Research article

Homogenization and simulation of heat transfer through a thin grain layer

  • Received: 05 December 2023 Revised: 15 March 2024 Accepted: 04 April 2024 Published: 05 June 2024
  • We investigated the effective influence of grain structures on the heat transfer between a fluid and solid domain using mathematical homogenization. The presented model consists of heat equations inside the different domains, coupled through either perfect or imperfect thermal contact. The size and the period of the grains are of order $\varepsilon$, therefore forming a thin layer. The equation parameters inside the grains also depend on $\varepsilon$. We considered two distinct scenarios: Case (a), where the grains are disconnected, and Case (b), where the grains form a connected geometry but in a way such that the fluid and solid are still in contact. In both cases, we determined the effective differential equations for the limit $\varepsilon \to 0$ via the concept of two-scale convergence for thin layers. We also presented and studied a numerical algorithm to solve the homogenized problem.

    Citation: Tom Freudenberg, Michael Eden. Homogenization and simulation of heat transfer through a thin grain layer[J]. Networks and Heterogeneous Media, 2024, 19(2): 569-596. doi: 10.3934/nhm.2024025

    Related Papers:

  • We investigated the effective influence of grain structures on the heat transfer between a fluid and solid domain using mathematical homogenization. The presented model consists of heat equations inside the different domains, coupled through either perfect or imperfect thermal contact. The size and the period of the grains are of order $\varepsilon$, therefore forming a thin layer. The equation parameters inside the grains also depend on $\varepsilon$. We considered two distinct scenarios: Case (a), where the grains are disconnected, and Case (b), where the grains form a connected geometry but in a way such that the fluid and solid are still in contact. In both cases, we determined the effective differential equations for the limit $\varepsilon \to 0$ via the concept of two-scale convergence for thin layers. We also presented and studied a numerical algorithm to solve the homogenized problem.



    加载中


    [1] E. Acerbi, V. Piat, G. Maso, D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal Theory Methods Appl, 18 (1992), 481–496.
    [2] Y. Achdou, O. Pironneau, F. Valentin, Effective boundary conditions for laminar flows over periodic rough boundaries, J. Comput. Phys., 147 (1998), 187–218. https://doi.org/10.1006/jcph.1998.6088. doi: 10.1006/jcph.1998.6088
    [3] E. N. Ahmed, A. Bottaro, G. Tanda, A homogenization approach for buoyancy-induced flows over micro-textured vertical surfaces, J. Fluid Mech., 941 (2022), A53. https://doi.org/10.1017/jfm.2022.320. doi: 10.1017/jfm.2022.320
    [4] G. Allaire, Homogenization and two scale convergence, SIAM J. Math. Anal., 23 (1992), 1482–1518. https://doi.org/10.1137/0523084.
    [5] G. Allaire, Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes Ⅱ: Non-critical sizes of the holes for a volume distribution and a surface distribution of holes, Arch Ration Mech Anal, 113 (1991), 261–298. https://doi.org/10.1007/bf00375066. doi: 10.1007/bf00375066
    [6] M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, et al., The FEniCS project version 1.5, Arch. Num. Soft., 3 (2015), 9–23. https://doi.org/10.11588/ans.2015.100.20553 doi: 10.11588/ans.2015.100.20553
    [7] Y. Amirat, G. A. Chechkin, R. R. Gadyl'shin, Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with an oscillating boundary, Comput. Math. Math. Phys., 46 (2006), 97–110. https://doi.org/10.1134/S0965542506010118. doi: 10.1134/S0965542506010118
    [8] W. Arendt, G. Metafune, D. Pallara, S. Romanell, The Laplacian with Wentzell-Robin boundary conditions on spaces of continuous functions, Semigroup Forum, New York: Springer-Verlag, 67 (2003), 247–261. https://doi.org/10.1007/s00233-002-0010-8
    [9] A. Bendali, K. Lemrabet, The effect of a thin coating on the scattering of a time-harmonic wave for the helmholtz equation, SIAM J. Math. Anal., 56 (1996), 1664–1693. https://doi.org/10.1137/S0036139995281822 doi: 10.1137/S0036139995281822
    [10] A. Bhattacharya, M. Gahn, M. Neuss-Radu, Effective transmission conditions for reaction–diffusion processes in domains separated by thin channels, Appl Anal, 101 (2022), 1896–1910. https://doi.org/10.1080/00036811.2020.1789599 doi: 10.1080/00036811.2020.1789599
    [11] S. H. Bhavnani, A. E. Bergles, Natural convection heat transfer from sinusoidal wavy surfaces, Wärme- und Stoffübertragung, 26 (1991), 341–349. https://doi.org/10.1007/BF01591667
    [12] V. Bonnaillie-Noël, M. Dambrine, F. Hérau, G. Vial, On generalized Ventcel's type boundary conditions for Laplace operator in a bounded domain, SIAM J. Math. Anal., 42 (2010), 931–945. https://doi.org/10.1137/090756521 doi: 10.1137/090756521
    [13] A. N. Brooks, T. J. Hughes, Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Math. Math. Phys., 32 (1982), 199–259. https://doi.org/10.1016/0045-7825(82)90071-8 doi: 10.1016/0045-7825(82)90071-8
    [14] H. Chen, J. Zhao, Y. Dai, Z. Wang, T. Yu, Simulation of 3D grinding temperature field by using an improved finite difference method, Int. J. Adv. Manuf. Technol., 108 (2020), 3871–3884. https://doi.org/10.1007/s00170-020-05513-5 doi: 10.1007/s00170-020-05513-5
    [15] D. Cioranescu, J. Paulin, J. Telega, Homogenization of reticulated structures, Appl. Mech. Rev., 54 (2001), B64–B65. https://doi.org/10.1115/1.1383678. doi: 10.1115/1.1383678
    [16] C. Conca, The Stokes sieve problem, Comm App Math Comp Sci, 4 (1988), 113–121. https://doi.org/0.1002/cnm.1630040115.
    [17] P. Donato, E. Jose, D. Onofrei, Asymptotic analysis of a multiscale parabolic problem with a rough fast oscillating interface, Arch Appl Mech, 89 (2019), 437–465. https://doi.org/10.1007/s00419-018-1415-5 doi: 10.1007/s00419-018-1415-5
    [18] P. Donato, A. Piatnitski, P. Lebedev, On the effective interfacial resistance through rough surfaces, Commun Pure Appl Anal, 9 (2010), 1295–1310. https://doi.org/10.3934/cpaa.2010.9.1295 doi: 10.3934/cpaa.2010.9.1295
    [19] M. Eden, T. Freudenberg, Effective heat transfer between a porous medium and a fluid layer: Homogenization and simulation, Multiscale Model Sim, 22 (2024), 752–783. https://doi.org/10.1137/22M1541794 doi: 10.1137/22M1541794
    [20] M. Eden, H. S. Mahato, Homogenization of a poroelasticity model for fiber-reinforced hydrogels, Math. Methods Appl. Sci., 45 (2022), 11562–11580. https://doi.org/10.1002/mma.8466 doi: 10.1002/mma.8466
    [21] M. Gahn, E. Baensch, A mixed finite-element method for elliptic operators with Wentzell boundary condition, IMA J. Numer. Anal., 40 (2018), 87–108. https://doi.org/10.1093/imanum/dry068. doi: 10.1093/imanum/dry068
    [22] M. Gahn, M. Neuss-Radu, Singular limit for reactive diffusive transport through an array of thin channels in case of critical diffusivity, Multiscale Model Sim, 19 (2021), 1573–1600. https://doi.org/10.1137/21M1390505 doi: 10.1137/21M1390505
    [23] M. Gahn, M. Neuss-Radu, P. Knabner, Derivation of effective transmission conditions for domains separated by a membrane for different scaling of membrane diffusivity, Discrete Contin Dyn Syst Ser S, 10 (2017), 773–797. https://doi.org/10.3934/dcdss.2017039 doi: 10.3934/dcdss.2017039
    [24] M. Gahn, M. Neuss-Radu, P. Knabner, Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface, Netw. Heterog. Media, 13 (2018), 609–640. https://doi.org/10.3934/nhm.2018028 doi: 10.3934/nhm.2018028
    [25] C. Geuzaine, J. F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Methods. Eng., 79 (2009), 1309–1331. https://doi.org/10.1002/nme.2579 doi: 10.1002/nme.2579
    [26] R. Gu, M. Shillor, G. Barber, T. Jen, Thermal analysis of the grinding process, Math Comput Model, 39 (2004), 991–1003. https://doi.org/10.1016/S0895-7177(04)90530-4 doi: 10.1016/S0895-7177(04)90530-4
    [27] M. Höpker, Extension operators for Sobolev spaces on periodic domains, their applications, and homogenization of a phase field model for phase transitions in porous media, (German), Doctoral Thesis of Universität Bremen, Bremen, 2016.
    [28] M. Höpker, M. Böhm, A note on the existence of extension operators for Sobolev spaces on periodic domains, C. R. Acad. Sci. Paris, Ser. I, 352 (2014), 807–810. https://doi.org/10.1016/j.crma.2014.09.002 doi: 10.1016/j.crma.2014.09.002
    [29] C. Introïni, M. Quintard, F. Duval, Effective surface modeling for momentum and heat transfer over rough surfaces: Application to a natural convection problem, Int J Heat Mass Tran, 54 (2011), 3622–3641. https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.019 doi: 10.1016/j.ijheatmasstransfer.2011.03.019
    [30] H. Nagaoka, S. Ohgaki, Mass transfer mechanism in a porous riverbed, Water Res, 24 (1990), 417–425. https://doi.org/10.1016/0043-1354(90)90223-S doi: 10.1016/0043-1354(90)90223-S
    [31] M. Neuss-Radu, W. Jäger, Effective transmission conditions for reaction-diffusion processes in domains separated by an interface, SIAM J. Math. Anal., 39 (2007), 687–720. https://doi.org/10.1137/060665452 doi: 10.1137/060665452
    [32] J. Nevard, J. B. Keller, Homogenization of rough boundaries and interfaces, SIAM J. Appl. Math., 57 (1997), 1660–1686. https://doi.org/10.1137/S0036139995291088 doi: 10.1137/S0036139995291088
    [33] P. R. Owen, W. R. Thomson, Heat transfer across rough surfaces, J Fluid Mech, 15 (1963), 321–334. https://doi.org/10.1017/S0022112063000288 doi: 10.1017/S0022112063000288
    [34] B. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Computational Mathematics and Mathematical Physics, 4 (1964), 1–17. https://doi.org/10.1016/0041-5553(64)90137-5 doi: 10.1016/0041-5553(64)90137-5
    [35] B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Philadelphia: Society for Industrial and Applied Mathematics, 2008. https://doi.org/10.1137/1.9780898717440
    [36] W. Rowe, M. Morgan, A. Batako, T. Jin, Energy and temperature analysis in grinding, WIT Trans Eng Sci, 44 (2003), 3–23. https://doi.org/10.2495/LAMDAMAP030011 doi: 10.2495/LAMDAMAP030011
    [37] R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Providence: American Mathematical Society, 2014.
    [38] R. Showalter, D. Visarraga, Double-diffusion models from a highly-heterogeneous medium, J Math Anal Appl, 295 (2004), 191–210. https://doi.org/10.1016/j.jmaa.2004.03.031 doi: 10.1016/j.jmaa.2004.03.031
    [39] J. Simon, Compact sets in the space $L^{p}$ (O, T; B), Annali di Matematica Pura ed Applicata, 146 (1986), 65–96. https://doi.org/10.1007/BF01762360 doi: 10.1007/BF01762360
    [40] C. Taylor, P. Hood, A numerical solution of the Navier-Stokes equations using the finite element technique, Comput & Fluids, 1 (1973), 73–100. https://doi.org/10.1016/0045-7930(73)90027-3 doi: 10.1016/0045-7930(73)90027-3
    [41] K. Ting, A. K. Mozumder, P. K. Das, Effect of surface roughness on heat transfer and entropy generation of mixed convection in nanofluid, Phys Fluids, 31 (2019), 093602. https://doi.org/10.1063/1.5111104 doi: 10.1063/1.5111104
    [42] T. Ueda, H. Tanaka, A. Torii, T. Matsuo, Measurement of grinding temperature of active grains using infrared radiation pyrometer with optical fiber, CIRP Annals, 42 (1993), 405–408. https://doi.org/10.1016/S0007-8506(07)62472-X doi: 10.1016/S0007-8506(07)62472-X
    [43] F. Wiesener, B. Bergmann, M. Wichmann, M. Eden, T. Freudenberg, A. Schmidt, Modeling of heat transfer in tool grinding for multiscale simulations, Procedia CIRP, 117 (2023), 269–274. https://doi.org/10.1016/j.procir.2023.03.046
    [44] J. Yang, Z. Wang, O. Adetoro, P. Wen, C. Bailey, The thermal analysis of cutting/grinding processes by meshless finite block method, Eng Anal Bound Elem, 100 (2019), 68–79. https://doi.org/10.1016/j.enganabound.2018.03.003, doi: 10.1016/j.enganabound.2018.03.003
    [45] M. Yousaf, S. Usman, Role of surface roughness during natural convection, World Journal of Engineering and Technology, 3 (2015), 140–148. https://doi.org/10.4236/wjet.2015.33C021 doi: 10.4236/wjet.2015.33C021
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(763) PDF downloads(83) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog