In this paper, we studied the spectrum and semigroup properties of the M/G/1 queueing model with exceptional service time for the first customer in each busy period. First, we described the point spectrum of the system operator that corresponds to the model, and we prove that the system operator has an uncountable infinite number of eigenvalues on the left-half complex plane. Second, by using the spectrum analysis and semigroup theory, we obtained that the spectrum-determined growth (SDG) condition holds and the semigroup is not asymptotically stable, compact, eventually compact, or even quasi-compact. Finally, in order to clarify the results of spectral distribution, some numerical analysis were conducted.
Citation: Nurehemaiti Yiming. Spectral distribution and semigroup properties of a queueing model with exceptional service time[J]. Networks and Heterogeneous Media, 2024, 19(2): 800-821. doi: 10.3934/nhm.2024036
In this paper, we studied the spectrum and semigroup properties of the M/G/1 queueing model with exceptional service time for the first customer in each busy period. First, we described the point spectrum of the system operator that corresponds to the model, and we prove that the system operator has an uncountable infinite number of eigenvalues on the left-half complex plane. Second, by using the spectrum analysis and semigroup theory, we obtained that the spectrum-determined growth (SDG) condition holds and the semigroup is not asymptotically stable, compact, eventually compact, or even quasi-compact. Finally, in order to clarify the results of spectral distribution, some numerical analysis were conducted.
[1] | H. Takagi, Time-dependent analysis of M/G/1 vacation models with exhaustive service, Queueing Syst., 6 (1990), 369–390. https://doi.org/10.1007/BF02411484 doi: 10.1007/BF02411484 |
[2] | G. Gupur, R. Ehmet, Asymptotic behavior of the time-dependent solution of an M/G/1 queueing model, Bound. Value Probl., 2013 (2013), 1–21. https://doi.org/10.1186/1687-2770-2013-17 doi: 10.1186/1687-2770-2013-17 |
[3] | P. Nain, N. K. Panigrahy, P. Basu, D. Towsley, One-dimensional service networks and batch service queues, Queueing Syst., 98 (2021), 181–207. https://doi.org/10.1007/s11134-021-09703-0 doi: 10.1007/s11134-021-09703-0 |
[4] | A. A. Bouchentouf, M. Boualem, L. Yahiaoui, H. Ahmad, A multi-station unreliable machine model with working vacation policy and customers' impatience, Qual. Technol. Quant. Manag., 19 (2022), 766–796. https://doi.org/10.1080/16843703.2022.2054088 doi: 10.1080/16843703.2022.2054088 |
[5] | D. Perry, W. Stadje, S. Zacks, Busy period analysis for M/G/1 and G/M/1 type queues with restricted accessibility, Oper. Res. Lett., 27 (2000), 163–174. https://doi.org/10.1016/S0167-6377(00)00043-2 doi: 10.1016/S0167-6377(00)00043-2 |
[6] | P. D. Welch, On a generalized M/G/1 queuing process in which the first customer of each busy period receives exceptional service, Oper. Res., 12 (1964), 736–752. https://doi.org/10.1287/opre.12.5.736 doi: 10.1287/opre.12.5.736 |
[7] | A. Bátkai, F. M. Kramar, A. Rhandi, Positive Operator Semigroups: From Finite to Infinite Dimensions, Springer-Verlag, Basel, 2017. https://doi.org/10.1007/978-3-319-42813-0 |
[8] | K. J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000. https://doi.org/10.1007/b97696 |
[9] | M. Tucsnak, G. Weiss, Observation and Control for Operator Semigroups, Birkh$\ddot{\mathrm{a}}$ser: Basel, Berlin, 2009. https://doi.org/10.1007/978-3-7643-8994-9 |
[10] | S. Boujijane, S. Boulite, M. Halloumi, L. Maniar, A. Rhandi, Well-posedness and asynchronous exponential growth of an age-weighted structured fish population model with diffusion in $ L^ 1$, J. Evol. Equations, 24 (2024), 1–31. https://doi.org/10.1007/s00028-023-00942-7 doi: 10.1007/s00028-023-00942-7 |
[11] | Y. Yuan, X. Fu, Asymptotic behavior of an age-structured prey-predator system with distributed delay, J. Differ. Equations, 317 (2022), 121–152. https://doi.org/10.1016/j.jde.2022.01.062 doi: 10.1016/j.jde.2022.01.062 |
[12] | G. Gupur, Analysis of the M/G/1 retrial queueing model with server breakdowns, J. Pseudo-Differ. Oper. Appl., 1 (2010), 313–340. https://doi.org/10.1007/s11868-010-0015-0 doi: 10.1007/s11868-010-0015-0 |
[13] | G. Gupur, X. Z. Li, G. T. Zhu, Functional Analysis Method in Queueing Theory, Research Information Ltd, Herdfortshire, 2001. |
[14] | N. Yiming, B. Z. Guo, Asymptotic behavior of a retrial queueing system with server breakdowns, J. Math. Anal. Appl., 520 (2023), 126867. https://doi.org/10.1016/j.jmaa.2022.126867 doi: 10.1016/j.jmaa.2022.126867 |
[15] | G. Gupur, Functional Analysis Methods for Reliability Models, Springer-Verlag, Basel, 2011. https://doi.org/10.1007/978-3-0348-0101-0 |
[16] | E. Kasim, G. Gupur, Dynamic analysis of a complex system under preemptive repeat repair discipline, Bound. Value Probl., 2020 (2020), 1–37. https://doi.org/10.1186/s13661-020-01366-9 doi: 10.1186/s13661-020-01366-9 |
[17] | A. Drogoul, R. Veltz, Exponential stability of the stationary distribution of a mean field of spiking neural network, J. Differ. Equations, 270 (2021), 809–842. https://doi.org/10.1016/j.jde.2020.08.001 doi: 10.1016/j.jde.2020.08.001 |
[18] | J. L. Díaz Palencia, Semigroup theory and analysis of solutions for a higher order non-Lipschitz problem with advection in $\mathbb{R}^N$, Math. Methods Appl. Sci., (2024), 1–17. https://doi.org/10.1002/mma.9902 |
[19] | M. Chaves, V. A. Galaktionov, Regional blow-up for a higher-order semilinear parabolic equation, Euro. J. Appl. Math., 12 (2001), 601–623. https://doi.org/10.1017/S0956792501004685 doi: 10.1017/S0956792501004685 |
[20] | G. Gupur, Semigroup method for M/G/1 queueing system with exceptional service time for the first customer in each busy period, Indian J. Math., 44 (2002), 125–146. |
[21] | G. Gupur, Asymptotic property of the solution of M/M/1 queueing model with exceptional service time for the first customer in each busy period, Int. J. Differ. Equations Appl., 8 (2003), 23–94. |
[22] | X. J. Lin, G. Gupur, Other eigenvalues of the M/M/1 queueing model with exceptional service times for the first customer in each busy period, Acta Anal. Funct. Appl., 13 (2011), 383–391. |
[23] | N. Yiming, G. Gupur, On the point spectrum of the operator which corresponds to the M/M/1 queueing model with exceptional service times for the first customer in each busy period, Acta Anal. Funct. Appl., 18 (2016), 337–345. |
[24] | M. Q. Zhang, G. Gupur, Another eigenvalue of the M/M/1 queueing model with exceptional service times for the first customer in each busy period, Acta Anal. Funct. Appl., 11 (2009), 62–68. |
[25] | G. Avalos, P. G. Geredeli, B. Muha, Wellposedness, spectral analysis and asymptotic stability of a multilayered heat-wave-wave system, J. Differ. Equations, 269 (2020), 7129–7156. https://doi.org/10.1016/j.jde.2020.05.035 doi: 10.1016/j.jde.2020.05.035 |
[26] | Z. H. Luo, B. Z. Guo, O. Morg$\rm\ddot{u}$l, Stability and Stabilization of Infinite-Dimensional Systems with Applications, Springer-Verlag, London, 1999. |
[27] | B. Z. Guo, On the exponential stability of $C_0-$semigroups on Banach spaces with compact perturbations, Semigroup Forum, 59 (1999), 190–196. https://doi.org/10.1007/s002339900043 doi: 10.1007/s002339900043 |
[28] | V. Obukhovski, P. Zecca, Controllability for systems governed by semilinear differential inclusions in a Banach space with a noncompact semigroup, Nonlinear Anal. Theory Methods Appl., 70 (2009), 3424–3436. https://doi.org/10.1016/j.na.2008.05.009 doi: 10.1016/j.na.2008.05.009 |
[29] | R. Nagel, One-Parameter Semigroups of Positive Operators, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1986. |
[30] | N. Yiming, G. Gupur, Spectrum of the operator corresponding to the M/M/1 queueing model with vacations and multiple phases of operation and application, Acta. Math. Sin.-English Ser., 36 (2020), 1183–1202. https://doi.org/10.1007/s10114-020-9409-y doi: 10.1007/s10114-020-9409-y |
[31] | M. S. Kumar, A. Dadlani, K. Kim, Performance analysis of an unreliable M/G/1 retrial queue with two-way communication, Oper. Res., 20 (2020), 2267–2280. https://doi.org/10.1007/s12351-018-0417-y doi: 10.1007/s12351-018-0417-y |
[32] | C. K. D. Merit, M. Haridass, D. Selvamuthu, P. Kalita, Energy efficiency in a base station of 5G cellular networks using M/G/1 queue with multiple sleeps and N-policy, Methodol. Comput. Appl. Probab., 25 (2023). https://doi.org/10.1007/s11009-023-10026-1 |
[33] | F. Xu, R. Tian, Q. Shao, Optimal pricing strategy in an unreliable M/G/1 retrial queue with Bernoulli preventive maintenance, RAIRO-Oper. Res., 57 (2023), 2639–2657. https://doi.org/10.1051/ro/2023146 doi: 10.1051/ro/2023146 |
[34] | R. A. Adams, J. J. F. Fournier, Sobolev Spaces, Elsevier, 2003. |
[35] | H. O. Fattorini, The Cauchy Problem, Addison-Wesley, Massachusetts, 1983. https://doi.org/10.1017/CBO9780511662799 |
[36] | N. Yiming, Dynamic analysis of the M/G/1 stochastic clearing queueing model in a three-phase environment, Mathematics, 12 (2024), 805. https://doi.org/10.3390/math12060805 doi: 10.3390/math12060805 |
[37] | N. Yiming, G. Gupur, Well-posedness and asymptotic behavior of the time-dependent solution of an M/G/1 queueing model, J. Pseudo-Differ. Oper. Appl., 10 (2019), 49–92. https://doi.org/10.1007/s11868-018-0256-x doi: 10.1007/s11868-018-0256-x |