|u(w)ˉu(w)|.

    Put (4.9) in (4.8), we obtain

    |(Λu)(w)(Λˉu)(w)|Lfu11Lfu2w0eλ1(ws)Iν|v(s)ˉv(s)|ds+A11Lfu11Lfu2T0eλ1(Ts)Iν|v(s)ˉv(s)|ds+A11Lfu1Γ(p1+1)1Lfu2η10(η1s)p1eλ1(η1s)Iν|v(s)ˉv(s)|dsCvLfu11Lfu2w0eλ1(ws)Iν|φv(s)|ds+CvA11Lfu11Lfu2T0eλ1(Ts)Iν|φv(s)|ds+CvA11Lfu1Γ(p1+1)1Lfu2η10(η1s)p1eλ1(η1s)Iν|φv(s)|dsCvLfu11Lfu2(w0eλ1(ws)ds)(w0Iν|φv(s)|ds)+CvA11Lfu11Lfu2(T0eλ1(Ts)ds)(T0Iν|φv(s)|ds)+CvA11Lfu1Γ(p1+1)1Lfu2(η10(η1s)p1eλ1(η1s)ds)(η10Iν|φv(s)|ds)
    CvLfu11Lfu2(1eλ1wλ1)Cφφv(w)+CvA11Lfu11Lfu2(1eλ1Tλ1)Cφφv(w)+CvA11Lfu1(η1p1+1)Γ(p1+1)(1Lfu2)(p1+1)(1eλ1η1λ1)Cφφv(w)((1eλ1wλ1)+A11(1eλ1Tλ1)+A11(η1p1+1)Γ(p1+1)(p1+1)(1eλ1η1λ1))×CvLfu1Cφφv(w)1Lfu2
    |(Λu)(w)(Λˉu)(w)|((1eλ1wλ1)+A11(1eλ1Tλ1)+A11(η1p1+1)Γ(p1+1)(p1+1)(1eλ1η1λ1))×CvLfu1Cφφv(w)1Lfu2. (4.10)

    On the similar way, we can obtain

    |(Λv)(w)(Λˉv)(w)|((1eλ2wλ2)+A22(1eλ2Tλ2)+A22(η2p2+1)Γ(p2+1)(p2+1)(1eλ2η2λ2))×CuLfv2Cφφu(w)1Lfv2. (4.11)

    Therefore from (4.10) and (4.11), we get the following result

    |Λ(u,v)Λ(ˉu,ˉv)|({(1eλ1wλ1)+A11(1eλ1Tλ1)+A11Γ(p1+1)η1p1+1p1+1(1eλ1η1λ1)}Lfu11Lfu2+{(1eλ2wλ2)+A22(1eλ2Tλ1)+A22Γ(p2+1)η2p2+1p2+1(1eλ2η2λ2)}×Lfv21Lfv2)(CuCφφu(w)+CvCφφv(w)).

    Suppose that max{λ1,λ2}=λ, max{p1,p2}=p, max{A11,A22}=A and max{η1,η2}=η

    |Λ(u,v)Λ(ˉu,ˉv)|((1eλwλ)+A(1eλTλ)+AΓ(p+1)ηp+1p+1(1eληλ))(Lfu11Lfu2+Lfv11Lfv2)(CuCφφu(w)+CvCφφv(w)).

    Case 2: For w(sk1,wk], we have

    |(Λu)(w)(Λˉu)(w)|=|gk(w,u(w))gk(w,ˉu)|Lgk1|u(w)ˉu(w)|Lgk1Cuψ. (4.12)

    On the similar way, we can obtain

    |(Λv)(w)(Λˉv)(w)|=|gk(w,v(w))gk(w,ˉv)|Lgk2|v(w)ˉv(w)|Lgk2Cvψ. (4.13)

    Therefore from (4.12) and (4.13), we get the result given as

    |Λ(u,v)Λ(ˉu,ˉv)|Lgk1Cuψ+Lgk2Cvψ.

    Case 3: For w(wk,sk], and s(wk,sk],

    |(Λu)(w)(Λˉu)(w)|=|w0eλ1(ws)Iνu(s)ds+Mk1Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνu(s)dsMk1T0eλ1(Ts)Iνu(s)ds+Nk1wk0eλ1(wks)Iνu(s)ds+Nk1gk(wk,u(wk))Nk1gk(wk,ˉu(wk))w0eλ1(ws)Iνf(s,υ(s))dsMk1Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνˉu(s)ds+Mk1T0eλ1(Ts)Iνˉu(s)dsNk1wk0eλ1(wks)Iνˉu(s)ds|
    |w0eλ1(ws)Iνu(s)dsw0eλ1(ws)Iνˉu(s)ds|+|Mk1Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνu(s)dsMk1Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνˉu(s)ds|+|Mk1T0eλ1(Ts)Iνˉu(s)dsMk1T0eλ1(Ts)Iνu(s)ds|+|Nk1wk0eλ1(wks)Iνu(s)dsNk1wk0eλ1(wks)Iνˉu(s)ds|+|Nk1gk(wk,u(wk))Nk1gk(wk,ˉu(wk))|w0eλ1(ws)Iν|u(s)ˉu(s)|ds+Mk1Γ(p1+1)η10(η1s)p1eλ1(η1s)Iν|u(s)ˉu(s)|ds+Lgk1Cuψ+Mk1T0eλ1(Ts)Iν|ˉu(s)u(s)|ds+Nk1wk0eλ1(wks)Iν|u(s)ˉu(s)|dsLfu11Lfu2w0eλ1(ws)Iν|v(w)ˉv(w)|ds+Mk1Lfu1Γ(p1+1)(1Lfu2)η10(η1s)p1eλ1(η1s)Iν|v(w)ˉv(w)|ds+Lgk1Cuψ+Mk1Lfu11Lfu2T0eλ1(Ts)Iν|v(w)ˉv(w)|ds+Nk1Lfu11Lfu2wk0eλ1(wks)Iν|v(w)ˉv(w)|ds
    CvLfu11Lfu2w0eλ1(ws)Iν|φv(s)|ds+CvMk1Lfu1Γ(p1+1)(1Lfu2)η10(η1s)p1eλ1(η1s)Iν|φv(s)|ds+Lgk1Cuψ+CvMk1Lfu11Lfu2T0eλ1(Ts)Iν|φv(s)|ds+CvNk1Lfu11Lfu2wk0eλ1(wks)Iν|φv(s)|dsCvLfu11Lfu2(w0eλ1(ws)ds)(w0Iν|φv(s)|ds)+CvMk1Lfu1Γ(p1+1)(1Lfu2)(η10(η1s)p1eλ1(η1s)ds)(η10Iν|φv(s)|ds)+Lgk1Cuψ+CvMk1Lfu11Lfu2(T0eλ1(Ts)ds)(T0Iν|φv(s)|ds)+CvNk1Lfu11Lfu2(wk0eλ1(wks)ds)(wk0Iν|φv(s)|ds),

    that is,

    |(Λu)(w)(Λˉu)(w)|CvLfu11Lfu2(1eλ1wλ1)Cφφv(w)+CvMk1Lfu1Γ(p1+1)(1Lfu2)η1p1+1p1+1(1eλ1η1λ1)Cφφv(w)+CvMk1Lfu11Lfu2(1eλ1Tλ1)Cφφv(w)+CvNk1Lfu11Lfu2(1eλ1wkλ1)Cφφv(w)+Lgk1Cuψ
    |(Λu)(w)(Λˉu)(w)|((1eλ1wλ1)+Mk1Γ(p1+1)η1p1+1p1+1(1eλ1η1λ1)+Mk1(1eλ1Tλ1)+Nk1(1eλ1wkλ1))CvLfu11Lfu2Cφφv(w)+Lgk1Cuψ
    |(Λu)(w)(Λˉu)(w)|((1eλ1wλ1)+Mk1Γ(p1+1)η1p1+1p1+1(1eλ1η1λ1)+Mk1(1eλ1Tλ1)+Nk1(1eλ1wkλ1))CvLfu11Lfu2(Cφφv(w)+Lgk1Cuψ). (4.14)

    On the similar way, we can obtain

    |(Λv)(w)(Λˉv)(w)|((1eλ2wλ2)+Mk2Γ(p2+1)η2p2+1p2+1(1eλ2η2λ2)+Mk2(1eλ2Tλ2)+Nk2(1eλ2wkλ2))CvLfv11Lfv2(Cφφu(w)+Lgk2Cvψ). (4.15)

    Therefore from (4.14) and (4.15), we get the result given as

    |Λ(u,v)Λ(ˉu,ˉv)|((1eλ1wλ1)+Mk1Γ(p1+1)η1p1+1p1+1(1eλ1η1λ1)+Mk1(1eλ1Tλ1)+Nk1(1eλ1wkλ1))CvLfu11Lfu2(Cφφv(w)+Lgk1Cuψ)+((1eλ2wλ2)+Mk2Γ(p2+1)η2p2+1p2+1(1eλ2η2λ2)+Mk2(1eλ2Tλ2)+Nk2(1eλ2wkλ2))CvLfv11Lfv2(Cφφu(w)+Lgk2Cvψ).

    Suppose that max{λ1,λ2}=λ, max{p1,p2}=p, max{MK1,MK2}=MK, max{NK1,NK2}=NK max{Lgk1,Lgk2}=Lgk and max{η1,η2}=η

    |Λ(u,v)Λ(ˉu,ˉv)|((1eλwλ)+MkΓ(p+1)ηp+1p+1(1eληλ)+Mk(1eλTλ)+Nk(1eλwkλ))(CuLfu11Lfu2+CvLfv11Lfv2)×(Cφ(φu(w)+φv(w))+Lgk(Cu+Cv)ψ).

    Also, for w(wk,sk], and s(sk1,wk],

    |(Λu)(w)(Λˉu)(w)|=|w0eλ1(ws)Iνu(s)ds+Mk1Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνu(s)dsMk1T0eλ1(Ts)Iνu(s)ds+Nk1wk0eλ1(wks)Iνu(s)ds+Nk1gk(wk,u(wk))Nk1gk(wk,ˉu(wk))w0eλ1(ws)Iνf(s,υ(s))dsMk1Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνˉu(s)ds+Mk1T0eλ1(Ts)Iνˉu(s)dsNk1wk0eλ1(wks)Iνˉu(s)ds|
    |w0eλ1(ws)Iνu(s)dsw0eλ1(ws)Iνˉu(s)ds|+|Mk1Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνu(s)dsMk1Γ(p1+1)η10(η1s)p1eλ1(η1s)Iνˉu(s)ds|+|Mk1T0eλ1(Ts)Iνˉu(s)dsMk1T0eλ1(Ts)Iνu(s)ds|+|Nk1wk0eλ1(wks)Iνu(s)dsNk1wk0eλ1(wks)Iνˉu(s)ds|+|Nk1gk(wk,u(wk))Nk1gk(wk,ˉu(wk))|w0eλ1(ws)Iν|u(s)ˉu(s)|ds+Mk1Γ(p1+1)η10(η1s)p1eλ1(η1s)Iν|u(s)ˉu(s)|ds+Lgk1Cuψ+Mk1T0eλ1(Ts)Iν|ˉu(s)u(s)|ds+Nk1wk0eλ1(wks)Iν|u(s)ˉu(s)|dsLfu11Lfu2w0eλ1(ws)Iν|v(w)ˉv(w)|ds+Mk1Lfu1Γ(p1+1)(1Lfu2)η10(η1s)p1eλ1(η1s)Iν|v(w)ˉv(w)|ds+Mk1Lfu11Lfu2T0eλ1(Ts)Iν|v(w)ˉv(w)|ds+Nk1Lfu11Lfu2wk0eλ1(wks)Iν|v(w)ˉv(w)|ds+Lgk1CuψCvψLfu11Lfu2w0eλ1(ws)Iν(1)ds+CvψMk1Lfu1Γ(p1+1)(1Lfu2)η10(η1s)p1eλ1(η1s)Iν(1)ds+CvψMk1Lfu11Lfu2T0eλ1(Ts)Iν(1)ds+CvψNk1Lfu11Lfu2wk0eλ1(wks)Iν(1)ds+Lgk1Cuψ,

    that is

    |(Λu)(w)(Λˉu)(w)|{(1eλ1wλ1)(wνΓ(ν+1))+Mk1Γ(p1+1)η1p1+1p1+1(1eλ1η1λ1)(ην1Γ(ν+1))+Mk1(1eλ1Tλ1)(TνΓ(ν+1))+Nk1(1eλ1wkλ1)(wνkΓ(ν+1))}×CvLfu11Lfu2(Cφφv(w)+Lgk1Cuψ). (4.16)

    On the similar way, we can obtain

    |(Λv)(w)(Λˉv)(w)|{(1eλ2wλ2)(wνΓ(ν+1))+Mk2Γ(p2+1)η2p2+1p2+1(1eλ2η2λ2)(ην2Γ(ν+1))+Mk2(1eλ2Tλ2)(TνΓ(ν+1))+Nk2(1eλ2wkλ2)(wνkΓ(ν+1))}×CuLfv11Lfv2(Cφφu(w)+Lgk2Cvψ). (4.17)

    Therefore from (4.16) and (4.17), we get the following result

    |Λ(u,v)Λ(ˉu,ˉv)|{(1eλ1wλ1)(wνΓ(ν+1))+Mk1Γ(p1+1)η1p1+1p1+1(1eλ1η1λ1)(ην1Γ(ν+1))+Mk1(1eλ1Tλ1)(TνΓ(ν+1))+Nk1(1eλ1wkλ1)(wνkΓ(ν+1))}×CvLfu11Lfu2(Cφφv(w)+Lgk1Cuψ)+{(1eλ2wλ2)(wνΓ(ν+1))+Mk2Γ(p2+1)η2p2+1p2+1(1eλ2η2λ2)(ην2Γ(ν+1))+Mk2(1eλ2Tλ2)(TνΓ(ν+1))+Nk2(1eλ2wkλ2)(wνkΓ(ν+1))}×CuLfv11Lfv2(Cφφu(w)+Lgk2Cvψ).

    Suppose that max{λ1,λ2}=λ, max{p1,p2}=p, max{MK1,MK2}=MK, max{NK1,NK2}=NK max{Lgk1,Lgk2}=Lgk and max{η1,η2}=η

    |Λ(u,v)Λ(ˉu,ˉv)|((1eλwλ)(wνΓ(ν+1))+MkΓ(p+1)ηp+1p+1(1eληλ)(ηνΓ(ν+1))+Mk(1eλTλ)(TνΓ(ν+1))+Nk(1eλwkλ)(wνkΓ(ν+1)))×(CuLfu11Lfu2+CvLfv11Lfv2)(Cφ(φu(w)+φv(w))+Lgk(Cu+Cv)ψ).

    From above, we have

    |(Λ(u,v))(w)(Λ(ˉu,ˉv))(w)|Ł(Cφ(φu(w)+φv(w))+Lgk(Cu+Cv)ψ),w[0,τ],

    that is,

    d(Λ(u,v),Λ(ˉu,ˉv))Ł(Cφ(φu(w)+φv(w))+Lgk(Cu+Cv)ψ).

    Hence, we conclude that

    d(Λ(u,v),Λ(ˉu,ˉv))Łd((u,v)(ˉu,ˉv)),

    for any (u,v),(ˉu,ˉv)V, since the condition (4.4) is strictly contraction property is shown.

    Now we take (u0,v0)V. From the piecewise continuous property of (u0,v0) and Λ(u0,v0), it follows that there exists a constant 0<G1<, such that

    |(Λ(u0,v0))(w)(u0,v0)(w)||w0eλ(ws)Iνf(s,(u0,v0)(s))ds+A11Γ(p+1)η0(ηs)peλ(ηs)Iνf(s,(u0,v0)(s))dsA11T0eλ(Ts)Iνf(s,(u0,v0)(s))ds+(A11(ηpE(1,p+1)(aw)eλT)+eλT)z0(u0,v0)(w)|,G1φ(w)G1(Cφ(φu(w)+φv(w))+Lgk(Cu+Cv)ψ),w(0,s0].

    There exists a constant 0<G2<, such that

    |(Λ(u0,v0))(w)(u0,v0)(w)|=|gk(w,(u0,v0)(w))(u0,v0)(w)|G2ψG2(Cφ(φu(w)+φv(w))+Lgk(Cu+Cv)ψ),

    where w(sk1,wk], k=1,2,,m.

    Also we can find a constant 0<G3<, such that

    |(Λ(u0,v0))(w)(u0,v0)(w)||w0eλ(ws)Iνf(s,(u0,v0)(s))ds+MkΓ(p+1)η0(ηs)peλ(ηs)Iνf(s,(u0,v0)(s))dsMkT0eλ(Ts)Iνf(s,(u0,v0)(s))ds+Nkwk0eλ(wks)Iνf(s,(u0,v0)(s))ds+Nkgk(wk,(u0,v0)(wk))(u0,v0)(w)|,G3φ(w)G3(Cφ(φu(w)+φv(w))+Lgk(Cu+Cv)ψ),w(wk,sk],k=1,2,,m.

    Since f, (uk,vk) and (u0,v0) are bounded on J and (Cφ(φu(w)+φv(w))+Lgk(Cu+Cv)ψ)>0. Thus (4.5) implies that d(Λ(u0,v0),(u0,v0))<.

    By using Banach fixed point theorem, there exists a continuous function u0,v0:JR such that Λn(u0,v0)(u0,v0) in (V,d) as n and Λ(u0,v0)=(u0,v0), that is, u0, v0 satisfies Eqs (4.1) and (4.2) for every wJ.

    Now we show that {u,vV such that d((u0,v0),(u0,v0))<}=V. For any u,vV, since u,v and u0,v0 are bounded on J and minwJ(Cφ(φu(w)+φv(w))+Lgk(Cu+Cv)ψ)>0, there exists a constant 0<C(u,v)< such that |(u0,v0)(w)(u,v)(w)|C(u,v)(Cφ(φu(w)+φv(w))+Lgk(Cu+Cv)ψ), for any wJ. Hence, we have d((u0,v0),(u,v))< for all u,vV, that is {(u,v)V   such that   d((u0,v0),(u,v))<}=V. Thus, we determine that u,v are the unique continuous functions with the Eqs (4.1), and (4.2) respectively. From (3.2), (3.4) and (H4), we can write

    d((u,v),Λ(u0,v0))((1eλwλ)+MkΓ(p+1)ηp+1p+1(1eληλ)+Mk(1eλTλ)+Nk(1eλwkλ))(CuLfu11Lfu2+CvLfv11Lfv2).

    Summarizing we have

    d((u0,v0),(u,v))d(Λ(u,v),(u,v))1Ł{((1eλwλ)+MkΓ(p+1)ηp+1p+1(1eληλ)+Mk(1eλTλ)+Nk(1eλwkλ))(CuLfu11Lfu2+CvLfv11Lfv2)}(11Ł).

    This shows that (4.19) is true for wJ.

    Finally we give an example to illustrate our main result.

    Example 4.4.

    {{cD120,w(D+2)u(w)=|u(w)|8+ew+w2,w(0,1](2,3],u(w)=u(w)(3+w2)(1+|u(w)|),w(1,2],u(0)=23,u(1)=56140(14s)Γ43ds0<η<1{cD120,w(D+2)v(w)=|v(w)|8+ew+w2,w(0,1](2,3],v(w)=v(w)(3+w2)(1+|v(w)|),w(1,2],v(0)=23,v(1)=56140(14s)Γ43ds0<η<1 (4.18)

    and

    {{|cD120,w(D+2)u(w)|u(w)|8+ew+w2|ew,w(0,1](2,3],|u(w)u(w)(3+w2)(1+|u(w)|)|1,w(1,2].{|cD120,w(D+2)v(w)|v(w)|8+ew+w2|ew,w(0,1](2,3],|v(w)v(w)(3+w2)(1+|v(w)|)|1,w(1,2].

    Let J=[0,3], μ=ν=12, p1=p2=p=43, η1=η2=η=14 and 0=w0<s0=1<w1=2<s1=τ=T=3. Denote f1(w,u(w))=f2(w,v(w))=|z(w)|8+ew+w2 with Lfu1=Lfu2==Lfv1=Lfv2=14 for w(0,1](2,3] and gk(w,u(w))=u(w)(3+w2)(1+|u(w)|), gk(w,v(w))=v(w)(3+w2)(1+|v(w)|) with Lgk=1 for w(1,2]. Putting Łf=14, φu(w)=φv(w)=ew and Cφ=Cu=Cv=1, we have w0I12esdsew and L10.1012, L20.9501, so L0.9501<1.

    By Theorem 4.3, there exists a unique solution (u,v):[0,3]R such that

    {u0(w)={w0eλ(ws)Iν|u0(w)|8+ew+w2ds+A11Γ(p1+1)η10(η1s)p1eλ1(η1s)Iν|u0(w)|8+ew+w2dsA11T0eλ1(Ts)Iν|u0(w)|8+ew+w2ds+(A11(ηp11E(1,p1+1)(aw)eλ1T)+eλ1T)u0, w[0,1]u0(w)(3+w2)(1+|u0(w)|),w(1,2],k=0,1,,m,w0eλ1(ws)Iν|u0(w)|8+ew+w2ds+Mk1Γ(p1+1)η10(η1s)p1eλ1(η1s)Iν|u0(w)|8+ew+w2dsMk1T0eλ1(Ts)Iν|u0(w)|8+ew+w2ds+Nk1wk0eλ1(wks)Iν|u0(w)|8+ew+w2ds+Nk1u0(w)(3+w2)(1+|u0(w)|),w(2,3],v0(w)={w0eλ2(ws)Iμ|v0(w)|8+ew+w2ds+A22Γ(p2+1)η20(η2s)p2eλ2(η2s)Iμ|v0(w)|8+ew+w2dsA22T0eλ2(Ts)Iμ|v0(w)|8+ew+w2ds+(A22(ηp22E(1,p2+1)(aw)eλ2T)+eλ2T)v0, w[0,1]v0(w)(3+w2)(1+|v0(w)|),w(1,2],k=0,1,,m,w0eλ2(ws)Iμ|v0(w)|8+ew+w2ds+Mk2Γ(p2+1)η20(η2s)p2eλ2(η2s)Iμ|v0(w)|8+ew+w2dsMk2T0eλ2(Ts)Iμ|v0(w)|8+ew+w2ds+Nk2wk0eλ2(wks)Iμ|v0(w)|8+ew+w2ds+Nk2v0(w)(3+w2)(1+|v0(w)|),w(2,3],
    |(u,v)(w)(u0,v0)(w)|{((1eλwλ)+MkΓ(p+1)ηp+1p+1(1eληλ)+Mk(1eλTλ)+Nk(1eλwkλ))(CuLfu11Lfu2+CvLfv11Lfv2)}(Cφ(φu(w)+φv(w))+Lgk(Cu+Cv)ψ1Ł).

    putting maximum of w=wk=T=η=τ

    |(u,v)(w)(u0,v0)(w)|{((1eλτλ)+MkΓ(p+1)ηp+1p+1(1eλτλ)+Mk(1eλτλ)+Nk(1eλτλ))(CuLfu11Lfu2+CvLfv11Lfv2)}(Cφ(φu(w)+φv(w))+Lgk(Cu+Cv)ψ1Ł).

    Now putting the values, we get

    |(u,v)(w)(u0,v0)(w)|0.8840(2ew+210.9501),
    |(u,v)(w)(u0,v0)(w)|0.8840(2(ew+1)10.9501),
    |(u,v)(w)(u0,v0)(w)|35.4308(ew+1),for allw[0,3].

    Thus the problem (4.18) is Ulam-Hyers-Rassias stability.

    In this article, we considered switched coupled system of nonlinear impulsive Langevin equations with mixed derivatives and Some sufficient conditions are constructed to observe the existence, uniqueness and generalized Ulam-Hyers-Rassias stability. After introduction we built a uniform structure to originate a formula of solutions for our proposed model. We implemented the new concept of generalized Ulam-Hyers-Rassias stability to our proposed model, finally we solved a particular example for our proposed model.

    The authors declare that they have no competing interest regarding this research work.



    Conflict of interest



    All authors declare no conflicts of interest in this paper.

    [1] Yeo GC, Keeley FW, Weiss AS (2011) Coacervation of tropoelastin. Adv Colloid Interfac Sci 167: 94-103. doi: 10.1016/j.cis.2010.10.003
    [2] Flamia R, Zhdan PA, Martino M, et al. (2004) AFM study of the elastin-like biopolymer poly(ValGlyGlyValGly). Biomacromolecules 5: 1511-1518. doi: 10.1021/bm049930r
    [3] Pepe A, Guerra D, Bochicchio B, et al. (2005) Dissection of human tropoelastin: supramolecular organization of polypeptide sequences coded by particular exons. Matrix Biol 24: 96-109. doi: 10.1016/j.matbio.2005.01.004
    [4] Tamburro AM, Bochicchio B, Pepe A (2003) Dissection of human tropoelastin: Exon-by-exon chemical synthesis and related conformational studies. Biochemistry 42: 13347-13362. doi: 10.1021/bi034837t
    [5] Bisaccia F, Castiglione-Morelli MA, Spisani S, et al. (1998) The amino acid sequence coded by the rarely expressed exon 26A of human elastin contains a stable β-turn with chemotactic activity for monocytes. Biochemistry 37: 11128-11135. doi: 10.1021/bi9802566
    [6] Morelli MAC, Bisaccia F, Spisani S, et al. (1997) Structure-activity relationships for some elastin-derived peptide chemoattractants. J Pept Res 49: 492-499. doi: 10.1111/j.1399-3011.1997.tb01156.x
    [7] Muiznieks LD, Miao M, Sitarz EE, et al. (2016) Contribution of domain 30 of tropoelastin to elastic fiber formation and material elasticity. Biopolymers 105: 267-275. doi: 10.1002/bip.22804
    [8] Miao M, Bellingham CM, Stahl RJ, et al. (2003) Sequence and structure determinants for the self-aggregation of recombinant polypeptides modeled after human elastin. J Biol Chem 278: 48553-48562. doi: 10.1074/jbc.M308465200
    [9] Kozel BA, Rongish BJ, Czirok A, et al. (2006) Elastic fiber formation: A dynamic view of extracellular matrix assembly using timer reporters. J Cell Physiol 207: 87-96. doi: 10.1002/jcp.20546
    [10] Ostuni A, Bochicchio B, Armentano MF, et al. (2007) Molecular and supramolecular structural studies on human tropoelastin sequences. Biophys J 93: 3640-3651. doi: 10.1529/biophysj.107.110809
    [11] Tamburro AM, Bochicchio B, Pepe A (2005) The dissection of human tropoelastin: from the molecular structure to the self-assembly to the elasticity mechanism. Pathol Biol 53: 383-389. doi: 10.1016/j.patbio.2004.12.014
    [12] Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75: 333-366. doi: 10.1146/annurev.biochem.75.101304.123901
    [13] Marshall KE, Serpell LC (2010) Fibres, crystals and polymorphism: the structural promiscuity of amyloidogenic peptides. Soft Matter 6: 2110-2114. doi: 10.1039/b926623b
    [14] Chung JH, Seo JY, Lee MK, et al. (2002) Ultraviolet modulation of human macrophage metalloelastase in human skin in vivo. J Invest Dermatol 119: 507-512. doi: 10.1046/j.1523-1747.2002.01844.x
    [15] Bochicchio B, Pepe A, Delaunay F, et al. (2013) Amyloidogenesis of proteolytic fragments of human elastin. RSC Adv 3: 13273-13285. doi: 10.1039/c3ra41893f
    [16] Dandurand J, Ostuni A, Francesca Armentano M, et al. (2020) Calorimetry and FTIR reveal the ability of URG7 protein to modify the aggregation state of both cell lysate and amylogenic α-synuclein. AIMS Biophysics 7: 189-203. doi: 10.3934/biophy.2020015
    [17] Dandurand J, Samouillan V, Lacabanne C, et al. (2015) Water structure and elastin-like peptide aggregation. J Therm Anal Calorim 120: 419-426. doi: 10.1007/s10973-014-4254-9
    [18] Bochicchio B, Lorusso M, Pepe A, et al. (2009) On enhancers and inhibitors of elastin-derived amyloidogenesis. Nanomedicine 4: 31-46. doi: 10.2217/17435889.4.1.31
    [19] Tamburro AM, Pepe A, Bochicchio B, et al. (2005) Supramolecular amyloid-like assembly of the polypeptide sequence coded by exon 30 of human tropoelastin. J Biol Chem 280: 2682-2690. doi: 10.1074/jbc.M411617200
    [20] Tamburro AM, Lorusso M, Ibris N, et al. (2010) Investigating by circular dichroism some amyloidogenic elastin-derived polypeptides. Chirality 22: E56-E66. doi: 10.1002/chir.20869
    [21] Pepe A, Bochicchio B, Tamburro AM (2007) Supramolecular organization of elastin and elastin-related nanostructured biopolymers. Nanomedicine 2: 203-218. doi: 10.2217/17435889.2.2.203
    [22] Pepe A, Armenante MR, Bochicchio B, et al. (2009) Formation of nanostructures by self-assembly of an elastin peptide. Soft Matter 5: 104-113. doi: 10.1039/B811286J
    [23] Havriliak S, Negami S (1967) A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8: 161-210. doi: 10.1016/0032-3861(67)90021-3
    [24] Barth A (2007) Infrared spectroscopy of proteins. BBA-Bioenergetics 1767: 1073-1101. doi: 10.1016/j.bbabio.2007.06.004
    [25] Zohdi V, Whelan DR, Wood BR, et al. (2015) Importance of tissue preparation methods in FTIR micro-spectroscopical analysis of biological tissues: ‘traps for new users’. PLoS One 10: e0116491. doi: 10.1371/journal.pone.0116491
    [26] Debelle L, Alix AJP, Jacob MP, et al. (1995) Bovine elastin and kappa-elastin secondary structure determination by optical spectroscopies. J Biol Chem 270: 26099-26103. doi: 10.1074/jbc.270.44.26099
    [27] Popescu MC, Vasile C, Craciunescu O (2010) Structural analysis of some soluble elastins by means of FT-IR and 2D IR correlation spectroscopy. Biopolymers 93: 1072-1084. doi: 10.1002/bip.21524
    [28] Pepe A, Flamia R, Guerra D, et al. (2008) Exon 26-coded polypeptide: an isolated hydrophobic domain of human tropoelastin able to self-assemble in vitro. Matrix Biol 27: 441-450. doi: 10.1016/j.matbio.2008.02.006
    [29] Gainaru C, Fillmer A, Böhmer R (2009) Dielectric response of deeply supercooled hydration water in the connective tissue proteins collagen and elastin. J Phys Chem B 113: 12628-12631. doi: 10.1021/jp9065899
    [30] Bak W (2009) Characteristics of phase transitions in Ba 0.995Na0.005Ti0.995Nb0.005O3 ceramic. Arch Mater Sci Eng 39: 75-79.
    [31] Angell CA (1995) Formation of glasses from liquids and biopolymers. Science 267: 1924-1935. doi: 10.1126/science.267.5206.1924
    [32] Kramers HA (1927) La diffusion de la lumière par les atomes. Atti Cong Intern Fisica, (Transactions of Volta Centenary Congress) Como 2: 545-557.
    [33] Kronig RL (1926) On the theory of dispersion of x-rays. Josa 12: 547-557. doi: 10.1364/JOSA.12.000547
    [34] Marchal E, Dufour C (1971) Absortion diélectrique dans les polymères en solution. J Phys Colloques 32: C5a-259-C5a-262. doi: 10.1051/jphyscol:1971542
    [35] Samouillan V, Dandurand J, Caussé N, et al. (2015) Influence of the architecture on the molecular mobility of synthetic fragments inspired from human tropoelastin. IEEE T Dielect El In 22: 1427-1433. doi: 10.1109/TDEI.2015.7116333
  • biophy-08-03-018-s001.pdf
  • This article has been cited by:

    1. Rizwan Rizwan, Jung Rye Lee, Choonkil Park, Akbar Zada, Qualitative analysis of nonlinear impulse langevin equation with helfer fractional order derivatives, 2022, 7, 2473-6988, 6204, 10.3934/math.2022345
    2. Syed Omar Shah, Rizwan Rizwan, Yonghui Xia, Akbar Zada, Existence, uniqueness, and stability analysis of fractional Langevin equations with anti‐periodic boundary conditions, 2023, 46, 0170-4214, 17941, 10.1002/mma.9539
    3. M. Latha Maheswari, K. S. Keerthana Shri, Mohammad Sajid, 2025, Chapter 17, 978-3-031-58640-8, 253, 10.1007/978-3-031-58641-5_17
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2555) PDF downloads(83) Cited by(0)

Figures and Tables

Figures(5)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog