This paper presents several sufficient frameworks for multi-cluster flocking of the thermodynamic Cucker-Smale model with a unit-speed constraint (in short, TCSUS) under a singular kernel. By providing precise estimates and deriving the dissipative structure of TCSUS, it was proved that under specific well-prepared conditions for particle positions and fully separated initial velocities, multi-cluster flocking occurs in the TCSUS system under a strong singular kernel. Furthermore, the velocities and temperatures converge to the average final data for each cluster group.
Citation: Shenglun Yan, Wanqian Zhang, Weiyuan Zou. Multi-cluster flocking of the thermodynamic Cucker-Smale model with a unit-speed constraint under a singular kernel[J]. Networks and Heterogeneous Media, 2024, 19(2): 547-568. doi: 10.3934/nhm.2024024
This paper presents several sufficient frameworks for multi-cluster flocking of the thermodynamic Cucker-Smale model with a unit-speed constraint (in short, TCSUS) under a singular kernel. By providing precise estimates and deriving the dissipative structure of TCSUS, it was proved that under specific well-prepared conditions for particle positions and fully separated initial velocities, multi-cluster flocking occurs in the TCSUS system under a strong singular kernel. Furthermore, the velocities and temperatures converge to the average final data for each cluster group.
[1] | J. Toner, Y. Tu, Flocks, herds, and Schools: A quantitative theory of flocking, Phys. Rev. E, 58 (1998), 4828–4858. https://doi.org/10.1103/physreve.58.4828 doi: 10.1103/physreve.58.4828 |
[2] | C. M. Topaz, A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152–174. https://doi.org/10.1137/S0036139903437424 doi: 10.1137/S0036139903437424 |
[3] | A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15–42. https://doi.org/10.1016/0022-5193(67)90051-3 doi: 10.1016/0022-5193(67)90051-3 |
[4] | J. Buck, E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562–564. https://doi.org/10.1038/211562a0 doi: 10.1038/211562a0 |
[5] | T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, O. Sochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226–1229. https://doi.org/10.1103/PhysRevLett.75.1226 doi: 10.1103/PhysRevLett.75.1226 |
[6] | A. Jadbabaie, J. Lin, A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Autom. Control., 48 (2008), 988–1001. https://doi.org/10.1109/tac.2003.812781 doi: 10.1109/tac.2003.812781 |
[7] | F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Trans. Autom. Control., 52 (2007), 852–862. https://doi.org/10.1109/TAC.2007.895842 |
[8] | X. Zhang, T. Zhu, Complete classification of the asymptotical behavior for singular C-S model on the real line, J. Differ. Equations., 269 (2020), 201–256. https://doi.org/10.1016/j.jde.2019.12.004 doi: 10.1016/j.jde.2019.12.004 |
[9] | D. Bhaya, Light matters: Phototaxis and signal transduction in unicellular cyanobacteria, Mol. Microbiol., 53 (2004), 745–754. https://doi.org/10.1111/j.1365-2958.2004.04160.x doi: 10.1111/j.1365-2958.2004.04160.x |
[10] | A. Jakob, N. Schuergers, A. Wilde, Phototaxis assays of synechocystis sp. PCC 6803 at macroscopic and microscopic scales, Bio-protocol, 7 (2017), e2328. https://doi.org/10.21769/BioProtoc.2328 doi: 10.21769/BioProtoc.2328 |
[11] | S. Y. Ha, T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch. Rational Mech. Anal., 223 (2017), 1397–1425. https://doi.org/10.1007/s00205-016-1062-3 doi: 10.1007/s00205-016-1062-3 |
[12] | J. G. Dong, S. Y. Ha, D. Kim, Emergent behaviors of continuous and discrete thermomechanical Cucker-Smale models on general digraphs, Math. Models Methods Appl. Sci., 29 (2019), 589–632. https://doi.org/10.1142/S0218202519400013 doi: 10.1142/S0218202519400013 |
[13] | H. Cho, L. Du, S. Y. Ha, Emergence of a periodically rotating one-point cluster in a thermodynamic Cucker-Smale ensemble, Quart. Appl. Math., 80 (2022), 1–22. https://doi.org/10.1090/qam/1602 doi: 10.1090/qam/1602 |
[14] | Y. P. Choi, S. Y. Ha, J. Jung, J. Kim, Global dynamics of the thermomechanical Cucker- Smale ensemble immersed in incompressible viscous fluids, Nonlinearity, 32 (2019), 1597–1640. https://doi.org/10.1088/1361-6544/aafaae doi: 10.1088/1361-6544/aafaae |
[15] | Y. P. Choi, S. Y. Ha, J. Jung, J. Kim, On the coupling of kinetic thermomechanical Cucker Smale equation and compressible viscous fluid system, J. Math. Fluid Mech., 22 (2020), 1–34. https://doi.org/10.1007/s00021-019-0466-x doi: 10.1007/s00021-019-0466-x |
[16] | S. H. Choi, S. Y. Ha, Emergence of flocking for a multi-agent system moving with constant speed, Commun. Math. Sci., 14 (2016), 953–972. https://doi.org/10.4310/CMS.2016.V14.N4.A4 doi: 10.4310/CMS.2016.V14.N4.A4 |
[17] | H. Ahn, Emergent behaviors of thermodynamic Cucker-Smale ensemble with a unit-speed constraint, Discrete Contin. Dyn. Syst. Ser. B, 28 (2023), 4800–4825. https://doi.org/10.3934/dcdsb.2023042 doi: 10.3934/dcdsb.2023042 |
[18] | H. Ahn, Non-emergence of mono-cluster flocking and multi-cluster flocking of the thermodynamic Cucker-Smale model with a unit-speed constraint, Netw. Heterog. Media., 18 (2023), 1493–1527. https://doi.org/10.3934/nhm.2023066 doi: 10.3934/nhm.2023066 |
[19] | H. Ahn, J. Byeon, S. Y. Ha, Interplay of unit-speed constraint and singular communication in the thermodynamic Cucker-Smale model, Chaos, 33 (2023), 123132. https://doi.org/10.1063/5.0165245 doi: 10.1063/5.0165245 |