Research article Special Issues

Estimation of NO$ _{x} $ and O$ _{3} $ reduction by dissipating traffic waves

  • Received: 15 May 2024 Revised: 12 August 2024 Accepted: 19 August 2024 Published: 22 August 2024
  • Current research directions indicate that vehicles with autonomous capabilities will increase in traffic contexts. Starting from data analyzed in R. E. Stern et al. (2018), this paper shows the benefits due to the traffic control exerted by a unique autonomous vehicle circulating on a ring track with more than 20 human-driven vehicles. Considering different traffic experiments with high stop-and-go waves and using a general microscopic model for emissions, it was first proved that emissions reduces by about 25%. Then, concentrations for pollutants at street level were found by solving numerically a system of differential equations with source terms derived from the emission model. The results outline that ozone and nitrogen oxides can decrease, depending on the analyzed experiment, by about 10% and 30%, respectively. Such findings suggest possible management strategies for traffic control, with emphasis on the environmental impact for vehicular flows.

    Citation: Maya Briani, Rosanna Manzo, Benedetto Piccoli, Luigi Rarità. Estimation of NO$ _{x} $ and O$ _{3} $ reduction by dissipating traffic waves[J]. Networks and Heterogeneous Media, 2024, 19(2): 822-841. doi: 10.3934/nhm.2024037

    Related Papers:

  • Current research directions indicate that vehicles with autonomous capabilities will increase in traffic contexts. Starting from data analyzed in R. E. Stern et al. (2018), this paper shows the benefits due to the traffic control exerted by a unique autonomous vehicle circulating on a ring track with more than 20 human-driven vehicles. Considering different traffic experiments with high stop-and-go waves and using a general microscopic model for emissions, it was first proved that emissions reduces by about 25%. Then, concentrations for pollutants at street level were found by solving numerically a system of differential equations with source terms derived from the emission model. The results outline that ozone and nitrogen oxides can decrease, depending on the analyzed experiment, by about 10% and 30%, respectively. Such findings suggest possible management strategies for traffic control, with emphasis on the environmental impact for vehicular flows.



    加载中


    [1] R. E. Stern, S. Cui, M. L. Delle Monache, R. Bhadani, M. Bunting, M. Churchill, et al., Dissipation of stop-and-go waves via control of autonomous vehicles: field experiments, Transp. Res. Part C Emerg. Technol., 89 (2018), 205–221. https://doi.org/10.1016/j.trc.2018.02.005 doi: 10.1016/j.trc.2018.02.005
    [2] R. E. Stern, Y. Chen, M. Churchill, F. Wu, M. L. Delle Monache, B. Piccoli, et al., Quantifying air quality benefits resulting from few autonomous vehicles stabilizing traffic, Transport Res D-tr E, 67 (2019), 351–365. https://doi.org/10.1016/j.trd.2018.12.008 doi: 10.1016/j.trd.2018.12.008
    [3] J. J. LaMondia, D. J. Fagnant, H. Qu, J. Barrett, K. Kockelman, Shifts in long-distance travel mode due to automated vehicles: statewide mode-shift simulation experiment and travel survey analysis, Transport. Res. Rec, 2566 (2016), 1–11. https://doi.org/10.3141/2566-01 doi: 10.3141/2566-01
    [4] Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, et al., Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam, New J. Phys., 10 (2008), 033001. https://doi.org/10.1088/1367-2630/10/3/033001 doi: 10.1088/1367-2630/10/3/033001
    [5] S. Tadaki, M. Kikuchi, M. Fukui, A. Nakayama, K. Nishinari, A. Shibata, et al., Phase transition in traffic jam experiment on a circuit, New J. Phys., 15 (2013), 103034. https://doi.org/10.1088/1367-2630/15/10/103034 doi: 10.1088/1367-2630/15/10/103034
    [6] F. Wu, R. E. Stern, S. Cui, M. L. Delle Monache, R. Bhadani, M. Bunting, et al., Tracking vehicle trajectories and fuel rates in phantom traffic jams: Methodology and data, Transport Res C-emer, 99 (2019), 82–109. https://doi.org/10.1016/j.trc.2018.12.012 doi: 10.1016/j.trc.2018.12.012
    [7] J. Liu, K. Kockelman, A. Nichols, Anticipating the emissions impacts of autonomous vehicles using the MOVES model, Proceedings of the 95th Transportation Research Board Annual Meeting, Washington, 2017.
    [8] O. Servin, K. Boriboonsomsin, M. Barth, An energy and emissions impact evaluation of intelligent speed adaptation, Proceedings of the IEEE Intelligent Transportation Systems Conference (ITSC), (2006), 1257–1262. http://dx.doi.org/10.1109/ITSC.2006.1707395 doi: 10.1109/ITSC.2006.1707395
    [9] F. Schäfer, R. Van Basshuysen, Reduced emissions and fuel consumption in automobile engines, Springer Science & Business Media, Berlin, 2013.
    [10] G. Fontaras, P. Pistikopoulos, Z. Samaras, Experimental evaluation of hybrid vehicle fuel economy and pollutant emissions over real-world simulation driving cycles, Atmos. Environ., 42 (2008), 4023–4035. https://doi.org/10.1016/j.atmosenv.2008.01.053 doi: 10.1016/j.atmosenv.2008.01.053
    [11] K. Boriboonsomsin, M. J. Barth, W. Zhu, A. Vu, Eco-routing navigation system based on multisource historical and real-time traffic information, IEEE trans Intell Transp Syst, 13 (2012), 1694–1704. https://doi.org/10.1109/TITS.2012.2204051 doi: 10.1109/TITS.2012.2204051
    [12] L. Chapman, Transport and climate change: a review, J Transp Geogr, 15 (2007), 354–367. https://doi.org/10.1016/j.jtrangeo.2006.11.008 doi: 10.1016/j.jtrangeo.2006.11.008
    [13] M. Barth, K. Boriboonsomsin, Real-world carbon dioxide impacts of traffic congestion, Transp Res Rec, 2058 (2008), 163–171. https://doi.org/10.3141/2058-20 doi: 10.3141/2058-20
    [14] F. An, M. Barth, J. Norbeck, M. Ross, Development of comprehensive modal emissions model: operating under hot-stabilized conditions, Transp Res Rec, 1587 (1997), 52–62. https://doi.org/10.3141/1587-07 doi: 10.3141/1587-07
    [15] D. Schuetzle, Sampling of vehicle emissions for chemical analysis and biological testing, Environ. Health Perspect., 47 (1983), 65–80. https://doi.org/10.1289/ehp.834765 doi: 10.1289/ehp.834765
    [16] M. André, M. Keller, A. Sjödin, M. Gadrat, I. Mc Crae, P. Dilara, The artemis european tools for estimating the transport pollutant emissions, Proceedings of the 18th International Emission Inventories Conference, (2009), 1–10.
    [17] A. Cappiello, I. Chabini, E. K. Nam, A. Lue, M. A. Zeid, A statistical model of vehicle emissions and fuel consumption, Proceedings of the 5th IEEE International Conference on Intelligent Transportation Systems (ITSC), (2002), 801–809. https://doi.org/10.1109/ITSC.2002.1041322 doi: 10.1109/ITSC.2002.1041322
    [18] H. Teng, L. Yu, Y. Qi, Statistical microscale emission models incorporating acceleration and deceleration, Proceedings of the 81st Transportation Research Board Annual Meeting, (2010), 29.
    [19] L. I. Panis, S. Broekx, R. Liu, Modelling instantaneous traffic emission and the influence of traffic speed limits, Sci. Total. Environ., 371 (2006), 270–285. https://doi.org/10.1016/j.scitotenv.2006.08.017 doi: 10.1016/j.scitotenv.2006.08.017
    [20] Y. Zhao, A. W. Sadek, Computationally-efficient approaches to integrating the MOVES emissions model with traffic simulators, Procedia Comput. Sci., 19 (2013), 882–887. https://doi.org/10.1016/j.procs.2013.06.118 doi: 10.1016/j.procs.2013.06.118
    [21] C. Balzotti, M. Briani, Estimate of traffic emissions through multiscale second order models with heterogeneous data, Netw. Heterog. Media, 17 (2022), 863–892. https://doi.org/10.3934/nhm.2022030 doi: 10.3934/nhm.2022030
    [22] C. Balzotti, M. Briani, B. De Filippo, B. Piccoli, Towards a Comprehensive Model for the Impact of Traffic Patterns on Air Pollution, Proceedings of the 6th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS2020), 1 (2020), 221–228. https://doi.org/10.5220/0009391502210228 doi: 10.5220/0009391502210228
    [23] C. Balzotti, M. Briani, B. De Filippo, B. Piccoli, A computational modular approach to evaluate NO$_{x}$ emissions and ozone production due to vehicular traffic, Discrete Cont Dyn-B, 27 (2022), 3455–3486. https://doi.org/10.3934/dcdsb.2021192 doi: 10.3934/dcdsb.2021192
    [24] S. Cui, B. Seibold, R. E. Stern, D. B. Work, Stabilizing traffic flow via a single autonomous vehicle: Possibilities and limitations, 2017 IEEE Intelligent Vehicle Symposium (Ⅳ), (2017), 1336–1341. https://doi.org/10.1109/IVS.2017.7995897 doi: 10.1109/IVS.2017.7995897
    [25] J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley & Sons, New York, 2016.
    [26] R. P. Wayne, Chemistry of Atmospheres, Clarendon Press, Oxford, 1991.
    [27] D. J. Jacob, Heterogeneous chemistry and troposheric ozone, Atmos. Environ., 34 (2000), 2131–2159. https://doi.org/10.1016/S1352-2310(99)00462-8 doi: 10.1016/S1352-2310(99)00462-8
    [28] F. Song, J. Y. Shin, R. Jusino-Atresino, Y. Gao, Relationships among the springtime ground-level NO$_{x}$, O$_{3}$ and NO$_{3}$ in the vicinity of highways in the US East Coast, Atmospheric Pollut. Res., 2 (2011), 374–383. https://doi.org/10.5094/APR.2011.042 doi: 10.5094/APR.2011.042
    [29] R. Smit, L. Ntziachristos, P. Boulter, Validation of road vehicle and traffic emission models–A review and meta-analysis, Atmos. Environ., 44 (2010), 2943–2953. https://doi.org/10.1016/j.atmosenv.2010.05.022 doi: 10.1016/j.atmosenv.2010.05.022
    [30] S. Manahan, Environmental Chemistry, CRC press, Boca Raton, 2017. https://doi.org/10.1201/9781315160474
    [31] H. Omidvarborna, A. Kumar, D. S. Kim, NO$_{x}$ emissions from low-temperature combustion of biodiesel made of various feedstocks and blends, Fuel Process. Technol., 140 (2015), 113–118. https://doi.org/10.1016/j.fuproc.2015.08.031 doi: 10.1016/j.fuproc.2015.08.031
    [32] R. Atkinson, W. P. L. Carter, Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions, Chem. Rev., 84 (1984), 437–470. https://doi.org/10.1021/cr00063a002 doi: 10.1021/cr00063a002
    [33] M. Rößler, T. Koch, C. Janzer, M. Olzmann, Mechanisms of the NO$_{2}$ formation in diesel engines, MTZ Worldw., 78 (2017), 70–75. https://doi.org/10.1007/s38313-017-0057-2 doi: 10.1007/s38313-017-0057-2
    [34] D. C. Carslaw, S. D. Beevers, J. E. Tate, E. J. Westmoreland, M. L. Williams, Recent evidence concerning higher NO$_{x}$ emissions from passenger cars and light duty vehicles, Atmos. Environ., 45 (2011), 7053–7063. https://doi.org/10.1016/j.atmosenv.2011.09.063 doi: 10.1016/j.atmosenv.2011.09.063
    [35] M. Z. Jacobson, Fundamentals of Atmospheric Modeling, Cambridge University Press, Cambridge, 2005. https://doi.org/10.1017/CBO9781139165389
    [36] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problem, Second edition, Springer Berlin Heidelberg, New York, 1996.
    [37] M. Garavello, K. Han, B. Piccoli, Models for vehicular traffic on networks, Applied Mathematics Vol. 9, American Institute of Mathematical Sciences, Springfield, 2016.
    [38] M. J. Lighthill, G. B. Whitham, On kinematic waves Ⅱ. A theory of traffic flow on long crowded roads, P. ROY SOC A-MATH PHY, 229 (1955), 317–345. https://doi.org/10.1098/rspa.1955.0089 doi: 10.1098/rspa.1955.0089
    [39] P. I. Richards, Shock Waves on the Highway, Oper. Res., 4 (1956), 42–51. https://doi.org/10.1287/opre.4.1.42
    [40] S. Albeaik, A. Bayen, M. T. Chiri, X. Gong, A. Hayat, N. Kardous, et al., Limitations and improvements of the intelligent driver model (IDM), SIAM J. Appl. Dyn. Syst., 21 (2022), 1862–1892. https://doi.org/10.1137/21M1406477 doi: 10.1137/21M1406477
    [41] B. Piccoli, K. Han, T. L. Friesz, T. Yao, J. Tang, Second-order models and traffic data from mobile sensors, Transp Res Part C Emerg Technol, 52 (2015), 32–56. https://doi.org/10.1016/j.trc.2014.12.013 doi: 10.1016/j.trc.2014.12.013
    [42] R. A. Ramadan, B. Seibold, Traffic flow control and fuel consumption reduction via moving bottlenecks, arXiv: 1702.07995, [Preprint], (2017) [cited 2024 August 22]. Available from: https://doi.org/10.48550/arXiv.1702.07995
    [43] R. M. Colombo, P. Goatin, E. Rossi, A Hyperbolic-Parabolic framework to manage traffic generated pollution, hal-04504572, [Preprint], (2024) [cited 2024 August 22]. Available from: https://hal.science/hal-04504572
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(495) PDF downloads(45) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog