Citation: Francesca Ballarini, Mario P. Carante, Alessia Embriaco, Ricardo L. Ramos. Effects of ionizing radiation in biomolecules, cells and tissue/organs: basic mechanisms and applications for cancer therapy, medical imaging and radiation protection[J]. AIMS Biophysics, 2022, 9(2): 108-112. doi: 10.3934/biophy.2022010
[1] | Hall E, Giaccia A (2018) Radiobiology for the Radiologist.Lippincott Williams & Wilkins. |
[2] | Ottolenghi A, Ballarini F, Merzagora M (1999) Modelling radiation induced biological lesions: from initial energy depositions to chromosome aberrations. Radiat Environ Bioph 38: 1-13. https://doi.org/10.1007/s004110050132 |
[3] | Cornforth MN, Bedford JS (1987) A quantitative comparison of potentially lethal damage repair and the rejoining of interphase chromosome breaks in low passage normal human fibroblasts. Radiat Res 111: 385-405. https://doi.org/10.2307/3576926 |
[4] | Cotran RS, Kumar V, Robbins SL (1989) Pathological basis of disease. Philadelphia: WB Saunders. |
[5] | Ballarini F, Ottolenghi A (2004) A model of chromosome aberration induction and chronic myeloid leukaemia incidence at low doses. Radiat Environ Bioph 43: 165-171. https://doi.org/10.1007/s00411-004-0246-7 |
[6] | Ballarini F, Alloni D, Facoetti A, et al. (2006) Modelling radiation-induced bystander effect and cellular communication. Radiat Prot Dosim 122: 244-251. https://doi.org/10.1093/rpd/ncl446 |
[7] | Particle Therapy Co-Operative Group. Available from: http://www.ptcog.ch |
[8] | Scholz M, Kellerer AM, Kraft-Weyrather W, et al. (1997) Computation of cell survival in heavy ion beams for therapy. Radiat Environ Bioph 36: 59-66. https://doi.org/10.1007/s004110050055 |
[9] | Inaniwa T, Kanematsu N, Matsufuji N, et al. (2015) Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan. Phys Med Biol 60: 3271. https://doi.org/10.1088/0031-9155/60/8/3271 |
[10] | Ballarini F, Carante MP (2016) Chromosome aberrations and cell death by ionizing radiation: Evolution of a biophysical model. Radiat Phys Chem 128: 18-25. https://doi.org/10.1016/j.radphyschem.2016.06.009 |
[11] | Ballarini F, Battistoni G, Campanella M, et al. (2006) The FLUKA code: an overview. J Phys: Conf Series 41: 151-160. https://doi:10.1088/1742-6596/41/1/014 |
[12] | Carante MP, Ballarini F (2016) Calculating variations in biological effectiveness for a 62 MeV proton beam. Front Oncol 6: 76. https://doi.org/10.3389/fonc.2016.00076 |
[13] | Carante MP, Aimè C, Cajiao JJT, et al. (2018) BIANCA, a biophysical model of cell survival and chromosome damage by protons, C-ions and He-ions at energies and doses used in hadrontherapy. Phys Med Biol 63: 075007. https://orcid.org/0000-0002-6629-3382 |
[14] | Carante MP, Aricò G, Ferrari A, et al. (2019) First benchmarking of the BIANCA model for cell survival prediction in a clinical hadron therapy scenario. Phys Med Biol 64: 215008. https://doi.org/10.1088/1361-6560/ab490f |
[15] | Carante MP, Aricò G, Ferrari A, et al. (2020) In vivo validation of the BIANCA biophysical model: Benchmarking against rat spinal cord RBE data. Int J Mol Sci 21: 3973. https://doi.org/10.3390/ijms21113973 |
[16] | Carante MP, Embriaco A, Aricò G, et al. (2021) Biological effectiveness of He-3 and He-4 ion beams for cancer hadrontherapy: a study based on the BIANCA biophysical model. Phys Med Biol 66: 195009. https://doi.org/10.1088/1361-6560/ac25d4 |
[17] | Kozlowska W, Carante M, Aricò G, et al. (2022) First application of the BIANCA model to carbon-ion patient cases. Phys Med Biol . In press |
[18] | Demaria S, Coleman CN, Formenti SC (2016) Radiotherapy: changing the game in immunotherapy. Trends Cancer 2: 286-294. https://doi.org/10.1016/j.trecan.2016.05.002 |
[19] | Colangelo NW, Azzam EI (2020) The importance and clinical implications of FLASH ultra-high dose-rate studies for proton and heavy ion radiotherapy. Radiat Res 193: 1-4. https://doi.org/10.1667/RR15537.1 |
[20] | Durante M, Cucinotta FA (2011) Physical basis of radiation protection in space travel. Rev Mod Phys 83: 1245. https://doi.org/10.1103/RevModPhys.83.1245 |
[21] | Ballarini F, Battistoni G, Cerutti F, et al. (2006) GCR and SPE organ doses in deep space with different shielding: Monte Carlo simulations based on the FLUKA code coupled to anthropomorphic phantoms. Adv Space Res 37: 1791-1797. https://doi.org/10.1016/j.asr.2006.03.007 |
[22] | Campa A, Alloni D, Antonelli F, et al. (2009) DNA fragmentation induced in human fibroblasts by 56Fe ions: experimental data and Monte Carlo simulations. Radiat Res 171: 438-445. https://doi.org/10.1667/RR1442.1 |
[23] | Ottolenghi A, Ballarini F, Biaggi M (2001) Modelling chromosomal aberration induction by ionising radiation: the influence of interphase chromosome architecture. Adv Space Res 27: 369-382. https://doi.org/10.1016/S0273-1177(01)00004-7 |
[24] | Ballarini F, Ottolenghi A (2003) Chromosome aberrations as biomarkers of radiation exposure: modelling basic mechanisms. Adv Space Res 31: 1557-1568. https://doi.org/10.1016/S0273-1177(03)00091-7 |
[25] | Embriaco A, Ramos R, Carante M, et al. (2021) Healthy tissue damage following cancer ion therapy: a radiobiological database predicting lymphocyte chromosome aberrations based on the BIANCA biophysical model. Int J Mol Sci 22: 10877. https://doi.org/10.3390/ijms221910877 |
[26] | Stram DO, Sposto R, Preston D, et al. (1993) Stable chromosome aberrations among A-bomb survivors: An update. Radiat Res 136: 29-36. https://doi.org/10.2307/3578636 |
[27] | Nakano M, Kodama Y, Ohtaki K, et al. (2001) Detection of stable chromosome aberrations by FISH in A-bomb survivors: comparison with previous solid Giemsa staining data on the same 230 individuals. Int J Radiat Biol 77: 971-977. https://doi.org/10.1080/09553000110050065 |
[28] | Bauchinger M, Schmid E, Braselmann H (2001) Time-course of translocation and dicentric frequencies in a radiation accident case. Int J Radiat Biol 77: 553-557. https://doi.org/10.1080/09553000010022382 |
[29] | George K, Willingham V, Wu H, et al. (2002) Chromosome aberrations in human lymphocytes induced by 250 MeV protons: Effects of dose, dose rate and shielding. Adv Space Res 30: 891-899. https://doi.org/10.1016/S0273-1177(02)00406-4 |
[30] | Durante M, Yamada S, Ando K, et al. (2000) X-rays vs. carbon-ion tumor therapy: cytogenetic damage in lymphocytes. Int J Radiat Oncol Biol Phys 47: 793-798. https://doi.org/10.1016/S0360-3016(00)00455-7 |