This paper focused on approximating a second-order nonlinear hyperbolic optimal control problem. By introducing a new variable, the hyperbolic equation was converted into two parabolic equations. A second-order fully discrete scheme was obtained by combining the Crank-Nicolson formula with the finite element method. The error estimation for this scheme was derived utilizing the second-order sufficient optimality condition and auxiliary problems. To validate the effectiveness of the fully discrete scheme, a numerical example was presented.
Citation: Huanhuan Li, Meiling Ding, Xianbing Luo, Shuwen Xiang. Convergence analysis of finite element approximations for a nonlinear second order hyperbolic optimal control problems[J]. Networks and Heterogeneous Media, 2024, 19(2): 842-866. doi: 10.3934/nhm.2024038
This paper focused on approximating a second-order nonlinear hyperbolic optimal control problem. By introducing a new variable, the hyperbolic equation was converted into two parabolic equations. A second-order fully discrete scheme was obtained by combining the Crank-Nicolson formula with the finite element method. The error estimation for this scheme was derived utilizing the second-order sufficient optimality condition and auxiliary problems. To validate the effectiveness of the fully discrete scheme, a numerical example was presented.
[1] | M. D. Gunzburger, Perspective in Flow Control and Optimization, SIAM, Philadelphia, 2002. https://doi.org/10.1137/1.9780898718720 |
[2] | F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, American Mathematical Society, Providence, 2010. |
[3] | K. L. Teo, B. Li, C. Yu, V. Rehbock, Applied and Computational Optimal Control: A Control Parametrization Approach, Springer Cham, 2021. |
[4] | Y. Chen, Z. Lu, High Efficient and Accuracy Numerical Methods for Optimal Control Problems, Science Press, Beijing, 2015. |
[5] | W. Liu, N. Yan, Adaptive Finite Element Methods for Optimal Control Governed by PDEs, Science Press, Beijing, 2008. |
[6] | M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich, Optimization with PDE Constraints, Springer Science & Business Media, Dordrecht, 2009. https://doi.org/10.1007/978-1-4020-8839-1 |
[7] | F. Tröltzsch, Optimal control of partial differential equations: theory, methods, and applications, American Mathematical Society, Providence, 2010. |
[8] | E. Casas, P. R. Jean, Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations, SIAM J. Control Optim., 45 (2006), 1586–1611. https://doi.org/10.1137/050626600 doi: 10.1137/050626600 |
[9] | T. Apel, J. Pfefferer, A. Rösch, Finite element error estimates for Neumann boundary control problems on graded meshes, Comput. Optim. Appl., 52 (2012), 3–28. https://doi.org/10.1007/s10589-011-9427-x doi: 10.1007/s10589-011-9427-x |
[10] | J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971. |
[11] | W. Gong, M. Hinze, Z. Zhou, A priori error analysis for finite element approximation of parabolic optimal control problems with pointwise control, SIAM J. Control Optim., 52 (2014), 97–119. https:://doi.org/10.1137/110840133 doi: 10.1137/110840133 |
[12] | T. Hou, C. Liu, Y. Yang, Error estimates and superconvergence of a mixed finite element method for elliptic optimal control problems, Comput. Math. Appl., 74 (2017), 714–726. https://doi.org/10.1016/j.camwa.2017.05.021 doi: 10.1016/j.camwa.2017.05.021 |
[13] | X. Luo, Y. Chen, Y. Huang, T. Hou, Some error estimates of finite volume element method for parabolic optimal control problems, Optim. Control Appl. Methods, 35 (2014), 145–165. https://doi.org/10.1002/oca.2059 doi: 10.1002/oca.2059 |
[14] | C. Yang, T. Sun, BDF2 schemes for optimal parameter control problems governed by bilinear parabolic equations, Optim. Control Appl. Methods, 44 (2023), 2055–2081. https://doi.org/10.1002/oca.2964 doi: 10.1002/oca.2964 |
[15] | M. Gugat, A. Keimer, G. Leugering, Optimal distributed control of the wave equation subject to state constraints, Z. Angew. Math. Mech., 89 (2009), 420–444. https://doi.org/10.1002/zamm.200800196 doi: 10.1002/zamm.200800196 |
[16] | A. Kröner, Adaptive finite element methods for optimal control of second order hyperbolic equations, Comput. Methods Appl. Math., 11 (2011), 214–240. https://doi.org/10.2478/cmam-2011-0012 doi: 10.2478/cmam-2011-0012 |
[17] | A. Kröner, K. Kunisch, B. Vexler, Semismooth Newton methods for optimal control of the wave equation with control constraints, SIAM J. Control Optim., 49 (2011), 830–858. https://doi.org/10.1137/090766541 doi: 10.1137/090766541 |
[18] | Z. Lu, X. Huang, A priori error estimates of mixed finite element methods for general linear hyperbolic convex optimal control problems, Abstract and Appllied Analysis, 2014 (2014), 547490. http://dx.doi.org/10.1155/2014/547490 doi: 10.1155/2014/547490 |
[19] | X. Luo, Y. Chen, Y. Huang, A priori error estimates of finite volume element method for hyperbolic optimal control problems, Sci. China Math., 56 (2013), 901–914. https://doi.org/10.1007/s11425-013-4573-5 doi: 10.1007/s11425-013-4573-5 |
[20] | X. Luo, A priori error estimates of Crank-Nicolson finite volume element method for a hyperbolic optimal control problem, Numer. Methods Partial. Differ. Equ., 32 (2016), 1331–1356. https://doi.org/10.1002/num.22052 doi: 10.1002/num.22052 |
[21] | Z. Lu, L. Li, Y. Feng, L. Cao, W. Zhang, Error estimates of finite volume element method for nonlinear hyperbolic optimal control problems, Ital. J. Pure Appl. Math., 41 (2019), 70–84. |
[22] | X. Li, Y. Tang, A two-layer Crank-Nicolson linear finite element methods for second-order hyperbolic optimal control problems, Results in Applied Mathematics, 18 (2023), 100365. https://doi.org/10.1016/j.rinam.2023.100365 doi: 10.1016/j.rinam.2023.100365 |
[23] | P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Society for Industrial and Applied Mathematics, Philadelphia, 2002. https://doi.org/10.1137/1.9780898719208 |
[24] | M. F. Wheeler, A priori $L_{2}$ error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal., 10 (1973), 723–759. https://doi.org/10.1137/0710062 doi: 10.1137/0710062 |
[25] | K. Chrysafinos, D. Plaka, Analysis and approximations of an optimal control problem for the Allen-Cahn equation, Numer. Math., 55 (2023), 35–82. https://doi.org/10.1007/s00211-023-01374-8 doi: 10.1007/s00211-023-01374-8 |
[26] | E. Casas, K. Chrysafinos, A discontinuous Galerkin time-stepping scheme for the velocity tracking problem, SIAM J. Numer. Anal., 50 (2012), 2281–2306. https://doi.org/10.1137/110829404 doi: 10.1137/110829404 |
[27] | A. Kröner, B. Vexler, A priori error estimates for elliptic optimal control problems with a bilinear state equation, J. Comput. Appl. Math., 230 (2009), 781–802. https://doi.org/10.1016/j.cam.2009.01.023 doi: 10.1016/j.cam.2009.01.023 |
[28] | P. Shakya, R. K. Sinha, Finite element method for parabolic optimal control problems with a bilinear state equation, J. Comput. Appl. Math., 367 (2020), 112431. https://doi.org/10.1016/j.cam.2019.112431 doi: 10.1016/j.cam.2019.112431 |
[29] | M. Winkler, Error estimates for the finite element approximation of bilinear boundary control problems, Comput. Optim. Appl., 76 (2020), 155–199. https://doi.org/10.1007/s10589-020-00171-5 doi: 10.1007/s10589-020-00171-5 |
[30] | C. Yang, T. Sun, Second-order time discretization for reaction coefficient estimation of bilinear parabolic optimization problem with Neumann boundary conditions, Comput. Math. Appl., 140 (2023), 211–224. https://doi.org/10.1016/j.camwa.2023.04.016 doi: 10.1016/j.camwa.2023.04.016 |
[31] | Y. Li, S. Wu, Y. Xing, Finite element approximations of a class of nonlinear stochastic wave equations with multiplicative noise, J. Sci. Comput., 91 (2022), 53. https://doi.org/10.1007/s10915-022-01816-9 doi: 10.1007/s10915-022-01816-9 |
[32] | R. B. Sonawane, D. N. Kandekar, Bilinear optimal control for stochastic wave equations, International Journal of Latest Engineering Research and Application, 8 (2023), 17–22. https://doi.org/10.56581/IJLERA.8.7.17-22 doi: 10.56581/IJLERA.8.7.17-22 |