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Abstract: We investigated the effective influence of grain structures on the heat transfer between
a fluid and solid domain using mathematical homogenization. The presented model consists of heat
equations inside the different domains, coupled through either perfect or imperfect thermal contact.
The size and the period of the grains are of order ε, therefore forming a thin layer. The equation
parameters inside the grains also depend on ε. We considered two distinct scenarios: Case (a), where
the grains are disconnected, and Case (b), where the grains form a connected geometry but in a way
such that the fluid and solid are still in contact. In both cases, we determined the effective differential
equations for the limit ε → 0 via the concept of two-scale convergence for thin layers. We also
presented and studied a numerical algorithm to solve the homogenized problem.
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1. Introduction

We consider the heat dynamics in a domain Ω ⊂ Rd consisting of a fluid region Ω f
ε and an adjacent

solid domain Ωs
ε, where small grain structures Ωg

ε are periodically distributed along the fluid-solid
interface Σ. The height as well as the period of these grain structures is denoted by ε > 0, which is
assumed to be much smaller than the overall size of the solid-fluid system Ω. This results in a ε-sized
layer region in which all three regions (fluid, solid, and grains) are in contact. Our objective is to
determine the effective model for ε → 0 via mathematical homogenization for thin domains. Here,
we consider both perfect thermal contact and imperfect heat exchange, modeled via a Robin condition,
between the different regions.

In the following, we assume that there is, for all ε > 0, direct contact between the fluid and the solid
region. Regarding the grain geometries, we distinguish between two different cases:

https://https://www.aimspress.com/journal/nhm
https://dx.doi.org/10.3934/nhm.2024025


570

• Case (a): Disconnected grains that are periodically distributed along the interface Σ. For the
effective model, we obtain a two-scale problem with microstructures at the interface, similar to
the homogenization results in [19, 20, 38].
• Case (b): Connected grains, comparable to a sieve between the two regions. Here, we arrive at a

Wentzell-Robin interface temperature [8, 12] in the effective model, similarly to [7, 9, 23].

Our research, particularly Case (a), is motivated by the influence and interplay of cooling fluids with
the grain structure in a grinding process. The friction between the grains and the workpiece heats the
system. Here, the grain can locally reach temperatures of up to 1200 °C, which is much higher than the
temperature of the surrounding region [36, 42, 43]. On that point, it is important to accurately capture
the impact the grains have on the temperature distribution to determine effects like workpiece burn and
wear of the grinding wheel. Current models only include the heat produced by the grains and do not
include the grains directly in their simulations [14, 26, 44], mainly because of the high computational
cost of simulating the whole grinding wheel with resolved grains. Even if our model is somewhat
idealized with periodically distributed grains and without direct consideration of the workpiece, we
provide a base for including more details of grain geometry in future simulations. Some relevant early
experimental results and simulations for this specific scenario, where individual grains were taken into
account, can be found in [43].

Other possible applications are reaction-diffusion systems where grain structures play a role. For
example, a diffusion problem in a riverbed where our solid bulk would be replaced with porous media
and the grains could represent larger rock formations at the ground of the river [30]. Case (b) may
be useful for filtering problems, particularly if one replaces the solid domain Ωs

ε with an additional
fluid region. Our results could then be combined with already established homogenization models for
Stokes flow through thin filters [5, 16].

To derive the effective model, we apply the concept of two-scale convergence for thin heterogeneous
layers, first introduced in [31]. Similar problems for diffusion equations were considered in [23, 24].
One novel aspect in our research is that the fluid domain Ω f

ε and the solid domain Ωs
ε are in direct

contact and not completely isolated by the grain structure. This leads to additional coupling conditions
between fluid and solid as well as a slight modification of the two-scale concept, whereby the already
established two-scale theory and results can be transferred to our scenario. Additionally, we derive
an ε-independent trace estimate for domains that have a rough boundary given by a finite union of
height functions. Next to the analysis, we also carry out numerical investigations where we face the
challenge of coupling the solution on the macro domain with the solution of the cell problems. This is
handled with an iterative algorithm, similar to [19]. We study the influence of a relaxation scheme on
the number of iterations and also investigate numerically the limit behavior for ε→ 0.

Comparable to our problem is also the case of diffusion through fast oscillating interfaces with
small [17, 18] or fixed [32] amplitude, which was already extensively studied. Comparable differential
equations and a similar geometrical setup, but without the interface grains and a porous media instead
of the solid, were analyzed in our previous work [19]. Additionally, the improved heat exchange at
rough boundaries, for example between a fluid and a wall with a fixed temperature, is widely studied in
the literature since it is a useful property in many applications [11, 33]. The research ranges from pure
numerical studies [41, 45] to multiple-scale expansion and asymptotic matching [3, 29]. While these
studies are generally only concerned with heat transfer into the fluid, we want to study the cooling
effect on the adjacent solid and rigorously derive an effective model for a thin layer of grains.
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This paper is structured as follows: In Section 2, we introduce the mathematical model, including
information about the studied geometries, the assumptions to pass to the limit ε → 0, and possible
limitations of the model. Section 3 handles the analysis of the present microscale model and we derive
solution bounds for the microscale problem. In Section 4, the detailed homogenization procedure is
presented and the homogenized models are stated and analyzed. Finally, in Section 5, we introduce an
algorithm for the effective model and demonstrate various simulation results.

2. Setup, notation, and mathematical equation

2.1. Description of the geometry

We start by introducing the geometric setup and notation as well as the mathematical models
considered in this work. After that, we cover the assumptions needed to apply homogenization to our
problem. In the following, the geometry and the model are split into three subdomains representing
the fluid part, the solid part, and the grains. Functions, parameters, and subdomains are denoted by the
corresponding superscripts f , s, g.

The time interval is denoted by S = (0,T ), for T > 0. The spatial domain Ω ⊂ Rd is a cylinder
given by Ω = Ω̃ × (−H,H), with a bounded Lipschitz domain Ω̃ ⊂ Rd−1 and height H > 0. For the
homogenization, we require that Ω̃ be perfectly tiled with axis-parallel (d − 1)-dimensional cubes with
corner coordinates in ε0Z

d for some ε0 > 0. We define the subdomains and interface

Ω f = Ω̃ × (0,H), Ωs = Ω̃ × (−H, 0), and Σ = Ω̃ × {0}.

A point x ∈ Ω will also be denoted by x = (x̃, xd) ∈ Ω̃ × (−H,H).
We denote the i-dimensional unit cube by Y i = (0, 1)i. The reference grain geometry Z ⊂ Yd−1 ×

(−1, 1) is assumed to be a Lipschitz domain. For a unified notation, the intersection of the grains with
fluid or solid should neither be empty, meaning

{y ∈ Z : yd > 0} , ∅ and {y ∈ Z : yd < 0} , ∅.

In addition, the above sets are assumed to be connected Lipschitz domains; in particular, Z is not
allowed to have holes. The flat surface without the cell and the boundaries of the grain cell are noted
by

Γ0 = (Yd−1 × {0}) \ Z, Γ f = {y ∈ ∂Z : yd > 0} and Γs = {y ∈ ∂Z : yd < 0}.

In addition to the Lipschitz assumption on the underlying domain Z, we assume that the vertical
interface section, i.e., the set {x ∈ ∂Z : nΓ(x) · ed = 0}, has surface measure 0. This assumption is
needed for an ε-independent trace estimate and it allows us to represent the interface as a graph of a
finite number of height functions defined over [0, 1]d−1; one example is visualized in Figure 1. Please
note that with this assumption, we exclude, for example, rectangular cuboids. See the proof of
Lemma 2 for a remark and possible extension to also include general Lipschitz boundaries.
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Figure 1. Left: one example of a cell geometry and visualization of the introduced notation.
Right: decomposition of the interface into multiple graphs.

The periodic interface structure of grains is created by scaling and tiling the reference cell. Take
ε0 > 0 such that Ω̃ can be perfectly tiled with ε0Yd−1 cells. For a finer, perfect tiling, one can use
εn =

1
2nε0, where in the following we suppress the index n. At the interface Σ, we define

Ωg
ε = int

 ⋃
k̃∈Zd−1

ε
(
Z +

(
k̃, 0

)) ∩Ω
where we also assume Ωg

ε to be Lipschitz. For the domain Ωg
ε, two different cases are considered:

(a) Z ⊂ Yd−1 × (−1, 1). Therefore, Ωg
ε is disconnected. This case is motivated by the application of

grinding wheels where the grains are usually distributed and held together by a binding material.
(b) Both (Yd−1 × (−1, 1)) \ Z and Ωg

ε are connected and for i = 1, . . . , d − 1 it holds

{y ∈ ∂Z : yi = 1} = {y ∈ ∂Z : yi = 0} + ei.

In this case, the microstructure Ωg
ε can be viewed as a kind of sieve between fluid and solid.

Both cases and the notation are visualized in Figure 2.

Figure 2. Schematic depiction of the different geometries considered. Left: disconnected
grain structure. Center: connected microgeometry. Right: macroscopic domain.
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Last, we obtain the ε-periodic subdomains

Ω f
ε = int

(
Ω f \Ωg

ε

)
, Ωs

ε = int
(
Ωs \Ωg

ε

)
, Ωε = Ω

f
ε ∪Ω

s
ε

and the three interfaces

Σ0
ε = ∂Ω

f
ε ∩ ∂Ω

s
ε, Σ f

ε = ∂Ω
f
ε ∩ ∂Ω

g
ε, Σs

ε = ∂Ω
s
ε ∩ ∂Ω

g
ε.

Please note that for the volume of the layer, it holds |Ωg
ε| ∈ O(ε), and for the surface of the interfaces

|Σ
f
ε |, |Σ

s
ε|, |Σ

0
ε| ∈ O(1).

In the mathematical model, multiple normal vectors of the domain appear. With ν = ν(x), we
denote the normal vector pointing outwards on ∂Ω. The outward normal in Ω is denoted by n = n(x),
the normal pointing out of Ωg

ε by nε = nε(x), and lastly, the ones out of Z by nΓ = nΓ(x).

2.2. Mathematical model

We start with a few comments regarding our notation: For any function ϕ ∈ L2(Ω), we use
ϕk
ε := ϕ|Ωk

ε
to denote its restriction to Ωk

ε for k = f , s, g. For the coefficients of the model, which are
mostly assumed to be piecewise constant, we suppress the superscripts and the ε-dependency for
better readability wherever possible. For example, for the mass density, which is assumed to be
constant in every subdomain Ωk

ε (k = f , s, g), i.e., there are ρ f , ρg, ρs > 0 such that
ρε(x) =

∑
i= f ,g,s χΩk

ε
(x)ρk, we just write ρ. Here, χ : Ω → {0, 1} denotes the indicator function, e.g.,

χΩk
ε
(x) = 1 only if x ∈ Ωk

ε. We also introduce the J·K-notation to denote the jump of a function across
the subdomains (in the direction of the normal vectors introduced in the preceding section), e.g., in
the above example of the mass density, we have JρK = ρ f − ρg at Σ f

ε .
Now, let θε denote the temperature. For the fluid and solid domains, we consider parabolic heat

equations

cρ∂tθε − div (κ∇θε − cρvεθε) = fε in S ×Ω f
ε , (2.1a)

cρ∂tθε − div (κ∇θε) = fε in S ×Ωs
ε. (2.1b)

Here, vε ∈ L2(S ,W1,∞(Ω f
ε ))d is a given velocity with ∇ · vε = 0 and vε = 0 on Σ0

ε ∪ Σ
f
ε . In each

subdomain, we have the specific heat c, mass density ρ, heat conductivity κ, and heat source fε. At the
interface between fluid and solid, we consider perfect heat transfer

JθεK = 0 on S × Σ0
ε, (2.1c)

Jκ∇θεK · nε = 0 on S × Σ0
ε. (2.1d)

Inside the grain structures, a scaled heat equation is utilized, such that for ε→ 0, the contribution does
not vanish

1
ε
ρc∂tθε − div (κε∇θε) =

1
ε

fε in S ×Ωg
ε.

On the interface between grains and the surrounding subdomains, we apply heat balance and thermal
resistivity conditions

Jκ∇θεK · nε = 0 on S × (Σ f
ε ∪ Σ

s
ε), (2.1e)
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κ∇θε · nε = αJθεK on S × Σs
ε, (2.1f)

κ∇θε · nε = αJθεK on S × Σ f
ε . (2.1g)

Here, α denotes the heat exchange coefficient, which can differ on each interface. For small values of
α (in respect to |Σε|−1) the above equations represent near thermal isolation between the subdomains.
On the other hand, larger values can approximate perfect heat transfer, like in Eqs (2.1c) and (2.1d).

Remark 1. One could also consider thermal resistivity conditions on the interface Σ0
ε, e.g.,

Jκ∇θεK · nε = 0 on S × Σ0
ε, (2.1h)

κ∇θε · nε = αJθεK on S × Σ0
ε (2.1i)

instead of Eqs (2.1c) and (2.1d). With modifications to the extension operator, the presented
homogenization procedure can also be applied to this case. See also the Remark 3 for the
corresponding homogenized transfer conditions.

Applying perfect heat transfer on all interfaces would be a particular case of the results from [31].

The adaptation mentioned in Remark 1 may describe the application of a grinding process more
realistically, since thermal equilibrium is usually not expected because of the continuous supply of
new coolant and the different thermal properties of fluid, grinding wheel composite, and grains. Since
the perfect heat transfer along Σ0

ε has a simpler notation, we mainly work with this case.
Finally, we pose homogeneous Neumann boundary conditions at the outer boundaries and initial

conditions:

−κ∇θε · ν = 0 on S × ∂Ω, (2.1j)
θε = θε,0 in {0} ×Ω. (2.1k)

Different boundary conditions could also be applied, for example Dirichlet conditions at the upper and
lower boundaries of Ω. Similarly, periodic boundary conditions can be used since they fit naturally in
the concept of two-scale convergence. More caution is required as soon as we change the boundary
conditions for the grain structure Ωg

ε. This influences the homogenization procedure and may need
further consideration since one has to take into account the convergence on the boundary sections
∂Ω ∩ ∂Ω

g
ε.

2.3. Assumptions on data

For a function ϕ ∈ L2(Ωk
ε), k = f , s, denote with ϕ̂ the zero extension to Ωk. To pass to the limit, we

assume the following properties on the data:

(A1) It is assumed that the problem parameters are constant in each subdomain and fulfill κk, ρk, ck > 0,
for k = f , g, s and α f , αs > 0. Also, we assume the following scaling for the heat conductivity:

(a) Ωg
ε disconnected: κg

ε = εκ
g

(b) Ωg
ε connected: κg

ε =
1
ε
κg

(A2) The initial condition θε,0 ∈ L2(Ω) satisfies

C0 B sup
ε>0

(
∥θε,0∥L2(Ωε) +

1
√
ε
∥θε,0∥L2(Ωg

ε)

)
< ∞.
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(A3) The volume source fε ∈ L2(S ×Ω) satisfies

C f B sup
ε>0

(
∥ fε∥L2(S×Ωε) +

1
√
ε
∥ fε∥L2(S×Ωg

ε)

)
< ∞.

(A4) For the velocity vε ∈ L∞(S ×Ω f
ε ) it holds

Cv B sup
ε>0
∥vε∥L∞(S×Ω f

ε ) < ∞.

(A5) There is a limit function θ0 ∈ L2(Ω) such that θε,0 → θ0 for ε→ 0 in L2(Ω). Additionally,

(a) there exists a θg
0 ∈ L2(Σ × Z), such that θε,0 |Ωg

ε

2
⇀ θ

g
0 for ε → 0. For the definition of the

two-scale convergence (denoted by
2
⇀) in a thin layer, see Definition 1 in Section 4.

(b) there is a function θg
0 ∈ L2(Σ), such that θε,0 |Ωg

ε

2
⇀ θ

g
0 for ε→ 0.

(A6) There is a limit f ∈ L2(S ×Ω) such that fε → f in L2(S ×Ω). Additionally,

(a) a function f g ∈ L2(S × Σ × Z) exists with fε |Ωg
ε

2
⇀ f g for ε→ 0.

(b) there is a f g ∈ L2(S × Σ) such that fε |Ωg
ε

2
⇀ f g for ε→ 0.

(A7) There is a function v ∈ L2(S ; H1(Ω f ))d with ∇ · v = 0, such that v̂ε → v in L2(S ×Ω f ) for ε→ 0.

The scaling for the heat conductivity κ
g
ε in (A1), for both cases, is often used in the literature; see

[23, 24, 31] for similar situations. This scaling aims to keep the influence of the diffusion in the
limiting process. Different types of scaling may be considered in future work, similar to the studies
in [23]. The remaining conditions (A2)–(A4) are needed to obtain solution bounds with specific ε
dependencies, cf. Theorem 1. The assumptions for the initial temperature θg

ε,0 and heat source f g
ε are,

for example, fulfilled by constant functions, since the volume of Ωg
ε scales with ε. The Assumptions

(A5)–(A7) are needed to pass to the limit ε→ 0.

Remark 2. Regarding the velocity limit v, generally the fluid movement would be modeled via the
(Navier–)Stokes equation. It is well known that, at least for a small Reynolds number in regard to ε,
an effective velocity exists and the velocity would be zero at Σ. Higher-order correctors could be used,
which would lead to a slip velocity along Σ; see [2, Section 2 and 3].

In the following, the subscript #̃ indicates that a function space contains functions that are periodic
in the directions 1, . . . , d − 1, for example

H1
#̃(Yd) B

{
u ∈ H1

loc(R
d) : u|Yd ∈ H1(Yd), u(y + ei) = u(y) for almost all y ∈ Yd and i = 1, . . . , d − 1

}
.

2.4. Auxiliary results

Here, we collect two auxiliary lemmas regarding extension and trace operators needed to carry out
the following analysis and homogenization.

Lemma 1 (Extension operator). There exists a family of linear extension operators
Eε : H1(Ωε)→ H1(Ω) such that

∥Eεϕ∥H1(Ω) ≤ Cext∥ϕ∥H1(Ωε) for all ϕ ∈ H1(Ωε),

where Cext > 0 is independent of ε.

Networks and Heterogeneous Media Volume 19, Issue 2, 569–596.



576

Proof. By construction, Ωε has a Lipschitz boundary. Therefore, we can utilize available results for
extension operators, see [1] or [28, Theorem 2.2] for the connected and [15, Theorem 2.10] for the
disconnected case, and the statement follows. □

Lemma 2 (Trace estimate). Let {x ∈ ∂Z : nΓ(x) · ed = 0} be a null set in dimension d − 1. Then, there
is an ε-independent Ctr such that, for all ϕ ∈ H1(Ωε), it holds

∥ϕ∥L2(Σ f
ε ) + ∥ϕ∥L2(Σs

ε) ≤ Ctr∥ϕ∥H1(Ωε).

Proof of Lemma 2. Under the given assumptions, the estimate follows by using the extension operator
from Lemma 1 and a coordinate transform followed by a standard trace estimate. As there are some
technical details in the proof, we present it here. We only present the arguments from the side of the
subdomain Ω f

ε ; the estimate on Σs
ε follows in the same way.

Given the assumptions on ∂Z, we can find Yd−1-periodic Lipschitz functions γi : ωi ⊆ Y
d−1
→ [0, 1]

for i ∈ I, with finite I ⊂ N, such that

Σ f
ε =

⋃
i∈I

Σ
f
i,ε B

⋃
i∈I

{(
x̃, εγi

( x̃
ε

))
: x̃ ∈ ωi,ε

}
, (2.2)

where ωi,ε is given by

ωi,ε = int

 ⋃
k̃∈Zd−1

ε
(
ωi + k̃

) ∩ Ω̃.
Using the identity (2.2), we can build upon the ideas used in [17, Proposition 2] to show a trace estimate
in our case. First, we utilize the extension operators Eε of Lemma 1 where it holds that

∥Eεϕ∥H1(Ω) ≤ Cext∥ϕ∥H1(Ωε) and ∥ϕ∥L2(Σ f
ε ) = ∥Eεϕ∥L2(Σ f

ε ).

Next, we split up the integral over Σ f
ε into integrals over multiple sections, each given by a graph of a

height function,
∥Eεϕ∥

2
L2(Σ f

ε )
=

∑
i∈I

∥Eεϕ∥
2
L2(Σ f

i,ε)
.

On each Σ f
i,ε we can compute the integral by the parameterization given by γi, which leads to

∥Eεϕ∥
2
L2(Σ f

i,ε)
=

∫
ωi,ε

(Eεϕ)2
(
x̃, εγi

( x̃
ε

)) √
1 + |∇ỹγi(ỹ)|ỹ= x

ε
dx̃ ≤ Cγ,i

∫
ωi,ε

(Eεϕ)2
(
x̃, εγi

( x̃
ε

))
dx̃

where Cγ,i < ∞ since γi is Lipschitz continuous and independent of ε. To further estimate the right-
hand side, we use that Sobolev functions are absolutely continuous on almost all lines. Applying this
argument in the direction xd together with the triangle inequality, we obtain∥∥∥∥∥Eεϕ (

x̃, εγi

( x̃
ε

))∥∥∥∥∥
L2(ωi,ε)

≤ ∥Eεϕ (x̃, 0)∥L2(ωi,ε) +

∥∥∥∥∥∥∥
∫ εγi( x̃

ε )

0
|∇(Eεϕ) (x̃, xd) · ed| dxd

∥∥∥∥∥∥∥
L2(ωi,ε)

(2.3)

The first integral on the right-hand side of Eq (2.3) can be bounded with a trace estimate on the domain
Ω f , which is independent of ε,

∥Eεϕ (x̃, 0)∥L2(ωi,ε) ≤ ∥Eεϕ∥L2(∂Ω f ) ≤ C ∥Eεϕ∥H1(Ω f ) ≤ CCext∥ϕ∥H1(Ωε).
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In the second integral of Eq (2.3), we can integrate always to the height ε instead of εγi, then apply the
Hölder inequality, and lastly estimate the integral over the small layer by the integral over the whole
domain to obtain a bound,∥∥∥∥∥∥∥

∫ εγi( x̃
ε )

0
|∇(Eεϕ) (x̃, xd) · ed| dxd

∥∥∥∥∥∥∥
L2(ωi,ε)

≤

∥∥∥∥∥∫ ε

0
|∇(Eεϕ) (x̃, xd) · ed| dxd

∥∥∥∥∥
L2(ωi,ε)

≤
√
ε ∥∇(Eεϕ) · ed∥L2(ωi,ε×(0,ε))

≤
√
ε ∥∇(Eεϕ)∥L2(Ω f ) ≤

√
εCext∥ϕ∥H1(Ωε).

By bringing everything together, we get the desired estimate for the trace operator

∥ϕ∥2
L2(Σ f

ε )
= ∥Eεϕ∥

2
L2(Σ f

ε )
=

∑
i∈I

∥Eεϕ∥
2
L2(Σ f

i,ε)
≤

∑
i∈I

Cγ,i

(
C +
√
ε
)2

C2
ext∥ϕ∥

2
H1(Ωε)

C C2
tr∥ϕ∥

2
H1(Ωε)

.

Since I is finite, we have Ctr < ∞, and Ctr can be bounded independent of ε for all ε < ε0. □

The assumption that the vertical interface sections have measure zero is important for the proof of
Lemma 2, since it allows us to transform the integral over Σ f

ε into an integral along the flat surface Σ. If
this assumption is not fulfilled, we can not represent a vertical boundary over a graph that is defined on
a subsection of Σ. However, it should be possible to approximate the trace on a vertical section with a
slightly tilted section that can be represented as a graph along Σ, albeit with further technical estimates.

3. Analysis of the micro model

To carry out the homogenization, we first show that our model is well-posed and derive solution
estimates. First, we introduce the weak formulation of the system (2.1). To this end, we consider the
solution space

Wε =
{
u ∈ L2(S ×Ω) : ∂tu ∈ L2(S ×Ω), u|Ωε ∈ L2(S ; H1(Ωε)), u|Ωg

ε
∈ L2(S ; H1(Ωg

ε))
}
.

We call θε ∈ Wε a weak solution of the problem (2.1) if θε(0, ·) = θε,0 almost everywhere in Ω and

(ρc∂tθε, φ)Ωε +
1
ε

(ρc∂tθε, φ)Ωg
ε
+ (κ∇θε,∇φ)Ωε − (ρcvεθε,∇φ)

Ω
f
ε

+ (ε2γκ∇θε,∇φ)Ωg
ε
+ (αJθεK, JφK)

Σ
f
ε
+ (αJθεK, JφK)Σs

ε
= ( fε, φ)Ωε +

1
ε

( fε, φ)Ωg
ε

(3.1)

holds for all φ ∈ Wε and almost all t ∈ S . Here, γ = 1
2 in Case (a) and γ = −1

2 in Case (b).

Theorem 1 (Existence and bounds). Let the Assumptions (A1)–(A4) be fulfilled. There exists a unique
weak solution θε ∈ Wε satisfying θε(0, ·) = θε,0 a.e. and Eq (3.1). In addition, it holds

∥θε∥L∞(S ;L2(Ωε)) + ∥∇θε∥L2(S ;L2(Ωε)) + ε
− 1

2 ∥θε∥L2(S×Ωg
ε) + ε

γ∥∇θε∥L2(S×Ωg
ε) + ∥JθεK∥L2(S×(Σ f

ε∪Σ
s
ε))
≤ C, (3.2)

for a C < ∞ independent on ε, with γ = 1
2 in Case (a) and γ = −1

2 in Case (b). For the time derivative
it holds

∥∂tθε∥L2(S×Ωε) +
1
√
ε
∥∂tθε∥L2(S×Ωg

ε) ≤ C. (3.3)
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Proof. For each ε > 0, the problem (3.1) is a standard linear heat equation with jump conditions, which
is an example of a linear parabolic PDE. As a result, it has a unique weak solution under the given
assumptions, see e.g., [37, Proposition 2.3]. The estimate (3.2) follows through an energy argument.
Testing with φ = θε and integrating over the time interval (0, t) yields

∥
ρc
2
θε(t)∥2L2(Ωε)

+
1
ε
∥|
ρc
2
θε(t)∥2L2(Ωg

ε) + ∥κ∇θε∥
2
L2((0,t)×Ωε)

+ ε2γ∥κ∇θε∥L2((0,t)×Ωg
ε) + ∥αJθεK∥2L2((0,t)×(Σ f

ε∪Σ
s
ε))

= (ρcvεθε,∇θε)L2((0,t)×Ω f
ε ) + ( fε, θε)L2((0,t)×Ωε) +

1
ε

( fε, θε)L2((0,t)×Ωg
ε) + ∥

ρc
2
θε,0∥

2
L2(Ωε)

+
1
2ε
∥ρcθε,0∥2L2(Ωg

ε).

Applying (A4) to the convection term leads to

(ρcvεθε,∇θε)Ω f
ε
≤ Cv∥ρcθε∥L2(Ω f

ε )∥∇θε∥L2(Ω f
ε ) ≤

κ f

2
∥∇θε∥

2
L2(Ω f

ε )
+

(ρ f c f Cv)2

2κ f
∥θε∥

2
L2(Ω f

ε )
.

Now, using the above inequality and the Assumptions (A1)–(A3) in combination with Gronwall’s
lemma, we arrive at the estimate (3.2). The estimate (3.3) follows in a similar way by formally testing
with φ = ∂tθε; see also [31, Lemma 3.1]. □

The previous Theorem estimates the jump over the edges Σ f
ε and Σs

ε; the trace can also be bounded
independent of ε.

Lemma 3 (Estimate on Σ f
ε and Σs

ε). Let the Assumptions (A1)–(A4) be satisfied. For the solution
θε ∈ Wε of Eq (3.1), it holds on the interfaces Σ f

ε and Σs
ε that

∥θ f
ε∥L2(S×Σ f

ε ) + ∥θ
g
ε∥L2(S×Σ f

ε ) + ∥θ
s
ε∥L2(S×Σs

ε) + ∥θ
g
ε∥L2(S×Σs

ε) ≤ C,

for a C < ∞ independent of ε.

Proof. Again, we only present the arguments for the interface Σ f
ε ; the estimate on Σs

ε follows in the
same way. Since both Ωε and Ωg

ε have Lipschitz boundaries, there exist linear bounded trace operators
Tε : H1(Ωε)→ L2(∂Ωε) and Tg

ε : H1(Ωg
ε)→ L2(∂Ωg

ε). This implies, together with Eq (3.2),

∥Tεθε∥L2(S×Σ f
ε ) ≤ Ctr∥θε∥L2(S ;H1(Ωε)) ≤ C (3.4)

for almost all t ∈ S and by Lemma 2, Ctr can be chosen independently of ε. For the estimate of θg
ε on

Σ
f
ε , we use that

∥Tg
εθ

g
ε∥L2(S×Σ f

ε ) ≤ ∥T
g
εθ

g
ε − Tεθε∥L2(S×Σ f

ε ) + ∥Tεθε∥L2(S×Σ f
ε ) = ∥JθεK∥L2(S×Σ f

ε ) + ∥Tεθε∥L2(S×Σ f
ε )

Combining the two estimates (3.2) and (3.4) gives that θg
ε is also bounded on Σ f

ε . □

4. Two-scale limit and homogenization

For passing to the limit ε→ 0, we apply the concept of two-scale convergence [4]. In the domainΩg
ε

we need to consider the generalized two-scale convergence for thin domains, which was first introduced
in [31, Definition 4.1] and further developed in [10, 22, 23]. We state here the main definitions and
results we need for the limiting procedure.
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Definiton 1 (Two-scale convergence on thin domains).
i) A sequence uε ∈ L2(S ×Ωg

ε) is said to weakly two-scale converge to a function u ∈ L2(S × Σ × Z)

(notation uε
2
⇀ u) if

lim
ε→0

1
ε

∫
S

∫
Ω

g
ε

uε(t, x)φ
(
t, x̃,

x
ε

)
dx dt =

∫
S

∫
Σ

∫
Z

u(t, x̃, y)φ(t, x̃, y) dy dx̃ dt, (4.1)

for all φ ∈ C(S × Σ; C#̃(Z)).
ii) A sequence uε ∈ L2(S ×∂Ωg

ε) is said to weakly two-scale converge to a function u ∈ L2(S ×Σ×∂Z)
if

lim
ε→0

∫
S

∫
∂Ω

g
ε

uε(t, x)φ
(
t, x̃,

x
ε

)
dσx dt =

∫
S

∫
Σ

∫
∂Z

u(t, x̃, y)φ(t, x̃, y) dσy dx̃ dt, (4.2)

for all φ ∈ C(S × Σ; C#̃(∂Z)).

Lemma 4 (Two-scale limits).
i) Let uε ∈ L2(S ; H1(Ωg

ε)) with
1
√
ε
∥uε∥L2(S×Ωg

ε) +
√
ε∥∇uε∥L2(S×Ωg

ε) ≤ C.

Then, there exists a function u ∈ L2(S × Σ; H1
#̃
(Z)) and a subsequence of uε, still denoted with uε,

such that

uε
2
⇀ u,

ε∇uε
2
⇀ ∇yu.

ii) Let Ωg
ε be connected and uε ∈ L2(S ; H1(Ωg

ε)) with
1
√
ε
∥uε∥L2(S×Ωg

ε) +
1
√
ε
∥∇uε∥L2(S×Ωg

ε) ≤ C.

Then, there exist functions u ∈ L2(S ; H1(Σ)) and u1 ∈ L2(S × Σ; H1
#̃
(Z)/R) such that, up to a

subsequence of uε, one has

uε
2
⇀ u,

∇uε
2
⇀ ∇x̃u + ∇yu1.

iii) Let uε ∈ L2(S × ∂Ωg
ε) such that ∥uε∥L2(S×∂Ωg

ε) ≤ C. Then, there exist u ∈ L2(S × Σ × ∂Z), such that

uε
2
⇀ u, up to a subsequence. Here, u is extended periodically with respect to ỹ.

Proof. The statement (i) is found in [10, Theorem 4.4 (i)] and for (ii) we refer to [23, Theorem 3.3]. For
the disconnected geometry, (iii) can be found in [10, Theorem 4.4 (ii)] as an extension of earlier results
from [31, Proposition 4.2]. This result transfers to the connected geometry noting that |∂Ωg

ε| = O(1) in
both cases via [10, Lemma 4.3]. □

With the above properties of two-scale convergence and the technical results from Lemma 1 and
2, we can now determine the effective model. For a function ϑ ∈ Wε, the gradient is only defined
on Ωε and Ωg

ε with a possible jump across their interface. To avoid overflowing notation, we will
use ∇ϑg ∈ L2(S × Ωg

ε)d to denote ∇ϑ|Ωg
ε
. Moreover, we use ∇̃ϑ ∈ L2(S × Ω)d to denote the function

∇ϑ ∈ L2(S ×Ωε) extended by zero to the whole of Ω.
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4.1. Homogenization of Case (a)

Based on the estimates of Theorem 1 for the solution θε we are able to identify the following limit
behavior for ε→ 0.

Lemma 5. There are limit functions θ ∈ L2(S ; H1(Ω)) and θg ∈ L2(S × Σ; H1(Z)) such that

i) χΩεθε → θ in L2(S ×Ω), ii ) ∇̃θε ⇀ ∇θ in L2(S ×Ω)d,

iii) θg
ε

2
⇀ θg, iv) ε∇θg

ε

2
⇀ ∇yθ

g

at least up to a subsequence. Additionally, it holds

lim
ε→0

∫
S

∫
Σk
ε

JθεKφ
(
t, x̃,

x
ε

)
dσx dt =

∫
S

∫
Σ

∫
Γk

(θ − θg)φ(t, x̃, y) dy dx̃ dt (4.3)

for k = f , s and all admissible test functions φ.

Proof. For the convergence of θε in Ωε, we utilize the extension operator from Lemma 1 and the
estimates of Theorem 1. Since the function θε is bounded in Wε, the extension Eε

(
θε |Ωε

)
is also bounded

and we obtain a weakly convergent subsequence in L2(S ; H1(Ω)). Note that, also, the time derivative of
the extension exists and is bounded [27, Chapter 5]. Since the embedding H1(Ω) ↪→ L2(Ω) is compact,
we can apply Aubin-Lions Lemma [39, Corollary 4] to obtain strong convergence of Eε

(
θε |Ωε

)
in

L2(S ×Ω) for a subsequence. Since additionally χΩε → 1 in L2(Ω), we obtain i) and ii). The points iii)
and iv) follow from the estimate in Theorem 1 and the two-scale convergence in Lemma 4 i).

For the limit (4.3), we apply an argument similar to [31, Section 5.2]. For convenience, the trace
operator will not be written out and only the argument for Σ f

ε is presented; Σs
ε follows analogously. The

embedding
H1(Ω f ) ↪→ Hβ(Ω f )

is compact for β ∈ (1
2 , 1). This leads, with similar arguments as before and another application of

Aubin-Lions Lemma, to the strong convergence of a subsequence

Eε
(
θε |Ωε

) f
→ θ f in L2(S ; Hβ(Ω f )).

The continuity of the trace operator and Lemma 2 yields

∥Eε
(
θε |Ωε

) f
− θ f ∥L2(S×Σ f

ε ) ≤ C∥Eε
(
θε |Ωε

) f
− θ f ∥L2(S ;Hβ(Ω f )) → 0, for ε→ 0.

Thus, we obtain strong convergence of the traces of θ f
ε and θs

ε. Since the trace is strongly convergent in
L2(S × Σ), it is also two-scale convergent to the same limit function.

The convergence of the grain temperatures on the interfaces Σ f
ε and Σs

ε can be handled by a standard
argument, see [31, Section 5.3] for a comparable setup. Nevertheless, we also quickly demonstrate
the arguments for the present case for a better understanding. Using Lemma 3 and the convergence

Lemma 4 iii), one obtains that there exists a u ∈ L2(S × Σ × ∂Z) such that Tg
εθ

g
ε

2
⇀ u. By testing with

any φ ∈ C1(Σ × Z)d that is periodic in ỹ with period 1, setting φε = φ(x̃, x
ε
) and using the following

integration by parts∫
Σ

∫
Z
∇yθ

g · φ dy dx̃ = lim
ε→0

∫
Ω

g
ε

∇θg
ε · φε dx
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= lim
ε→0

(
−

∫
Ω

g
ε

θg
ε divx φε dx −

1
ε

∫
Ω

g
ε

θg
ε divy φε dx +

∫
∂Ω

g
ε

Tg
εθ

g
εφε dσx

)
= −

∫
Σ

∫
Z
θg divy φ dy dx̃ +

∫
Σ

∫
∂Z

uφ dσy dx̃

=

∫
Σ

∫
Z
∇yθ

g · φ dy dx̃ −
∫
Σ

∫
∂Z
θgφ dσy dx̃ +

∫
Σ

∫
∂Z

uφ dσy dx̃,

we obtain that on ∂Z it holds θg = u for almost all t ∈ S . □

With the previous Lemma, we can now pass to the limit in the weak formulation (3.1). For the
present case, the limiting procedure is standard and we only list the general steps one has to follow.
For a detailed consideration of ε → 0, we refer to [19, Section 4.1] with a comparable setup. The
general procedure when determining the effective model consists of three steps:

1. Construct smooth test functions compatible with the concept of two-scale convergence. Use these
functions in the weak formulation to pass to the limit ε → 0. In the present situation, fitting test
functions would be φ ∈ C∞(S ×Ω) and φg ∈ C∞(S × Σ; C∞

#̃
(Z)).

2. Trying to simplify the effective equations by decoupling the equations and isolating cell problems.
3. Using a density argument to show that the limit also holds for test functions from more general

spaces, here for example for functions φ ∈ L2(S ; H1(Ω)).

Carrying out the above procedure, under the Assumptions (A5)–(A7), and collecting all the limits, we
obtain that the effective function fulfills (θ(0, ·), θg(0, ·)) = (θ0, θ

g
0) and

(ρc∂tθ, φ)Ω + (κ∇θ,∇φ)Ω + (ρcv∇θ, φ)Ω f + (ρc∂tθ, φ)Σ×Z + (κ∇yθ,∇yφ)Σ×Z

+ (α(θ f − θg), (φ f − φg))Σ×Γ f + (α(θs − θg), (φs − φg))Σ×Γs = ( f , φ)Ω + ( f , φ)Σ×Z,
(4.4)

for all φ = (φ f , φs, φg) ∈ L2(S ; H1(Ω f )) × L2(S ; H1(Ωs)) × L2(S × Σ; H1
#̃
(Z)) with φ

f
|Σ
= φs

|Σ
. The

homogenization result, together with the strong formulation of the effective problem, is summarized in
the following Theorem 2. Additionally, we show that the solution of Eq (4.4) is unique, and therefore
the complete sequence θε converges, in L2 and two-scale sense, to the homogenized solution.

Theorem 2 (Homogenization in the disconnected domain (Case (a))). Let the Assumptions (A1)–(A7)

be satisfied in their (a)-variants. Then, θε → θ in L2(S × Ω), and θg
ε

2
⇀ θg in L2(S × Σ × Z) for ε→ 0,

where
θ ∈ L2(S ; H1(Ω)) and θg ∈ L2(S × Σ; H1(Z))

such that
(∂tθ, ∂tθ

g) ∈ L2(S ×Ω) × L2(S × Σ × Z).

The limit (θ, θg) is characterized as the unique weak solution of

ρc∂tθ − div (κ∇θ − ρcvθ) = f in S ×Ω f (4.5a)
ρc∂tθ − div (κ∇θ) = f in S ×Ωs, (4.5b)

Jκ∇θK · n =
∑
k= f ,s

αk
∫
Γk
θ − θg dσy on S × Σ, (4.5c)
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with the macroscopic outer boundary and initial conditions

θ = θ0 in {0} ×Ω, (4.5d)
κ∇θ · ν = 0 on S × ∂Ω. (4.5e)

Additionally, the system is coupled with cell problems on the interface Σ

ρc∂tθ
g − divy (κ∇yθ

g) = f g in S × Σ × Z, (4.5f)
κg∇yθ

g · nΓ = α f (θ − θg) on S × Σ × Γ f , (4.5g)
κg∇yθ

g · nΓ = αs(θ − θg) on S × Σ × Γs, (4.5h)
θg = θ

g
0 in {0} × Σ × Z. (4.5i)

Proof. The homogenization procedure was explained in the step above. For uniqueness, consider that
there are two different sets of solutions (θ j, θ

g
j ) j=1,2. Their difference is denoted by θ. Utilizing the

previous assumptions and applying an energy estimate for the difference leads the fluid temperature to

d
d t
∥θ∥2L2(Ω f ) + ∥∇θ∥

2
L2(Ω f ) + |Γ

f |∥θ∥L2(Σ)

≤ C
(
∥v∥L∞(S×Ω f )∥∇θ∥L2(Ω f )∥θ∥L2(Ω f ) + ∥θ∥L2(Σ×Z)∥θ∥L2(Ω f )

)
,

inside the solid domain to

d
d t
∥θ∥2L2(Ωs) + ∥∇θ∥

2
L2(Ωs) + |Γ

s|∥θ∥L2(Σ) ≤ C∥θ∥L2(Σ×Z)∥θ∥L2(Ωs)

and lastly for the cell problems to the estimate

d
d t
∥θ∥2L2(Σ×Z) + ∥∇θ∥

2
L2(Σ×Z) + ∥θ∥L2(Σ×Γ f ) + ∥θ∥L2(Σ×Γs)

≤ C
(
∥θ∥L2(Σ×Z)∥θ∥L2(Ω f ) + ∥θ∥L2(Σ×Z)∥θ∥L2(Ωs)

)
.

Applying both Young’s and Gronwall’s inequalities, we can conclude that θ ≡ 0 almost everywhere.
Since the solution of Eq (4.5) is unique, it follows that the whole sequence θε converges. □

4.2. Homogenization of Case (b)

Lemma 6. There are limit functions θ ∈ L2(S ; H1(Ω)), θg ∈ L2(S ; H1(Σ)), and θg
1 ∈ L2(S ×Σ; H1

#̃
(Z)/R)

such that

i) χΩεθε → θ in L2(S ×Ω), ii ) ∇̃θε ⇀ ∇θ in L2(S ×Ω)d,

iii) θg
ε

2
⇀ θg, iv) ∇θg

ε

2
⇀ ∇x̃θ

g + ∇yθ
g
1

at least up to a subsequence. Additionally, it holds

lim
ε→0

∫
S

∫
Σk
ε

JθεKφ
(
t, x̃,

x
ε

)
dσx dt =

∫
S

∫
Σ

∫
Γk

(θ − θg)φ(t, x̃, y) dy dx̃ dt

for k = f , s and all admissible test functions φ.

Networks and Heterogeneous Media Volume 19, Issue 2, 569–596.



583

Proof. The proof follows similarly to Lemma 5 by utilizing the estimates in Theorem 1, the
boundedness of the extension operators, and the properties of two-scale convergence given in
Lemma 4. □

Utilizing Lemma 6, we are also able to pass to the limit for Case (b). Again, the limit procedure is
standard, similar to the previous section and therefore skipped. The derivation of the effective
conductivity κ̃ is also standard (see for example [4, Section 2]) and results from the fact that the
gradient of θg

1 can be represented by a linear combination of the derivatives of θg and the cell solutions
ψi given by Eq (4.7j). For completeness, we state the weak formulation; the limit (θ, θg) fulfills
(θ(0, ·), θg(0, ·)) = (θ0, θ

g
0) and the equation

(ρc∂tθ, φ)Ω + (κ∇θ,∇φ)Ω + (ρcv∇θ, φ)Ω f + (|Z|ρc∂tθ
g, φg)Σ + (κ̃∇x̃θ

g,∇x̃φ
g)Σ

+ (α f |Γ f |(θ f − θg), (φ f − φg))Σ + (αs|Γs|(θs − θg), (φs − φg))Σ = ( f , φ)Ω + (|Z| f g, φg)Σ,
(4.6)

for all φ = (φ f , φs, φg) ∈ L2(S ; H1(Ω f )) × L2(S ; H1(Ωs)) × L2(S ; H1(Σ)) with φ f
|Σ
= φs

|Σ
. Similar to the

previous sections, the complete results are stated in Theorem 3.

Theorem 3 (Homogenization in the connected domain (Case (b))). Let the Assumptions (A1)–(A7) be

satisfied in their (b)-variants. In the limit ε → 0, it holds that θε → θ in L2(S × Ω) and θg
ε

2
⇀ θg in

L2(S × Σ), where
θ ∈ L2(S ; H1(Ω)) and θg ∈ L2(S ; H1(Σ))

such that
(∂tθ, ∂tθ

g) ∈ L2(S ×Ω) × L2(S × Σ).

The limit (θ, θg) is characterized as the unique weak solution of

ρc∂tθ − div (κ∇θ − ρcvθ) = f in S ×Ω f , (4.7a)
ρc∂tθ − div (κ∇θ) = f in S ×Ωs, (4.7b)

Jκ∇θK · n = α̃(θ − θg) on S × Σ, (4.7c)

with outer boundary and initial conditions

θ = θ0 in {0} ×Ω, (4.7d)
κ∇θ · ν = 0 on S × ∂Ω, (4.7e)

coupled with an interface temperature

|Z|ρc∂tθ − divx̃ (κ̃∇x̃θ) = |Z| f g + α̃(θ − θg) in S × Σ, (4.7f)
θg = θ

g
0 on {0} × Σ, (4.7g)

κ̃g∇x̃θ
g · ν = 0 on S × ∂Σ. (4.7h)

Here, we use the notation ∇x̃u = (∂x1u, . . . , ∂xd−1u, 0). The effective heat exchange coefficient is given
by α̃ = α f |Γ f | + αs|Γs| and the effective conductivity κ̃ ∈ Rd×d is given (for i, j = 1, . . . , d − 1) by

κ̃i j = κ
g
∫

Z
(∇yψi + ei) · e j dy and κ̃d j = κ̃id = 0, (4.7i)
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where ei is the i–th unit vector and ψi are the zero-average solutions, with a period of 1 in ỹ, of

−∆yψi = 0 in Z,

−∇yψi · nΓ = ei · n on
(
∂Z \ ∂Yd

)
,

(4.7j)

and ψd ≡ 0.

Proof. The limiting procedure is shown in Lemma 6. The uniqueness follows with a similar argument
as in Theorem 2. □

Remark 3. In the case of non–perfect heat transfer between the fluid and solid domain mentioned in
Remark 1, the effective temperature field θ would split into two functions (θ f , θs) that belong to the
space L2(S ; H1(Ω f )) × L2(S ; H1(Ωs)), and Eq (4.5c) as well as Eq (4.7c) would be replaced with

κ f∇θ f · n = α0|Γ0|
(
θ f − θs

)
+ α f

∫
Γ f
θ f − θg dσy on S × Σ,

κs∇θs · n = α0|Γ0|
(
θ f − θs

)
+ αs

∫
Γs
θs − θg dσy on S × Σ,

so that both the macroscopic temperature and heat flow are discontinuous across Σ.

5. Numerical simulations

In this section, we introduce a numerical approach for solving the effective models and verify our
homogenization results through a comparison with direct numerical simulations of the microscale
model (2.1). In the following, we consider a rectangular domain Ω = [0, L] × [0, B] × [−H,H]. The
simulation studies are carried out with the FEM library FEniCS [6], and Gmsh [25] is utilized to
generate the various meshes.

We use the following stationary Navier–Stokes equation to model the underlying flow field

ρ(uε · ∇)uε = µ∆uε − ∇pε in Ω f
ε ,

∇ · uε = 0 in Ω f
ε ,

uε = 0 on Σ f
ε ∪ Σ

0
ε,

uε = uin on ∂Ω f
ε ∩ {x3 = H},

µ∇uεν − pεν = 0 on ∂Ω f
ε ∩ {x1 ∈ {0, L}},

uε is ε-periodic in x2.

In the homogenized case, the same equation is solved, just in Ω f and on Σ instead of Ω f
ε and Σ f

ε ∪ Σ
0
ε.

Classical Taylor–Hood elements [40] of second and first order for velocity and pressure, respectively,
are used to compute the solution.

In the original problem with the resolved grain structures, we encounter discontinuous temperatures.
To compute the solution, we utilize the discontinuous Galerkin method [35, Chapter 4] with piecewise
linear functions. To stabilize the diffusion advection equation, we utilize the SUPG method [13]. Under
consideration of the used fluid velocity, a Dirichlet condition is applied at the upper boundary

θ = 0 on ∂Ω f
ε ∩ {x3 = H},
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e.g., cooling fluid is supplied from the top and a periodic boundary condition in the x2–direction. These
boundary conditions are more realistic regarding the motivating grinding process than homogeneous
Neumann conditions. Please note that these modified conditions were not specifically considered in
our analysis. Still, the periodic boundary condition could be incorporated without problems. This also
holds for the Dirichlet condition, since it is only set at the top of the domain away from the grain layer.

Next, we list the numeric values we used for the occurring parameters. The size of Ω is L = B =
H = 1. For the conductivity, we use κ f = 0.1, κs = 1.0, κg = 2.0 and assume a normalization of
heat capacity and density, to be precise ρk, ck = 1 for k = f , s, g. For the fluid, the viscosity is set
to µ = 1 and the constant inflow uin = (0,−1, 0) at ∂Ω f

ε ∩ {x3 = H}. With h, hZ, hΣ, we denote the
largest diameter of the mesh elements inside Ω,Z, and Σ, respectively. If not stated otherwise, we use
h = hZ = hΣ = 0.05. We set α = α f = αs and study the influence of the different exchange values. The
heat source is set to f f = f s = 0 and either f g ≡ 1.0 or

f g(x) =

1 if
√

(x1 −
1
2 )2 + (x2 −

1
2 )2 ≤ 0.3,

0 otherwise.

The constant heat source is only used in the convergence study ε → 0, since simulating the whole
domain for a small ε was not feasible on our workstation.

As grain structures, we consider the cells shown in Table 1: for the disconnected case, a sphere,
and for the connected case, spheres connected with planar cylinders. The effective conductivity κ̃g has
been computed with a mesh size hZ = 0.02.

Table 1. The grain structures used in the numerical simulations.

Parameters |Γ f |, |Γs| |Z| κ̃

r = 0.4 1.01 0.27 –

r = 0.4, rc = 0.2 1.12 0.34 κg


0.2 0.0 0.0
0.0 0.2 0.0
0.0 0.0 0.0


The homogenized model removes the ε-sized structures, which are expensive to numerically resolve

from the problem, but introduces a new challenge; we numerically have to couple functions that are
defined on the different domainsΩ, Σ and Σ×Z. Here, we realize this coupling by an iterative algorithm.
At a given time step, we first fix the temperature field θg to calculate θ f and θs, then calculate θg

with fixed θ f and θs, and then repeat this until we can detect convergence of the temperatures. This
procedure is explained in more detail in Algorithm 1. Another possible approach would be to couple
the functions directly by constructing one large linear system, similar to [21] where a mixed FEM is
analyzed. This, of course, would circumvent the need for iterations but would lead in Case (a) to a
large system matrix. In the iterative scheme, we represent all temperature fields by continuous and
piecewise linear functions.
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Algorithm 1: Iterative scheme for one time step of the homogenized models
Input: Information θ f (tn, ·), θs(tn, ·), θg(tn, ·), at time step tn, and tolerance τ.
Do the time step tn → tn+1, with θ f (tn, ·), θs(tn, ·), θg(tn, ·), to compute
θ

f
0 (tn+1, ·), θs

0(tn+1, ·), θ
g
0(tn+1, ·).

Set i = 0, Ei ≥ τ.
while Ei ≥ τ do

Use θg
i (tn+1, ·) to redo the time step tn → tn+1 of θ f and θs, denote the solutions with

θ
f
i+1(tn+1, ·), θs

i+1(tn+1, ·).
Redo the time step of θg with θ f

i+1(tn+1, ·), θs
i+1(tn+1, ·), denote the solution by θg

i+1(tn+1, ·).
Compute Ei+1 defined in Eq (5.1).
Set i = i + 1.

return θ f
i (tn+1, ·), θs

i (tn+1, ·) and θg
i (tn+1, ·).

A similar iterative procedure was already applied in our previous work [19]. There, we also showed,
in case the time step is done with the backward Euler method, the convergence of the scheme [19,
Appendix A]. The same argumentation can be applied in the present case. Denote with θk

i the solution
in the i–th iteration of the algorithm and define the difference between the two following iterations

ek
i = ∥θ

k
i − θ

k
i−1∥L2(Ωk) and eg

i = ∥θ
g
i − θ

g
i−1∥L2(G),

for i > 0 and G = Σ × Z or G = Σ depending on Case (a) or Case (b). The total difference is given by

Ei =

√
(e f

i )2 + (es
i )2 + (eg

i )2. (5.1)

At a given time point tn and iteration step i ≥ 2 it then holds

Ei ≤ C

 α f |Γ f | + αs|Γs|

α f |Γ f | + αs|Γs| +
ρ f c f

∆t − (ρ f c f )2∥v∥2
L∞(S×Ω f )

1
2δ


i−1.5

∥θ
f
1 (tn, ·) − θ

f
0 (tn, ·)∥L2(Σ), (5.2)

for C > 0 and 0 < δ < 2κ f . If v ∈ L∞(S × Ω f ) and for small enough time step ∆t, we can ensure
convergence of the scheme. In the case that∫

Ω f
c fρ f v∇θ f θ f =

1
2

∫
∂Ω f

cρ v θ f 2
≥ 0,

which holds for the considered boundary conditions in our simulations, one obtains

Ei ≤ C

 α f |Γ f | + αs|Γs|

α f |Γ f | + αs|Γs| +
ρ f c f

∆t + C̃


i−1.5

∥θ
f
1 (tn, ·) − θ

f
0 (tn, ·)∥L2(Σ),

C̃ > 0. In the above estimate, the convergence no longer requires a sufficiently small time step ∆t. In
all subsequent simulations, we choose the tolerance τ = 1.e − 6 in Algorithm 1.

To verify the accuracy of the numerical simulations, a convergence study with respect to the mesh
resolution for the stationary problem is presented in the Appendix, see Figure A1. For all models,
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both effective models and the model with resolved microstructure, we achieve for θ the expected
convergence behavior of O(h2) in the L2–norm.

Investigation of the iterative algorithm. Before verifying the homogenized model in the limit
ε→ 0, we first investigate the iterative algorithm for the homogenized model in more detail. In Figure
3, the convergence of the stationary temperature model for different α is shown. For increasing values
of α (or surfaces |Γ f | and |Γs|) the convergence speed decreases noticeably, in both Cases (a) and (b).
This trend can also be seen in the estimation (5.2), where the term in the brackets also approaches 1 for
increasing α. Two possible ways to circumvent this are solving a mixed FEM directly, like mentioned
above, or applying a scheme to speed up the convergence of the iterative procedure [34]. Here, a simple
relaxation method of the type

θi+1 = θi + η(θ̃i+1 − θi),

Figure 3. Convergence of the iterative Algorithm 1 for different heat exchange values α =
α f = αs. At the top is the disconnected model and at the bottom is the connected case. The
left side shows the linear trend of the difference between success iterations Ei. Depicted
on the right is the maximal number of iterations with respect to η, until the tolerance τ is
reached.

with η ∈ [1, 2.0) and θ̃i+1 the solution with respect to θi, is used. The results are also presented in
Figure 3. We observe that this approach lowers the number of needed iterations considerably.
Additionally, the optimal relaxation parameter η increases with the heat exchange α (and/or surfaces
|Γ f | and |Γs|). Last, we want to mention that we started in the stationary problem with θ0 ≡ 0. In the
non-stationary case, one would start with the temperature of the previous time step, which generally
should be close to the solution at the next step and therefore need fewer iterations.

One additional aspect arises in the homogenized model (4.5) of the disconnected case. Here, the
cell problems have to be computed on the whole domain Σ×Z, which is of dimension higher than 3 and
not directly implementable in FEniCS. In addition to the previously explained iterative procedure, we
therefore also choose a discrete number of points {x j}

M
j=1 ⊂ Σ to first compute the cell temperature θg
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only at these specific points. To then evaluate θg for arbitrary x̃ ∈ Σ, we utilize an interpolation scheme
in between the discrete points {x j}

M
j=1. To be consistent with the discretization of Σ, for each degree of

freedom on Σ one could solve the corresponding cell problem and then use an interpolation fitting to
the discrete temperature space, e.g., linear interpolation for piecewise linear functions. Note that the
use of such an interpolation introduces an additional consistency error in the numerical scheme.

In Figure 4 the influence of the position and number of {x j}
M
j=1 on the solution is demonstrated for

the case h = 1
16 . For a given M, the points are distributed on a uniform grid in [0, 1] × [0, 1]. The grain

temperature θg(x̃, y) is constructed by linearly interpolating between the discrete cell problems θg(x j, y)
with respect to x̃. We observe that, to obtain reasonable results, there must be enough cell problems to
correctly resolve the circular heat source f g. Interestingly, the solution still changes when more cells
than the number of mesh vertices are used; see the results for M > 1

h2 . This arises from the quadrature
scheme in FEniCS, where points in between the degrees of freedom are used.

We can conclude that the cell problems should be positioned such that all important areas and local
effects are captured. One has to keep in mind that the computational effort grows with the number
M. One advantage of the iterative scheme is that all cell problems can be solved independently, which
allows for an easy parallelization of the problem. In the simulations of the previous and following
Sections, we used M = 162.

(a) M = 32 (b) M = 62 (c) M = 82

(d) M = 162 (e) M = 242 (f) M = 322

Figure 4. Dependence of the numerical algorithm for model (4.5) on the discrete position of
the cell problems. On the left is the absolute L2-difference of the temperature regarding the
number of cell problems M, compared to the case M = 322. On the right, the solution θ f is
depicted on Σ for different M.

Convergence study for the limit ε→ 0. To verify our homogenized temperature models (4.5) and
(4.7), we carry out multiple simulations of the resolved microscale model for different ε and compare
the computed temperature with the effective models. We consider two different setups:

• A simulation of Cases (a) and (b) in the previously described three-dimensional domain. Here,
for small ε, the computational effort, while utilizing a fine-mesh resolution with respect to ε,
became too large and could not be handled by our hardware. Therefore, we had to simplify the
problem in terms of different aspects. First, we use a constant heat source f g = 1, and second, we
remove the convection term. Neglecting the convection is acceptable, as we are mainly interested
in the comparison of our derived effective temperature model with the resolved micro model, and
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the convection does not play a dominant role in the homogenization carried out in the previous
sections. The effective behavior of flow over rough surfaces has also already been investigated in
other studies, cf. [2]. These modifications lead to a temperature profile that is ε–periodic in x1 and
x2 and only varies in the vertical direction x3. For simulating the model with resolved microscale
we use the smaller domain Ω = [0, 3ε]× [0, 3ε]× [−1, 1]. Even in this scaled-down domain, more
than 1 million simplices are required to resolve the microstructures. For this reason, we could not
carry out more complex simulations for this setup.
• A two-dimensional setup that is less expensive to solve numerically. Therefore, we can resolve

the microstructure over the whole domain and also include the convection term. One disadvantage
of the two-dimensional setup is that we can only investigate Case (a). Case (b), with connected
grains as well as fluid and solid domains in contact, is not possible. Here, we set Ω = [0, 1] ×
[−1, 1] and examine circular grains Z with radius r = 0.4ε. We keep the heat source f g = 1
and the Dirichlet boundary condition at the top boundary. For the fluid flow, we use the inflow
uin = (0,−1) and free outflow at x1 = 0 and x1 = 1.

Figure 5. The fully resolved and effective temperature profile for both cases is depicted over
the vertical line at x1 = x2 = 3ε/2. On the left, Case (a), and on the right, Case (b). The
top row shows the macroscopic temperature profile. At the bottom, two zoomed-in sections
inside the solid domain Ωs and around the interface grains show the difference between the
solutions in more detail.

The comparison for the three-dimensional case is shown in Figure 5. The profile is plotted over
a vertical line that goes through the center of the micro grains. Note that for Case (a), we cannot
plot θg directly, since it also depends on y. In the zoomed-in segment, we therefore show the averaged
temperature 1

|Z|

∫
Z
θg. We observe that the difference between the effective model and the resolved micro

model is small. In the resolved microscale model, one obtains slightly higher temperatures inside Ωs.
Additionally, the effective model is able to capture the temperature values inside the grain domains, as
shown in the zoomed-in plots. A convergence trend for ε→ 0 to the homogenized model also appears
to be visible. But for the comparison, one has to also keep in mind the achieved numerical accuracy
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shown in Figure A1 in the Appendix.

(a) ε = 0.1 (b) ε = 0.005 (c) Effective solution

Figure 6. The solution for the two-dimensional setup. Visible are the fluid flow and the two
results for different ε values as well as the effective fluid and solid temperature. For better
readability, we only show the zoomed-in section [0, 0.7] × [−0.2, 0.55].

(a) ε = 0.1 (b) ε = 0.05

(c) ε = 0.01 (d) ε = 0.005

(e) Effective cell
temperature

Figure 7. Convergence study for the two-dimensional setup. Left: solutions along a
horizontal line at x2 = 0.05, for different ε. Right: a zoomed-in section of the cell temperature
at the left boundary. Note the different temperature scale, compared to Figure 6a–d show the
solution of the resolved microscale case and (e) the effective temperature θg(x̃, y) at the point
x̃ = (0, 0).

The simulation results for the two-dimensional case are shown in Figures 6,7. The flow field and
macroscopic temperature are demonstrated in Figure 6. We observe that the system becomes cooler for
smaller ε since the fluid is slowed down less by the grains, and the cooling due to convection becomes
stronger. Given the underlying flow field, we obtain a solution that is symmetrical around the center
of the domain. Similar to the results above, in Figure 7 we can again observe the convergence of the
microscale solution to the effective solution. Besides the behavior of the macroscopic solution, the
right side of Figure 7 also demonstrates the grain temperature. Here, the temperature scale is different
than in Figure 6 to better investigate the grain temperature. The grains also become slightly cooler
for smaller ε. In the center of the grains, the temperature is higher since the heat source is inside the
grains. This aspect is also captured in the effective model.
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6. Conclusion

We studied the effective influence of grain structures located on an interface between a fluid and a
solid by the use of two-scale convergence for thin domains. Two distinct scenarios were considered:
Case (a) with disconnected grains and Case (b) with a connected grain structure. For Case (a), we
derived an effective two-scale model with microstructures at the interface. In Case (b), we obtained,
next to the temperature of fluid and solid, an effective interface temperature for the grains in the
homogenized model. The homogenization results were verified by direct comparison with the
microscale model with the help of numerical simulations. To this end, we considered an iterative
algorithm to realize the coupling of grains and macro temperature. We showed numerically that the
iteration speed can be improved by utilizing a relaxation scheme. The numerical results support the
derived effective model and demonstrate that it can accurately capture the behavior inside the grains.

For further studies, it would be interesting to investigate the influence of the Assumption (A1),
where a specific ε-scaling of the heat conductivity inside grains was chosen. Additionally, the
assumption for the trace estimate could be weakened such that the derived model could be applied to
general Lipschitz domains.

Regarding our motivating application of the grinding process, we could determine a first effective
model that could be used to include the grains in further simulations. Of course, we are currently
assuming periodic abrasive grains, which does not reflect reality. However, with the help of numerical
approaches, the derived models could be transferred to the more general non-periodic case. In addition,
the interaction with the workpiece has been disregarded but plays an important role. Of particular
interest here would be the homogenization of the grinding gap, for which a flow equation must also
be considered. The extension employing numerical methods and the consideration of the grinding gap
will be investigated in further research.
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Appendix A Convergence study with respect to mesh resolution

Figure A1. Convergence study for the simulated temperature θ with respect to the mesh
resolution. The problem with resolved microstructure was solved for ε = 0.1 and the
microstructures were locally refined with a resolution of hε = 2εh. All simulation results
were compared to a simulation with resolution h = 0.015.
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