Citation: James C.L. Chow. Computer method and modeling: Medical biophysics applications in cancer therapy, medical imaging and drug delivery[J]. AIMS Biophysics, 2021, 8(3): 233-235. doi: 10.3934/biophy.2021017
[1] |
Rogers DWO (2006) Fifty years of Monte Carlo simulations for medical physics. Phys Med Biol 51: R287. doi: 10.1088/0031-9155/51/13/R17
![]() |
[2] |
Markel D, Alasti H, Chow JCL (2012) Dosimetric Correction for a 4D-Computed Tomography Dataset using the Free-Form Deformation Algorithm. J Phys: Conf Ser 385: 012001. doi: 10.1088/1742-6596/385/1/012001
![]() |
[3] |
Moore JA, Chow JCL (2021) Recent progress and applications of gold nanotechnology in medical biophysics using artificial intelligence and mathematical modeling. Nano Ex 2: 022001. doi: 10.1088/2632-959X/abddd3
![]() |
[4] |
Chow JCL (2017) Internet-based computer technology on radiotherapy. Rep Pract Oncol Radiother 22: 455-462. doi: 10.1016/j.rpor.2017.08.005
![]() |
[5] |
Siddique S, Chow JCL (2020) Artificial intelligence in radiotherapy. Rep Pract Oncol Radiother 25: 656-666. doi: 10.1016/j.rpor.2020.03.015
![]() |
[6] | Odle T (2020) The AI era: the role of medical imaging and radiation therapy professionals. Radiol Technol 91: 391-400. |
[7] |
Siddique S, Chow JCL (2021) Machine learning in healthcare communication. Encyclopedia 1: 220-239. doi: 10.3390/encyclopedia1010021
![]() |
[8] | Chow JCL (2011) A performance evaluation on Monte Carlo simulation for radiation dosimetry using cell processor. J Comp Meth Sci Eng 11: 1-12. |
[9] |
Spezi E, Lewis G (2008) An overview of Monte Carlo treatment planning for radiotherapy. Radiat Prot Dosim 131: 123-129. doi: 10.1093/rpd/ncn277
![]() |
[10] |
Killoran JH, Kooy HM, Gladstone DJ, et al. (1997) A numerical simulation of organ motion and daily setup uncertainties: implications for radiation therapy. Int J Radiat Oncol Biol Phys 37: 213-221. doi: 10.1016/S0360-3016(96)00477-4
![]() |
[11] |
Bauza X, Chow JCL (2019) An automated scheduling system for radiotherapy physicist on-call using Monte Carlo simulation. Australas Phys Eng Sci Med 42: 27-32. doi: 10.1007/s13246-018-0705-0
![]() |
[12] |
Mohamed M, Chow JCL (2020) A Comprehensive computer database for medical physics on-call program. J Radiother in Pract 19: 10-14. doi: 10.1017/S1460396919000244
![]() |
[13] |
Chow JCL (2018) Recent progress in Monte Carlo simulation on gold nanoparticle radiosensitization. AIMS Biophys 5: 231-244. doi: 10.3934/biophy.2018.4.231
![]() |
[14] |
He C, Chow JCL (2016) Gold nanoparticle DNA damage in radiotherapy: A Monte Carlo study. AIMS Bioeng 3: 352-361. doi: 10.3934/bioeng.2016.3.352
![]() |
[15] |
Siddique S, Chow JCL (2020) Application of nanomaterials in biomedical imaging and cancer therapy. Nanomaterial 10: 1700. doi: 10.3390/nano10091700
![]() |
[16] |
Mututantri-Bastiyange D, Chow JCL (2020) Imaging dose of cone-beam computed tomography in nanoparticle-enhanced image-guided radiotherapy: A Monte Carlo phantom study. AIMS Bioeng 7: 1-11. doi: 10.3934/bioeng.2020001
![]() |
[17] |
Martelli S, Chow JCL (2020) Dose enhancement for the flattening-filter-free and flattening-filter photon beams in nanoparticle-enhanced radiotherapy: A Monte Carlo phantom study. Nanomaterials 10: 637. doi: 10.3390/nano10040637
![]() |
[18] |
Siddique S, Chow JCL (2020) Gold nanoparticles for drug delivery and cancer therapy. App Sci 10: 3824. doi: 10.3390/app10113824
![]() |
[19] |
Ng F, Jiang R, Chow JCL (2020) Predicting treatment planning evaluation parameter using artificial intelligence and machine learning. IOP SciNotes 1: 014003. doi: 10.1088/2633-1357/ab805d
![]() |
[20] |
Kontaxis C, Bol GH, Lagendijk JJW, et al. (2020) DeepDose: towards a fast dose calculation engine for radiation therapy using deep learning. Phys Med Biol 65: 075013. doi: 10.1088/1361-6560/ab7630
![]() |