A recent study has presented a Maxwell mass–spring model for a chain formed by two different types of tensegrity prisms alternating with lumped masses. Such a model shows tensegrity theta prisms arranged in parallel with minimal regular prisms acting as resonant substructures. It features a tunable frequency bandgap response, due to the possibility of adjusting the width of the bandgap regions by playing with internal resonance effects in addition to mass and spring contrasts. This paper expands such research by presenting a continuum modeling of the tensegrity Maxwell chain, which is useful to conduct analytic studies and to develop finite element models of the plane wave dynamics of the investigated system. In correspondence to the high wave-length limit, i.e., in the low wave number regime, it is shown that the dispersion relations of the discrete and continuum models provide similar results. Analytic solutions to the wave dynamics of physical systems are presented, which validate the predictions of the bandgap response offered by the dispersion relation of the continuum model.
Citation: Luca Placidi, Julia de Castro Motta, Rana Nazifi Charandabi, Fernando Fraternali. A continuum model for the tensegrity Maxwell chain[J]. Networks and Heterogeneous Media, 2024, 19(2): 597-610. doi: 10.3934/nhm.2024026
[1] | Jiafan Zhang . On the distribution of primitive roots and Lehmer numbers. Electronic Research Archive, 2023, 31(11): 6913-6927. doi: 10.3934/era.2023350 |
[2] | Yang Gao, Qingzhong Ji . On the inverse stability of zn+c. Electronic Research Archive, 2025, 33(3): 1414-1428. doi: 10.3934/era.2025066 |
[3] | J. Bravo-Olivares, E. Fernández-Cara, E. Notte-Cuello, M.A. Rojas-Medar . Regularity criteria for 3D MHD flows in terms of spectral components. Electronic Research Archive, 2022, 30(9): 3238-3248. doi: 10.3934/era.2022164 |
[4] | Zhefeng Xu, Xiaoying Liu, Luyao Chen . Hybrid mean value involving some two-term exponential sums and fourth Gauss sums. Electronic Research Archive, 2025, 33(3): 1510-1522. doi: 10.3934/era.2025071 |
[5] |
Jorge Garcia Villeda .
A computable formula for the class number of the imaginary quadratic field |
[6] | Li Wang, Yuanyuan Meng . Generalized polynomial exponential sums and their fourth power mean. Electronic Research Archive, 2023, 31(7): 4313-4323. doi: 10.3934/era.2023220 |
[7] | Qingjie Chai, Hanyu Wei . The binomial sums for four types of polynomials involving floor and ceiling functions. Electronic Research Archive, 2025, 33(3): 1384-1397. doi: 10.3934/era.2025064 |
[8] | Hai-Liang Wu, Li-Yuan Wang . Permutations involving squares in finite fields. Electronic Research Archive, 2022, 30(6): 2109-2120. doi: 10.3934/era.2022106 |
[9] | Li Rui, Nilanjan Bag . Fourth power mean values of one kind special Kloosterman's sum. Electronic Research Archive, 2023, 31(10): 6445-6453. doi: 10.3934/era.2023326 |
[10] | Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124 |
A recent study has presented a Maxwell mass–spring model for a chain formed by two different types of tensegrity prisms alternating with lumped masses. Such a model shows tensegrity theta prisms arranged in parallel with minimal regular prisms acting as resonant substructures. It features a tunable frequency bandgap response, due to the possibility of adjusting the width of the bandgap regions by playing with internal resonance effects in addition to mass and spring contrasts. This paper expands such research by presenting a continuum modeling of the tensegrity Maxwell chain, which is useful to conduct analytic studies and to develop finite element models of the plane wave dynamics of the investigated system. In correspondence to the high wave-length limit, i.e., in the low wave number regime, it is shown that the dispersion relations of the discrete and continuum models provide similar results. Analytic solutions to the wave dynamics of physical systems are presented, which validate the predictions of the bandgap response offered by the dispersion relation of the continuum model.
Let Fq be the finite field of q elements with characteristic p, where q=pr, p is a prime number. Let F∗q=Fq∖{0} and Z+ denote the set of positive integers. Let s∈Z+ and b∈Fq. Let f(x1,…,xs) be a diagonal polynomial over Fq of the following form
f(x1,…,xs)=a1xm11+a2xm22+⋯+asxmss, |
where ai∈F∗q, mi∈Z+, i=1,…,s. Denote by Nq(f=b) the number of Fq-rational points on the affine hypersurface f=b, namely,
Nq(f=b)=#{(x1,…,xs)∈As(Fq)∣f(x1,…,xs)=b}. |
In 1949, Hua and Vandiver [1] and Weil [2] independently obtained the formula of Nq(f=b) in terms of character sum as follows
Nq(f=b)=qs−1+∑ψ1(a−11)⋯ψs(a−ss)J0q(ψ1,…,ψs), | (1.1) |
where the sum is taken over all s multiplicative characters of Fq that satisfy ψmii=ε, ψi≠ε, i=1,…,s and ψ1⋯ψs=ε. Here ε is the trivial multiplicative character of Fq, and J0q(ψ1,…,ψs) is the Jacobi sum over Fq defined by
J0q(ψ1,…,ψs)=∑c1+⋯+cs=0,ci∈Fqψ1(c1)⋯ψs(cs). |
Though the explicit formula for Nq(f=b) are difficult to obtain in general, it has been studied extensively because of their theoretical importance as well as their applications in cryptology and coding theory; see[3,4,5,6,7,8,9]. In this paper, we use the Jacobi sums, Gauss sums and the results of quadratic form to deduce the formula of the number of Fq2-rational points on a class of hypersurfaces over Fq2 under certain conditions. The main result of this paper can be stated as
Theorem 1.1. Let q=2r with r∈Z+ and Fq2 be the finite field of q2 elements. Let f(X)=a1xm11+a2xm22+⋯+asxmss, g(Y)=y1y2+y3y4+⋯+yn−1yn+y2n−2t−1+… +y2n−3+y2n−1+bty2n−2t+⋯+b1y2n−2+b0y2n, and l(X,Y)=f(X)+g(Y), where ai,bj∈F∗q2, mi≠1, (mi,mk)=1, i≠k, mi|(q+1), mi∈Z+, 2|n, n>2, 0≤t≤n2−2, TrFq2/F2(bj)=1 for i,k=1,…,s and j=0,1,…,t. For h∈Fq2, we have
(1) If h=0, then
Nq2(l(X,Y)=0)=q2(s+n−1)+∑γ∈F∗q2(s∏i=1((γai)mimi−1)(qs+2n−3+(−1)tqs+n−3)). |
(2) If h∈F∗q2, then
Nq2(l(X,Y)=h)=q2(s+n−1)+(qs+2n−3+(−1)t+1(q2−1)qs+n−3)s∏i=1((hai)mimi−1)+∑γ∈F∗q2∖{h}[s∏i=1((γai)mimi−1)(q2n+s−3+(−1)tqn+s−3)]. |
Here,
(γai)mi={1,ifγaiisaresidueofordermi,0,otherwise. |
To prove Theorem 1.1, we need the lemmas and theorems below which are related to the Jacobi sums and Gauss sums.
Definition 2.1. Let χ be an additive character and ψ a multiplicative character of Fq. The Gauss sum Gq(ψ,χ) in Fq is defined by
Gq(ψ,χ)=∑x∈F∗qψ(x)χ(x). |
In particular, if χ is the canonical additive character, i.e., χ(x)=e2πiTrFq/Fp(x)/p where TrFq/Fp(y)=y+yp+⋯+ypr−1 is the absolute trace of y from Fq to Fp, we simply write Gq(ψ):=Gq(ψ,χ).
Let ψ be a multiplicative character of Fq which is defined for all nonzero elements of Fq. We extend the definition of ψ by setting ψ(0)=0 if ψ≠ε and ε(0)=1.
Definition 2.2. Let ψ1,…,ψs be s multiplicative characters of Fq. Then, Jq(ψ1,…,ψs) is the Jacobi sum over Fq defined by
Jq(ψ1,…,ψs)=∑c1+⋯+cs=1,ci∈Fqψ1(c1)⋯ψs(cs). |
The Jacobi sums Jq(ψ1,…,ψs) as well as the sums J0q(ψ1,…,ψs) can be evaluated easily in case some of the multiplicative characters ψi are trivial.
Lemma 2.3. ([10,Theorem 5.19,p. 206]) If the multiplicative characters ψ1,…,ψs of Fq are trivial, then
Jq(ψ1,…,ψs)=J0q(ψ1,…,ψs)=qs−1. |
If some, but not all, of the ψi are trivial, then
Jq(ψ1,…,ψs)=J0q(ψ1,…,ψs)=0. |
Lemma 2.4. ([10,Theorem 5.20,p. 206]) If ψ1,…,ψs are multiplicative characters of Fq with ψs nontrivial, then
J0q(ψ1,…,ψs)=0 |
if ψ1⋯ψs is nontrivial and
J0q(ψ1,…,ψs)=ψs(−1)(q−1)Jq(ψ1,…,ψs−1) |
if ψ1⋯ψs is trivial.
If all ψi are nontrivial, there exists an important connection between Jacobi sums and Gauss sums.
Lemma 2.5. ([10,Theorem 5.21,p. 207]) If ψ1,…,ψs are nontrivial multiplicative characters of Fq and χ is a nontrivial additive character of Fq, then
Jq(ψ1,…,ψs)=Gq(ψ1,χ)⋯Gq(ψs,χ)Gq(ψ1⋯ψs,χ) |
if ψ1⋯ψs is nontrivial and
Jq(ψ1,…,ψs)=−ψs(−1)Jq(ψ1,…,ψs−1)=−1qGq(ψ1,χ)⋯Gq(ψs,χ) |
if ψ1⋯ψs is trivial.
We turn to another special formula for Gauss sums which applies to a wider range of multiplicative characters but needs a restriction on the underlying field.
Lemma 2.6. ([10,Theorem 5.16,p. 202]) Let q be a prime power, let ψ be a nontrivial multiplicative character of Fq2 of order m dividing q+1. Then
Gq2(ψ)={q,ifmoddorq+1meven,−q,ifmevenandq+1modd. |
For h∈Fq2, define v(h)=−1 if h∈F∗q2 and v(0)=q2−1. The property of the function v(h) will be used in the later proofs.
Lemma 2.7. ([10,Lemma 6.23,p. 281]) For any finite field Fq, we have
∑c∈Fqv(c)=0, |
for any b∈Fq,
∑c1+⋯+cm=bv(c1)⋯v(ck)={0,1⩽k<m,v(b)qm−1,k=m, |
where the sum is over all c1,…,cm∈Fq with c1+⋯+cm=b.
The quadratic forms have been studied intensively. A quadratic form f in n indeterminates is called nondegenerate if f is not equivalent to a quadratic form in fewer than n indeterminates. For any finite field Fq, two quadratic forms f and g over Fq are called equivalent if f can be transformed into g by means of a nonsingular linear substitution of indeterminates.
Lemma 2.8. ([10,Theorem 6.30,p. 287]) Let f∈Fq[x1,…,xn], q even, be a nondegenerate quadratic form. If n is even, then f is either equivalent to
x1x2+x3x4+⋯+xn−1xn |
or to a quadratic form of the type
x1x2+x3x4+⋯+xn−1xn+x2n−1+ax2n, |
where a∈Fq satisfies TrFq/Fp(a)=1.
Lemma 2.9. ([10,Corollary 3.79,p. 127]) Let a∈Fq and let p be the characteristic of Fq, the trinomial xp−x−a is irreducible in Fq if and only if TrFq/Fp(a)≠0.
Lemma 2.10. ([10,Lemma 6.31,p. 288]) For even q, let a∈Fq with TrFq/Fp(a)=1 and b∈Fq. Then
Nq(x21+x1x2+ax22=b)=q−v(b). |
Lemma 2.11. ([10,Theorem 6.32,p. 288]) Let Fq be a finite field with q even and let b∈Fq. Then for even n, the number of solutions of the equation
x1x2+x3x4+⋯+xn−1xn=b |
in Fnq is qn−1+v(b)q(n−2)/2. For even n and a∈Fq with TrFq/Fp(a)=1, the number of solutions of the equation
x1x2+x3x4+⋯+xn−1xn+x2n−1+ax2n=b |
in Fnq is qn−1−v(b)q(n−2)/2.
Lemma 2.12. Let q=2r and h∈Fq2. Let g(Y)∈Fq2[y1,y2,…,yn] be a polynomial of the form
g(Y)=y1y2+y3y4+⋯+yn−1yn+y2n−2t−1+⋯+y2n−3+y2n−1+bty2n−2t+⋯+b1y2n−2+b0y2n, |
where bj∈F∗q2, 2|n, n>2, 0≤t≤n2−2, TrFq2/F2(bj)=1, j=0,1,…,t. Then
Nq2(g(Y)=h)=q2(n−1)+(−1)t+1qn−2v(h). | (2.1) |
Proof. We provide two proofs here. The first proof is as follows. Let q1=q2. Then by Lemmas 2.7 and 2.10, the number of solutions of g(Y)=h in Fq2 can be deduced as
Nq2(g(Y)=h)=∑c1+c2+⋯+ct+2=hNq2(y1y2+y3y4+⋯+yn−2t−3yn−2t−2=c1)⋅Nq2(yn−2t−1yn−2t+y2n−2t−1+bty2n−2t=c2)⋯Nq2(yn−1yn+y2n−1+b0y2n=ct+2)=∑c1+c2+⋯+ct+2=h(qn−2t−31+v(c1)q(n−2t−4)/21)(q1−v(c2))⋯(q1−v(ct+2))=∑c1+c2+⋯+ct+2=h(qn−2t−21+v(c1)q(n−2t−2)/21−v(c2)qn−2t−31−v(c1)v(c2)q(n−2t−4)/21)⋅(q1−v(c3))⋯(q1−v(ct+2))=∑c1+c2+⋯+ct+2=h(qn−t−21+v(c1)q(n−2)/21−v(c2)qn−t−31+⋯+(−1)t+1v(c1)v(c2)⋯v(ct+2)q(n−2t−4)/21)=qn−11+q(n−2)/21∑c1∈Fq2v(c1)+⋯+(−1)t+1∑c1+c2+⋯+ct+2=hv(c1)v(c2)⋯v(ct+2)q(n−2t−4)/21. | (2.2) |
By Lamma 2.7 and (2.2), we have
Nq2(g(Y)=h)=qn−11+(−1)t+1v(h)q(n−2)/21=q2(n−1)+(−1)t+1v(h)qn−2. |
Next we give the second proof. Note that if f and g are equivalent, then for any b∈Fq2 the equation f(x1,…,xn)=b and g(x1,…,xn)=b have the same number of solutions in Fq2. So we can get the number of solutions of g(Y)=h for h∈Fq2 by means of a nonsingular linear substitution of indeterminates.
Let k(X)∈Fq2[x1,x2,x3,x4] and k(X)=x1x2+x21+Ax22+x3x4+x23+Bx24, where TrFq2/F2(A)=TrFq2/F2(B)=1. We first show that k(x) is equivalent to x1x2+x3x4.
Let x3=y1+y3 and xi=yi for i≠3, then k(X) is equivalent to y1y2+y1y4+y3y4+Ay22+y23+By24.
Let y2=z2+z4 and yi=zi for i≠2, then k(X) is equivalent to z1z2+z3z4+Az22+z23+Az24+Bz24.
Let z1=α1+Aα2 and zi=αi for i≠1, then k(X) is equivalent to α1α2+α23+α3α4+(A+B)α24.
Since TrFq2/F2(A+B)=0, we have α23+α3α4+(A+B)α24 is reducible by Lemma 2.9. Then k(X) is equivalent to x1x2+x3x4. It follows that if t is odd, then g(Y) is equivalent to x1x2+x3x4+⋯+xn−1xn, and if t is even, then g(Y) is equivalent to x1x2+x3x4+⋯+xn−1xn+x2n−1+ax2n with TrFq2/F2(a)=1. By Lemma 2.11, we get the desired result.
From (1.1), we know that the formula for the number of solutions of f(X)=0 over Fq2 is
Nq2(f(X)=0)=q2(s−1)+d1−1∑j1=1⋯ds−1∑js=1¯ψj11(a1)⋯¯ψjss(as)J0q2(ψj11,…,ψjss), |
where di=(mi,q2−1) and ψi is a multiplicative character of Fq2 of order di. Since mi|q+1, we have di=mi. Let H={(j1,…,js)∣1≤ji<mi, 1≤i≤s}. It follows that ψj11⋯ψjss is nontrivial for any (j1,…,js)∈H as (mi,mj)=1. By Lemma 2, we have J0q2(ψj11,…,ψjss)=0 and hence Nq2(f(X)=0)=q2(s−1).
Let Nq2(f(X)=c) denote the number of solutions of the equation f(X)=c over Fq2 with c∈F∗q2. Let V={(j1,…,js)|0≤ji<mi,1≤i≤s}. Then
Nq2(f(X)=c)=∑γ1+⋯+γs=cNq2(a1xm11=γ1)⋯Nq2(asxmss=γs)=∑γ1+⋯+γs=cm1−1∑j1=0ψj11(γ1a1)⋯ms−1∑js=0ψjss(γsas). |
Since ψi is a multiplicative character of Fq2 of order mi, we have
Nq2(f(X)=c)=∑γ1c+⋯+γsc=1∑(j1,…,js)∈Vψj11(γ1c)ψj11(ca1)⋯ψjss(γsc)ψjss(cas)=∑(j1,…,js)∈Vψj11(ca1)⋯ψjss(cas)∑γ1c+⋯+γsc=1ψj11(γ1c)⋯ψjss(γsc)=∑(j1,…,js)∈Vψj11(ca1)⋯ψjss(cas)Jq2(ψj11,…,ψjss). |
By Lemma 2.3,
Nq2(f(X)=c)=q2(s−1)+∑(j1,…,js)∈Hψj11(ca1)⋯ψjss(cas)Jq2(ψj11,…,ψjss). |
By Lemma 2.5,
Jq2(ψj11,…,ψjss)=Gq2(ψj11)⋯Gq2(ψjss)Gq2(ψj11⋯ψjss). |
Since mi|q+1 and 2∤mi, by Lemma 2.6, we have
Gq2(ψj11)=⋯=Gq2(ψjss)=Gq2(ψj11⋯ψjss)=q. |
Then
Nq2(f(X)=c)=q2(s−1)+qs−1m1−1∑j1=1ψj11(ca1)…ms−1∑js=1ψjss(cas)=q2(s−1)+qs−1(m1−1∑j1=0ψj11(ca1)−1)⋯(ms−1∑js=0ψjss(cas)−1). |
It follows that
Nq2(f(X)=c)=q2(s−1)+qs−1s∏i=1((cai)mimi−1), | (3.1) |
where
(cai)mi={1,ifcai is a residue of ordermi,0,otherwise. |
For a given h∈Fq2. We discuss the two cases according to whether h is zero or not.
Case 1: h=0. If f(X)=0, then g(Y)=0; if f(X)≠0, then g(Y)≠0. Then
Nq2(l(X,Y)=0)=∑c1+c2=0Nq2(f(X)=c1)Nq2(g(Y)=c2)=q2(s−1)(q2(n−1)+(−1)t+1(q2−1)qn−2)+∑c1+c2=0c1,c2∈F∗q2Nq2(f(X)=c1)Nq2(g(Y)=c2). | (3.2) |
By Lemma 2.12, (3.1) and (3.2), we have
Nq2(l(X,Y)=0)=q2(s+n−2)+(−1)t+1q2(s−1)+hn−(−1)t+1q2(s−2)+n+∑c1∈F∗q2[q2(s+n−2)−(−1)t+1q2(s−2)+n+s∏i=1((c1ai)mimi−1)(q2n+s−3−(−1)t+1qn+s−3)]=q2(s+n−2)+(−1)t+1q2(s−1)+n−(−1)t+1q2(s−2)+n+q2(s+n−1)−(−1)t+1q2(s−1)+n−q2(s+n−2)+(−1)t+1q2(s−2)+n+∑c1∈F∗q2[s∏i=1((c1ai)mimi−1)(q2n+s−3−(−1)t+1qn+s−3)]=q2(s+n−1)+∑c1∈F∗q2[s∏i=1((c1ai)mimi−1)(q2n+s−3−(−1)t+1qn+s−3)]. | (3.3) |
Case 2: h∈F∗q2. If f(X)=h, then g(Y)=0; if f(X)=0, then g(Y)=h; if f(X)∉{0,h}, then g(Y)∉{0,h}. So we have
Nq2(l(X,Y))=h)=∑c1+c2=hNq2(f(X)=c1)Nq2(g(Y)=c2)=Nq2(f(X)=0)Nq2(g(Y)=h)+Nq2(f(X)=h)Nq2(g(Y)=0)+∑c1+c2=hc1,c2∈F∗q2∖{h}Nq2(f(X)=c1)Nq2(g(Y)=c2). | (3.4) |
By Lemma 2.12, (3.1) and (3.4),
Nq2(l(X,Y)=h)=2q2(s+n−2)+(−1)t+1q2s+n−2−(−1)t+12q2s+n−4+(qs+2n−3+(−1)t+1(q2−1)qs+n−3)s∏i=1((hai)mimi−1)+∑c1∈F∗q2∖{h}[q2(s+n−2)−(−1)t+1q2s+n−4+s∏i=1((c1ai)mimi−1)(q2n+s−3−(−1)t+1qn+s−3)]. |
It follows that
Nq2(l(X,Y)=h)=2q2(s+n−2)+(−1)t+1q2s+n−2−(−1)t+12q2s+n−4+(qs+2n−3+(−1)t+1(q2−1)qs+n−3)s∏i=1((hai)mimi−1)+∑c1∈F∗q2∖{h}[q2(s+n−2)−(−1)t+1q2s+n−4+s∏i=1((c1ai)mimi−1)(q2n+s−3−(−1)t+1qn+s−3)]=q2(s+n−1)+(qs+2n−3+(−1)t+1(q2−1)qs+n−3)s∏i=1((hai)mimi−1)+∑c1∈F∗q2∖{h}[s∏i=1((c1ai)mimi−1)⋅(q2n+s−3+(−1)tqn+s−3)]. | (3.5) |
By (3.3) and (3.5), we get the desired result. The proof of Theorem 1.1 is complete.
There is a direct corollary of Theorem 1.1 and we omit its proof.
Corollary 4.1. Under the conditions of Theorem 1.1, if a1=⋯=as=h∈F∗q2, then we have
Nq2(l(X,Y)=h)=q2(s+n−1)+(qs+2n−3+(−1)t+1(q2−1)qs+n−3)s∏i=1(mi−1)+∑γ∈F∗q2∖{h}[s∏i=1((γh)mimi−1)(q2n+s−3+(−1)tqn+s−3)], |
where
(γh)mi={1,ifγhisaresidueofordermi,0,otherwise. |
Finally, we give two examples to conclude the paper.
Example 4.2. Let F210=⟨α⟩=F2[x]/(x10+x3+1) where α is a root of x10+x3+1. Suppose l(X,Y)=α33x31+x112+y23+α10y24+y1y2+y3y4. Clearly, TrF210/F2(α10)=1, m1=3, m2=11, s=2, n=4, t=0, a2=1. By Theorem 1.1, we have
N210(l(X,Y)=0)=10245+(327+323)×20=1126587102265344. |
Example 4.3. Let F212=⟨β⟩=F2[x]/(x12+x6+x4+x+1) where β is a root of x12+x6+x4+x+1. Suppose l(X,Y)=x51+x132+y23+β10y24+y1y2+y3y4. Clearly, TrF212/F2(β10)=1, m1=5, m2=13, s=2, n=4, t=0, a1=a2=1. By Corollary 1, we have
N212(l(X,Y)=1)=25×12+(647−643×4095)×48=1153132559312355328. |
This work was jointly supported by the Natural Science Foundation of Fujian Province, China under Grant No. 2022J02046, Fujian Key Laboratory of Granular Computing and Applications (Minnan Normal University), Institute of Meteorological Big Data-Digital Fujian and Fujian Key Laboratory of Data Science and Statistics.
The authors declare there is no conflicts of interest.
[1] |
M. Kadic, G. W. Milton, M. van Hecke, M. Wegener, 3D metamaterials, Nat. Rev. Phys., 1 (2019), 198–210. https://doi.org/10.1038/s42254-018-0018-y doi: 10.1038/s42254-018-0018-y
![]() |
[2] |
Y. Pennec, J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzyński, P. A. Deymier, Two-dimensional phononic crystals: Examples and applications, Surf. Sci. Rep., 65 (2010), 229–291. https://doi.org/10.1016/j.surfrep.2010.08.002 doi: 10.1016/j.surfrep.2010.08.002
![]() |
[3] |
M. Mazzotti, I. Bartoli, M. Miniaci, Modeling Bloch waves in prestressed phononic crystal plates, Front Mater, 6 (2019), 74. https://doi.org/10.3389/fmats.2019.00074 doi: 10.3389/fmats.2019.00074
![]() |
[4] |
A. Bergamini, M. Miniaci, T. Delpero, D. Tallarico, B. Van Damme, G. Hannema, et al., Tacticity in chiral phononic crystals, Nat Commun, 10 (2019), 4525. https://doi.org/10.1038/s41467-019-12587-7 doi: 10.1038/s41467-019-12587-7
![]() |
[5] |
A. S. Gliozzi, M. Miniaci, A. Chiappone, A. Bergamini, B. Morin, E. Descrovi, Tunable photo-responsive elastic metamaterials, Nat Commun, 11 (2020), 2576. https://doi.org/10.1038/s41467-020-16272-y doi: 10.1038/s41467-020-16272-y
![]() |
[6] |
L. Placidi, J. de Castro Motta, F. Fraternali, Bandgap structure of tensegrity mass-spring chains equipped with internal resonators, Mech. Res. Commun., 137 (2024), 104273. https://doi.org/10.1016/j.mechrescom.2024.104273 doi: 10.1016/j.mechrescom.2024.104273
![]() |
[7] |
E. Barchiesi, S. Khakalo, Variational asymptotic homogenization of beam-like square lattice structures, Math Mech Solids, 24 (2019), 3295–3318. https://doi.org/10.1177/1081286519843155 doi: 10.1177/1081286519843155
![]() |
[8] |
E. Turco, A. Misra, M. Pawlikowski, F. dell'Isola, F. Hild, Enhanced Piola–Hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments, Int. J. Solids. Struct., 147 (2018), 94–109. https://doi.org/10.1016/j.ijsolstr.2018.05.015 doi: 10.1016/j.ijsolstr.2018.05.015
![]() |
[9] |
E. Barchiesi, S. R. Eugster, L. Placidi, F. dell'Isola, Pantographic beam: a complete second gradient 1D-continuum in plane, Z. Angew. Math. Phys., 70 (2019), 1–24. https://doi.org/10.1007/s00033-018-1046-2 doi: 10.1007/s00033-018-1046-2
![]() |
[10] |
E. Turco, E. Barchiesi, I. Giorgio, F. dell'Isola, A Lagrangian Hencky-type non-linear model suitable for metamaterials design of shearable and extensible slender deformable bodies alternative to Timoshenko theory, Int. J. Non. Linear. Mech., 123 (2020), 103481. https://doi.org/10.1016/j.ijnonlinmec.2020.103481 doi: 10.1016/j.ijnonlinmec.2020.103481
![]() |
[11] | F. dell'Isola, L. Rosa, C. Wozniak, Dynamics of solids with microperiodic nonconnected fluid inclusions, Arch. Appl. Mech., (1997), 215–228. |
[12] |
F. Fabbrocino, G. Carpentieri, A. Amendola, R. Penna, F. Fraternali, Accurate numerical methods for studying the nonlinear wave-dynamics of tensegrity metamaterials, Eccomas Procedia Compdyn, (2017), 3911–3922. https://doi.org/10.7712/120117.5693.17765 doi: 10.7712/120117.5693.17765
![]() |
[13] |
F. Fabbrocino, G. Carpentieri, Three-dimensional modeling of the wave dynamics of tensegrity lattices, Compos. Struct., 173 (2017), 9–16. https://doi.org/10.1016/j.compstruct.2017.03.102 doi: 10.1016/j.compstruct.2017.03.102
![]() |
[14] |
I. Mascolo, A. Amendola, G. Zuccaro, L. Feo, F. Fraternali, On the geometrically nonlinear elastic response of class θ=1 tensegrity prisms, Front Mater, 5 (2018), 16. https://doi.org/10.3389/fmats.2018.00016 doi: 10.3389/fmats.2018.00016
![]() |
[15] |
F. dell'Isola, S. R. Eugster, R. Fedele, P. Seppecher, Second-gradient continua: From Lagrangian to Eulerian and back, Math. Mech. Solids., 27 (2022), 2715–2750. https://doi.org/10.1177/10812865221078822 doi: 10.1177/10812865221078822
![]() |
[16] | R. E. Skelton, M. C. de Oliveira, Tensegrity Systems, New York: Springer, 2010. |
[17] | L. D. Landau, E. M. Lifshitz, Mechanics, Third Edition: Volume 1 (Course of Theoretical Physics), Oxford: Butterworth-Heinemann, 1976. |
[18] |
S. J. Mitchell, A. Pandolfi, M. Ortiz, Investigation of elastic wave transmission in a metaconcrete slab, Mech. Mater., 91 (2015), 295–303. https://doi.org/10.1016/j.mechmat.2015.08.004 doi: 10.1016/j.mechmat.2015.08.004
![]() |
[19] |
L. Placidi, F. Di Girolamo, R. Fedele, Variational study of a Maxwell–Rayleigh-type finite length model for the preliminary design of a tensegrity chain with a tunable band gap, Mech. Res. Commun., 136 (2024), 104255. https://doi.org/10.1016/j.mechrescom.2024.104255 doi: 10.1016/j.mechrescom.2024.104255
![]() |
[20] | F. Beer, E. Johnston, J. DeWolf, Mechanics of Materials, 5th Eds, New York: McGraw-Hill, 1999. |
[21] |
R. Luciano, H. Darban, C. Bartolomeo, F. Fabbrocino, D. Scorza, Free flexural vibrations of nanobeams with non-classical boundary conditions using stress-driven nonlocal model, Mech. Res. Commun., 107 (2020), 103536. https://doi.org/10.1016/j.mechrescom.2020.103536 doi: 10.1016/j.mechrescom.2020.103536
![]() |
[22] |
H. Darban, R. Luciano, A. Caporale, F. Fabbrocino, Higher modes of buckling in shear deformable nanobeams, Int. J. Eng. Sci., 154 (2020), 103338. https://doi.org/10.1016/j.ijengsci.2020.103338 doi: 10.1016/j.ijengsci.2020.103338
![]() |
[23] |
A. Amendola, A. Krushynska, C. Daraio, N. M. Pugno, F. Fraternali, Tuning frequency band gaps of tensegrity metamaterials with local and global prestress, Int. J. Solids. Struct., 155 (2018), 47–56. https://doi.org/10.1016/j.ijsolstr.2018.07.002 doi: 10.1016/j.ijsolstr.2018.07.002
![]() |
[24] |
F. Fraternali, J. de Castro Motta, Mechanics of superelastic tensegrity braces for timber frames equipped with buckling-restrained devices, Int. J. Solids. Struct., 281 (2023), 112414. https://doi.org/10.1016/j.ijsolstr.2023.112414 doi: 10.1016/j.ijsolstr.2023.112414
![]() |
[25] |
F. Cornacchia, F. Fabbrocino, N. Fantuzzi, R. Luciano, R. Penna, Analytical solution of cross-and angle-ply nano plates with strain gradient theory for linear vibrations and buckling, Mech. Adv. Mater. Struct., 28 (2021), 1201–1215. https://doi.org/10.1093/isle/isab051 doi: 10.1093/isle/isab051
![]() |
[26] |
G. Mancusi, F. Fabbrocino, L. Feo, F. Fraternali, Size effect and dynamic properties of 2D lattice materials, Compos. B. Eng., 112 (2017), 235–242. https://doi.org/10.1016/j.compositesb.2016.12.026 doi: 10.1016/j.compositesb.2016.12.026
![]() |
[27] |
A. Amendola, J. de Castro Motta, G. Saccomandi, L. Vergori, A constitutive model for transversely isotropic dispersive materials, P Roy Soc A-math Phy, 480 (2024), 20230374. https://doi.org/10.1098/rspa.2023.0374 doi: 10.1098/rspa.2023.0374
![]() |
[28] |
J. de Castro Motta, V. Zampoli, S. Chiriţă, M. Ciarletta, On the structural stability for a model of mixture of porous solids, Math. Methods Appl. Sci., 47 (2024), 4513–4529. https://doi.org/10.1002/mma.9825 doi: 10.1002/mma.9825
![]() |
[29] |
K. Li, P. Rizzo, Energy harvesting using arrays of granular chains and solid rods, J. Appl. Phys., 117 (2015), 215101. https://doi.org/10.1063/1.4921856 doi: 10.1063/1.4921856
![]() |
[30] |
R. Misra, H. Jalali, S. J. Dickerson, P. Rizzo, Wireless module for nondestructive testing/structural health monitoring applications based on solitary waves, Sensors, 20 (2020), 3016. https://doi.org/10.3390/s20113016 doi: 10.3390/s20113016
![]() |