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Abstract: This paper presents several sufficient fr ameworks fo r mu lti-cluster flo cking of the 
thermodynamic Cucker-Smale model with a unit-speed constraint (in short, TCSUS) under a singular 
kernel. By providing precise estimates and deriving the dissipative structure of TCSUS, it was proved 
that under specific well-prepared conditions for particle positions and fully separated initial velocities, 
multi-cluster flocking occurs in the TCSUS system under a  strong singular k ernel. Furthermore, the 
velocities and temperatures converge to the average final data for each cluster group.
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1. Introduction

Emergent dynamics in interacting multi-agent systems are commonly observed in nature. Natural
phenomena, including animal migration [1], bacterial movement [2], and synchronization of coupled
cells [3] and fireflies [4], exhibit collective behaviors. For instance, in the field of ecology, collective
behaviors can facilitate population reproduction, predator evasion, and the reduction of competition
among individuals. Ultimately, these behaviors can enhance the population’s safety coefficient.
Therefore, studying collective behaviors is of significant importance and meaning.

To investigate aggregation phenomena, biophysicist T. Vicsek et al. conducted numerical
experiments to elucidate the mechanisms underlying collective motion [5]. A. Jadbabaie subsequently
verified these experiments through analytical methods [6]. Following the pioneering work of T.
Vicsek et al. numerous mathematical models have been developed to study emergent behavior.
Professors Cucker and Smale proposed the Cucker-Smale model, which characterizes aggregation
phenomena [7]. The Cucker-Smale model describes a flocking dynamic system with position and
velocity following Newtonian dynamics. For the i − th particle in the Cucker-Smale model, let xi ∈ R

d
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and vi ∈ R
d denote its position and velocity. Here, Rd represents d-dimensional Euclidean space. The

Cucker-Smale model is governed by



dxi

dt
= vi, t > 0, i ∈ [N] := {1, 2, · · · ,N},

dvi

dt
=
κ

N − 1

∑
j,i

ϕ(||xi − x j||)(v j − vi),

(xi(0), vi(0)) = (x0
i , v

0
i ) ∈ Rd × Rd,

(1.1)

where N represents the number of particles, κ denotes the non-negative coupling strength, and || · ||
denotes the standard l2-norm. ϕ signifies the communication weight. The Cucker-Smale model offers
unique advantages in mathematical analysis due to its high degree of symmetry. Additionally, the
solution’s large-time behavior is determined solely by the initial conditions and the interaction function
ϕ. Since its proposal, the Cucker-Smale model has been the subject of extensive research, with scholars
exploring diverse communication weights ϕ(r) tailored to specific application contexts. For instance,

the authors of [8] adopted the communication weight ϕ(r) as ϕ(r) =
1
rβ

, known as the singular kernel,
to conduct a detailed analysis of its clustering behavior.

However, the Cucker-Smale model cannot describe the aggregative behaviors influenced by
external factors, including light and temperature. For instance, Bhaya et al. [9] and Jakob et al. [10]
observed that cyanobacteria actively migrate toward light sources under certain conditions. Ha et al.
[11] investigated the effect of temperature on aggregative behavior, resulting in the development of a
thermodynamic Cucker-Smale (in short, TCS) model. Since then, the TCS model has also been a
subject of extensive research. Two sufficient frameworks for the emergence of mono-cluster flocking
on a digraph for the continuous and discrete models were presented in [12]. The emergent behaviors
of a TCS ensemble confined in a harmonic potential field was studied in [13]. The coupling of a
kinetic TCS equation and viscous fluid system was proposed and considered in [14, 15]. Based on
system (1.1), we set Ti to denote the temperature of the i − th particle, and then the TCS model is
governed by 

dxi

dt
= vi, t > 0, i ∈ [N] := {1, 2, · · · ,N},

dvi

dt
=
κ1

N − 1

∑
j,i

ϕ(||xi − x j||)
(

v j

T j
−

vi

Ti

)
,

d
dt

(
Ti +

1
2
||vi||

2
)
=
κ2

N − 1

∑
j,i

ζ(||xi − x j||)(
1
Ti
−

1
T j

),

(xi(0), vi(0),Ti(0)) = (x0
i , v

0
i ,T

0
i ) ∈ Rd × Rd × (0,+∞),

(1.2)

where N denotes the number of particles, while κ1 and κ2 represent strictly positive coupling strengths.
Moreover, ϕ, ζ, which are mappings from (0,+∞) → (0,+∞), serve as the communication weights.
These functions are non-negative, locally Lipschitz continuous, and monotonically decreasing.

Based on the conceptual framework for the unit-speed Cucker-Smale model presented in [16], Ahn
modified the velocity coupling term to guarantee that each velocity possesses a constant positive
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modulus [17], as follows:

dxi

dt
= vi, t > 0, i ∈ [N] := {1, 2, · · · ,N},

dvi

dt
=
κ1

N − 1

∑
j,i

ϕ(||xi − x j||)
(

v j

T j
−
⟨vi, v j⟩vi

T j||vi||
2

)
,

d
dt

(
Ti +

1
2
||vi||

2
)
=
κ2

N − 1

∑
j,i

ζ(||xi − x j||)(
1
Ti
−

1
T j

),

(xi(0), vi(0),Ti(0)) = (x0
i , v

0
i ,T

0
i ) ∈ Rd × Sd−1 × (0,+∞),

(1.3)

where N, κ1, κ2, and communication weights ϕ, ζ are defined as above. The term Sd−1 denotes the unit
(d − 1)-sphere. However, the author of [17] only addressed the scenarios where the communication
weights ϕ and ζ are non-negative, bounded, locally Lipschitz continuous, and monotonically
decreasing.

Furthermore, the author of [18] employed suitable subdivided configurations {Zα}nα=1 and
demonstrated that the velocity and temperature of all agents within each cluster group converge to
identical values. In addition, based on the results of [17], the authors of [19] proved that asymptotic
flocking occurs when the communication weights ϕ, ζ are singular kernels.

This article considers the multi-cluster flocking dynamics of the thermodynamic Cucker-Smale
model with a unit-speed constraint (TCSUS) under a singular kernel. The system (1.3) is reorganized
into a multi-cluster framework, which is governed by,

dxαi

dt
= vαi, t > 0, i ∈ [Nα] := {1, 2, · · · ,Nα}, α ∈ [n] := {1, 2, · · · n}, n ≥ 3,

dvαi

dt
=
κ1

N − 1

Nα∑
j=1
j,i

ϕ(||xαi − xα j||)
(

vα j

Tα j
−
⟨vαi, vα j⟩vαi

Tα j||vαi||
2

)
+
κ1

N − 1

∑
β,α

Nβ∑
j=1

ϕ(||xαi − xβ j||)
(

vβ j

Tβ j
−
⟨vαi, vβ j⟩vαi

Tβ j||vαi||
2

)
,

d
dt

(
Tαi +

1
2
||vαi||

2
)
=
κ2

N − 1

Nα∑
j=1
j,i

ζ(||xαi − xα j||)(
1

Tαi
−

1
Tα j

) +
κ2

N − 1

∑
β,α

Nβ∑
j=1

ζ(||xαi − xβ j||)(
1

Tαi
−

1
Tβ j

),

(xαi(0), vαi(0),Tαi(0)) = (x0
αi, v

0
αi,T

0
αi) ∈ R

d × Sd−1 × (0,+∞),
(1.4)

where t represents time, n represents the number of clusters, N represents the number of particles, and
Nα represents the number of particles in the α − th cluster. Additionally, xαi, vαi, and Tαi denote the
position, velocity, and temperature of the i− th particle in the α− th cluster, respectively. Furthermore,
κ1 and κ2 represent strictly positive coupling strengths, and Sd−1 is the unit (d − 1)-sphere. Specifically,
we assume that when the communication weights ϕ, ζ are singular kernels, they will take the following

explicit assumption: ϕ(r) =
1
rλ
, ζ(r) =

1
rµ

(λ, µ > 0).
In fact, system (1.4) corresponds exactly to system (1.3). The formulation of system (1.4)

specifically highlights the influence of different clusters on particle dynamics.
Previous studies in [17, 18] thoroughly explored mono-cluster, bi-cluster, and multi-cluster

flocking behaviors in system (1.4) under a standard kernel. More recently, studies cited in [19] have
concentrated on mechanical flocking and thermal homogenization within the TCSUS model under a
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singular kernel. However, a comprehensive study about the multi-cluster flocking of TCSUS under a
singular kernel remains largely unexplored. In this paper, we mainly focus on studying the
multi-cluster flocking under a strong singular kernel and provide relevant conclusions and estimates.

For simplicity, we apply the following notation:

Notation 1.1. For the vector u ∈ Rd, we denote by ||u|| and ui the Euclidean l2−norm of u and its i − th
component, respectively. The standard inner product of two vectors u, v ∈ Rd is denoted by ⟨u, v⟩. The
distance between two sets A and B is denoted by d(A, B) := inf{d(x, y) : x ∈ A, y ∈ B}. For simplicity,
we define [N] := {1, 2, · · · ,N}. Given fixed real sequences {ai}

n
i=1 and {bi}

n
i=1, we define the family of

sets {Iα}nα=1 such that Iα := [aα, bα]. The solution of system (1.3) is denoted by A := (a1, a2, · · · , aN),
where A ∈ {X,V,T }, and a ∈ {x, v,T }. After we reorganize the system (1.3) into a multi-cluster
configuration (1.4), if we denote the solution of the α − th cluster as Aα := (aα1, aα2, · · · , aαNα), where
A ∈ {X,V,T } and a ∈ {x, v,T }, it becomes evident that A = (a1, a2, · · · , aN) = (A1, A2, · · · , An). In
addition, we define a0 := a(0). The generic constant C may differ from line to line. We define the

centers for position, velocity, and temperature of the α − th cluster as xcen
α :=

1
Nα

∑
i∈[Nα]

xαi,

vcen
α :=

1
Nα

∑
i∈[Nα]

vαi, and T cen
α :=

1
Nα

∑
i∈[Nα]

Tαi, respectively. Furthermore, we define the minimum

temperature of the α − th cluster as Tαm(t) := min
i∈[Nα]

Tαi(t) and the maximum temperature of the α − th

cluster as TαM(t) := max
i∈[Nα]

Tαi(t). We define the minimum temperature of the whole system as

Tm(t) := min
α∈[n]

Tαm(t) and the maximum temperature of the whole system as TM(t) := max
α∈[n]

TαM(t). The

minimum inner product throughout the system is denoted as A(v) := min
α,β∈[n]

i∈[Nα], j∈[Nβ]

⟨vαi, vβ j⟩.

First, we define the L∞− diameters for position, velocity, and temperature of each cluster group
Zα := {(xαi, vαi,Tαi)}

Nα
i=1 as follows:

•(position-velocity-temperature diameters for the α − th cluster group)
DXα := max

i, j∈[Nα]
||xαi − xα j||, DVα := max

i, j∈[Nα]
||vαi − vα j||, DTα := max

i, j∈[Nα]
|Tαi − Tα j|,

•(position-velocity-temperature diameters for the whole system)

DX :=
n∑
α=1

DXα , DV :=
n∑
α=1

DVα , DT :=
n∑
α=1

DTα .

Then, we define the following three configuration vectors for each cluster group:
Xα := (xα1, xα2, · · · , xαNα), Vα := (vα1, vα2, · · · , vαNα), Tα := (Tα1,Tα2, · · · ,TαNα), where 1 ≤ α ≤ n.
Next, we introduce the definition of the multi-cluster flocking behavior of system (1.4):

Definition 1.1. Let Z = {(xi, vi,Ti)}Ni=1 be a solution to system (1.4). Then, the configuration Z exhibits
multi-cluster flocking if there exist n cluster groups Zα = {(xαi, vαi,Tαi)}

Nα
i=1 such that the following

assertions hold for 2 ≤ n ≤ N and 1 ≤ α ≤ n:

•|Zα| = Nα ≥ 1,
n∑
α=1

|Zα| =
n∑
α=1

Nα = N,
n⋃
α=1

Zα = Z,

•∀α ∈ [n], sup
0≤t<∞

max
1≤k,l≤Nα

||xαk − xαl|| < ∞, lim
t→∞

max
1≤k,l≤Nα

||vαk − vαl|| = 0, lim
t→∞

max
1≤k,l≤Nα

|Tαk − Tαl| = 0,

• inf
0≤t<∞

min
k,l
||xαk − xβl|| = ∞, 1 ≤ k ≤ Nα, 1 ≤ l ≤ Nβ, 1 ≤ α , β ≤ n.
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To describe adequate frameworks for multi-cluster flocking estimation, we display the admissible
data and conditions (H) as follows:

(H) := {(X(0),V(0),T (0)) ∈ R2dN × (0,+∞)N |(H0), (H1), (H2), and (H3) hold.}

(i) (H0) (Notation): For brevity, we have the following notation:

T∞m := Tm(0),T∞M := TM(0), δ0 := inf
0≤t≤∞

min
1≤i, j≤N

||xi(t) − x j(t)||,

r0 := min
α<β,i, j

(xk
β j(0) − xk

αi(0)), R0 := max
α<β,i, j

(xk
β j(0) − xk

αi(0)) for some fixed 1 ≤ k ≤ d,

Λ0
(
D∞X

)
:=
κ1 min (N1, · · · ,Nα) A(v0)ϕ

(
D∞X

)
(N − 1)T∞M

, Λ̄0
(
D∞X

)
:=
κ2(min(N1, . . . ,Nα) − 2)ζ(D∞X )

N(T∞M)2 ,

Λ :=
DV(0)
Λ0

+
4(n − 1)Nκ1

(N − 1)T∞mΛ2
0

ϕ
(r0

2

)
+

4(n − 1)Nκ1
(N − 1) min1≤α≤n−1 d(Iα, Iα+1)T∞mΛ0

∫ ∞

r0
2

ϕ(s)ds,

Λα :=
κ1(Nα − 1)ϕ(δ0)

(N − 1)T∞m
Λ +

κ1 (N − Nα)
(N − 1)T∞m (min1≤α≤n−1 d (Iα, Iα+1))

∫ ∞

r0
2

ϕ(s)ds.

(ii) (H1) (Well prepared conditions): There exists a strictly positive number D∞X > 0 such that

D∞X ≥ DX(0) +max
(
Λ,

DV(0)T∞M
κ1A(v0)ϕ(D∞X )

)
, and λ, µ > 1 (strong kernel).

(iii) (H2) (Separated initial data): For fixed 1 ≤ k ≤ d in (H0), there exist real sequences
{ai}

n
i=1 and {bi}

n
i=1 such that the initial data and system parameters are appropriately split as follows:

r0 > 0, a1 < b1 < a2 < b2 · · · < an < bn, Iα = [aα, bα] ⊂ [−1, 1], Iα ∩ Iβ = ∅(β , α),
[vk
αi(0) − Λα, vk

αi(0) + Λα] ⊂ Iα = [aα, bα] ⊂ [−1, 1], α, β = 1, . . . , n, i = 1, . . . ,Nα.

(iv) (H3) (Small fluctuations): The local velocity perturbation for all cluster groups is sufficiently
small as follows:

DV(0) ≤
κ1A(v0)

T∞M

∫ D∞X

DX(0)
ϕ(s)ds. (1.5)

Finally, we present the main theorems of this article.

Theorem 1.1. Assume that Zα = {(xαi, vαi,Tαi)}
Nα
i=1 is a solution to system (1.4). Suppose that (H)

holds. It follows that

min
α,β,i, j

∥∥∥xαi(t) − xβ j(t)
∥∥∥ ≥ (

min
1≤α≤n−1

d (Iα, Iα+1)
)

t +
r0

2
, t ∈ (0,+∞). (1.6)

Theorem 1.2. Assume that Zα = {(xαi, vαi,Tαi)}
Nα
i=1 is a solution to system (1.4). Suppose that (H)

holds. Then, it follows that for t ∈ (0,+∞):
1. (Velocity alignment for each cluster group)

DV(t) ≤DV(0) exp (−Λ0t) +
2κ1(n − 1)N

T∞mΛ0(N − 1)
exp

(
−
Λ0

2
t
)
ϕ
(r0

2

)
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+
2κ1(n − 1)N

T∞mΛ0(N − 1)
ϕ

(
(min1≤α≤n−1 d (Iα, Iα+1)) t + r0

2

)
. (1.7)

2. (Temperature equilibrium for each cluster group)

DT (t) ≤DT (0) exp
(
−Λ̄0t

)
+

2κ2(n − 1)N
N − 1

(
1

T∞m
−

1
T∞M

)
exp

(
−
Λ̄0

2
t
)
ζ
(r0

2

)
+

2κ2(n − 1)N
N − 1

(
1

T∞m
−

1
T∞M

)
ζ

(
(min1≤α≤n−1 d (Iα, Iα+1)) t + r0

2

)
. (1.8)

Remark 1.1. It is evident that Theorems 1.1 and 1.2 demonstrate that system (1.4) exhibits the
phenomenon of multi-cluster flocking.

Theorem 1.3. Assume that Zα := {(xαi, vαi,Tαi)}
Nα
i=1 is a solution to system (1.4). Then, under the

sufficient frameworks (H), there exist some strictly positive convergence constants V1, V2 and T1, T2

that satisfy the subsequent criteria for t ∈ (0,+∞).
1. (Velocity convergence value for each cluster group) If we define v∞α := lim

t→∞
vcen
α , then the existence

of v∞α is guaranteed, and the two values V1 and V2 satisfy the following inequality for all α ∈ [n] and
iα ∈ [Nα].

V1

tλ−1 ≤

n∑
α=1

∥∥∥vαiα(t) − v∞α
∥∥∥ ≤ V2

tλ−1 , t → ∞. (1.9)

2. (Temperature convergence value for each cluster group) If we define T∞α := lim
t→∞

T cen
α , then the

existence of T∞α is guaranteed, and the two values T1 and T2 satisfy the following inequality for all
α ∈ [n] and iα ∈ [Nα].

T1

tµ−1 ≤

n∑
α=1

∥∥∥Tαiα(t) − T∞α
∥∥∥ ≤ T2

tµ−1 , t → ∞. (1.10)

Remark 1.2. In [18], Ahn proved that when the communication weights ϕ and ζ are standard kernels,
which are non-negative, bounded, locally Lipschitz continuous, monotonically decreasing, and
integrable, the multi-cluster flocking of the system (1.4) is exhibited under some sufficient framework.
However, when the communication weights ϕ and ζ are singular kernels, they will blow up as r
approaches 0, meaning they will not be bounded and integrable over the interval (0,+∞). In [19],
Ahn et al. proved the mono-cluster flocking of system (1.4) under the singular kernel. However, the
multi-cluster flocking of system (1.4) under a singular kernel remains unexplored. In this article, by
employing a new sufficient framework, we address the non-regularity of the singular kernel at r = 0
and obtain the multi-cluster flocking of the system (1.4) under the singular kernels based on the work
of [19].

This article is organized as follows. In Section 2, several basic results of the TCSUS model are
briefly reviewed initially. Subsequently, some previous results related to the TCSUS model under a
singular kernel in [19] are reviewed to prepare for the proof of multi-cluster flocking. In Section 3,
several fundamental frameworks for achieving multi-cluster flocking in system (1.4) with a strongly
singular kernel are provided, and appropriate dissipative differential inequalities for position, velocity,
and temperature are derived. Then, by using self-consistent parameters for these inequalities, we derive
sufficient conditions to ensure multi-cluster flocking of system (1.4) based on initial data and system
parameters.
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2. Preliminaries

This section reviews several basic results for the TCSUS to guarantee its multi-cluster flocking.
These estimates will be crucial throughout this paper.

2.1. Basic estimates

Proposition 2.1. For τ ∈ (0,+∞), let (X,V,T ) be a solution to system (1.4) in the time-interval (0, τ).
Then, the following assertions hold:

(1) (Conservation laws): The modulus of velocities and the total sum of temperatures are conserved.

d
dt

n∑
α=1

Nα∑
αi=1

Tαi(t) = 0, ||vαi(t)|| = 1, t ∈ (0, τ).

(2) (Monotonicity of temperature): External temperatures Tm(t) and TM(t) are monotonically
increasing and decreasing, respectively, and one has positivity and uniform boundedness.

0 < T∞m ≤ Tαi(t) ≤ T∞M , α ∈ [n], i ∈ [Nα], t ∈ [0, τ).

(3) (Monotonicity of A(v)): If the initial data satisfies that A(v0) := min⟨v0
αi, v

0
β j⟩ > 0, then A(v) is

monotonically increasing: If 0 ≤ s ≤ t < τ, then 0 < A(v0) ≤ A(v)(s) ≤ A(v)(t) ≤ 1.

Proof. (1) To demonstrate speed conservation, we take the inner product of the second equation in
system (1.4) with 2vαi to obtain〈

2vαi,
dvαi

dt

〉
=

2κ1
N − 1

Nα∑
j=1
j,i

ϕ(||xαi − xα j||)
(
⟨vαi, vα j⟩

Tα j
−
⟨vαi, vα j⟩⟨vαi, vαi⟩

Tα j||vαi||
2

)

+
2κ1

N − 1

∑
β,α

Nβ∑
j=1

ϕ(||xαi − xβ j||)
(
⟨vβ j, vαi⟩

Tβ j
−
⟨vαi, vβ j⟩⟨vαi, vαi⟩

Tβ j||vαi||
2

)
= 0.

This implies that
d||vαi||

2

dt
= 0, i.e., ||vαi(t)|| = ||vαi(0)|| = 1. Then, we employ ζ(||xi − x j||) = ζ(||x j − xi||)

and exchange αi↔ α j and αi↔ β j respectively to get

d
dt

n∑
α=1

Nα∑
αi=1

Tαi(t) =
κ2

N − 1

n∑
α=1

Nα∑
αi=1

Nα∑
j=1
j,i

ζ(||xαi − xα j||)(
1

Tαi
−

1
Tα j

)

+
κ2

N − 1

n∑
α=1

Nα∑
αi=1

∑
β,α

Nβ∑
j=1

ζ(||xαi − xβ j||)(
1

Tαi
−

1
Tβ j

),

=
κ2

N − 1

n∑
α=1

Nα∑
α j=1

Nα∑
i=1
i, j

ζ(||xα j − xαi||)(
1

Tα j
−

1
Tαi

)

+
κ2

N − 1

n∑
β=1

Nβ∑
β j=1

∑
α,β

Nα∑
i=1

ζ(||xα j − xβi||)(
1

Tβ j
−

1
Tαi

) = 0. (2.1)
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(2) We induce that αtit depends on time t ∈ [0, τ) satisfying Tm(t) = Tαtit(t), and then we have

dTαtit

dt
=
κ2

N − 1

Nαt∑
j=1
j,i

ζ(||xαtit − xαt j||)︸            ︷︷            ︸
>0

(
1

Tαtit
−

1
Tαt j

)︸          ︷︷          ︸
≥0

+
κ2

N − 1

∑
β,αt

Nβ∑
j=1

ζ(||xαtit − xβ j||)︸           ︷︷           ︸
>0

(
1

Tαtit
−

1
Tβ j

)︸         ︷︷         ︸
≥0

.

Therefore,
dTαtit

dt
≥ 0, i.e., Tm(t) is increasing. By the same token, we get that TM(t) is decreasing. This

implies that 0 < T∞m ≤ Tαi(t) ≤ T∞M , α ∈ [n], i ∈ [Nα], t ∈ [0, τ).
(3) We split the proof into two steps:
• First, we show that the functional A(v) is strictly positive in the time interval (0, τ), A(v) > 0.

• Second, we verify that in the time interval (0, τ),
d
dt

A(v) ≥ 0.
Step A: For fixed t ∈ (0, τ), we choose two indices αtit, βt jt (α, β ∈ [n], i ∈ [Nα], j ∈ [Nβ]) such that

⟨vαtit , vβt jt⟩ = A(v)(t). Then, we define a temporal set S 1 and its supremum τ∗1 as

S 1 := {t ∈ (0, τ)|A(v)(t) > 0}, τ∗1 := sup S 1.

Since A(v0) > 0, and A(v) is continuous, the set S 1 is an open set, and 0 < τ∗1 ≤ τ. Next, we claim
τ∗1 = τ.

Suppose the contrary holds, i.e., τ∗1 < τ, which implies A(v)(τ∗1 − 0) = 0. We differentiate A(v) with
respect to time t ∈ (0, τ∗1) to find

d
dt

A(v) = ⟨v̇αtit , vβt jt⟩ + ⟨vαtit , v̇βt jt⟩

=
κ1

N − 1

Nαt∑
j=1
j,it

ϕ(||xαtit − xα j||)
(
⟨vα j, vβt jt⟩ − ⟨vαtit , vα j⟩⟨vαtit , vβt jt⟩

Tαt j

)

+
κ1

N − 1

∑
β,αt

Nβ∑
j=1

ϕ(||xαtit − xβ j||)
(
⟨vβt jt , vβ j⟩ − ⟨vαtit , vβ j⟩⟨vαtit , vβt jt⟩

Tβ j

)

+
κ1

N − 1

Nβt∑
j=1
j, jt

ϕ(||xβt jt − xβt j||)
(
⟨vαtitvβt j⟩ − ⟨vβt jt , vβt j⟩⟨vαtitvβt jt⟩

Tβt j

)

+
κ1

N − 1

∑
β,βt

Nβ∑
j=1

ϕ(||xβt jt − xβ j||)
(
⟨vαtitvβ j⟩ − ⟨vβt jt , vβ j⟩⟨vαtitvβt jt⟩

Tβ j

)
. (2.2)

For any vαi, vβ j which are the components of V , the unit-speed constraint yields

|⟨vαi, vβ j⟩| ≤ ||vαi|| · ||vβ j|| ≤ 1.

Thus, the positivity and minimality of A(v) lead to

⟨vγk, vβt jt⟩ ≥ A(v) := ⟨vαtit , vβt jt⟩ ≥ ⟨vαtit , vβt jt⟩⟨vαtit , vγk⟩

and
⟨vγk, vαtit⟩ ≥ A(v) := ⟨vαtit , vβt jt⟩ ≥ ⟨vαtit , vβt jt⟩⟨vβt jt , vγk⟩, ∀γ ∈ [n].
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Since each temperature is bounded below by a positive constant, each summand of Eq (2.2) is non-

negative, and one has
d
dt

A(v) ≥ 0, t ∈ (0, τ∗1). Therefore, A(v)(τ∗1 − 0) ≥ A(v)(0) > 0, which is
contradictory to A(v)(τ∗1 − 0) = 0. Finally, we have τ∗1 = τ and A(v) > 0, t ∈ (0, τ).

Step B: It follows from Eq (2.2) that
d
dt

A(v) ≥ 0, t ∈ (0, τ). □

Remark 2.1. Based on Proposition 2.1, it can be immediately inferred that the system (1.4) can be
simplified into the following system:

dxαi

dt
= vαi, t > 0, i ∈ [Nα] := {1, 2, · · · ,Nα}, α ∈ [n] := {1, 2, · · · n}, n ≥ 3,

dvαi

dt
=
κ1

N − 1

Nα∑
j=1
j,i

ϕ(||xαi − xα j||)
(
vα j − ⟨vαi, vα j⟩vαi

Tα j

)
+
κ1

N − 1

∑
β,α

Nβ∑
j=1

ϕ(||xαi − xβ j||)
(
vβ j − ⟨vαi, vβ j⟩vαi

Tβ j

)

dTαi

dt
=
κ2

N − 1

Nα∑
j=1
j,i

ζ(||xαi − xα j||)(
1

Tαi
−

1
Tα j

) +
κ2

N − 1

∑
β,α

Nβ∑
j=1

ζ(||xαi − xβ j||)(
1

Tαi
−

1
Tβ j

),

(xαi(0), vαi(0),Tαi(0)) = (x0
αi, v

0
αi,T

0
αi) ∈ R

d × Sd−1 × (0,+∞).

2.2. Previous results

In this subsection, we will give some previous results about the mono-cluster flocking of system
(1.3) under a singular kernel. These results are necessary for later sections.

Definition 2.1. We suppose that t0 ∈ (0,+∞) is the first collision time of the system (1.3) ensemble,
and the l − th particle is one of the such colliding particles at time t0. Then, we denote by [l] the
collection of all particles colliding with the l − th particle at time t0,

[l] := {i ∈ [N]| lim
t→t0−
||xi(t) − xl(t)|| = 0}.

For ∀t ∈ [0, t0) and ∀i < [l], we define the constant δ such that δ is a strictly positive real number
satisfying ||xl(t) − xi(t)|| ≥ δ > 0. Then, we define the following L∞− diameters as follows:

DX,[l] := max
i, j∈[l]
||xi − x j||, DV,[l] := max

i, j∈[l]
||vi − v j||, A[l](v) := min

i, j∈[l]
⟨vi, v j⟩.

Proposition 2.2. [19] Let (X,V,T ) be a solution to system (1.3). If A(v0) > 0, then sub-ensemble
diameters satisfy the following system of dissipative differential inequalities: For a.e. t ∈ (0, t0),

∣∣∣∣∣ d
dt

DX,[l]

∣∣∣∣∣ ≤ DV,[l], t > 0,

d
dt

DV,[l] ≤ −
κ1|[l]|A[l](v0)
(N − 1)T∞M

ϕ(DX,[l])DV,[l] +
4κ1(N − |[l]|)ϕ(δ)

(N − 1)T∞m
, t > 0,

dDT

dt
≤
κ2(N − 2)ζ(DX)
(N − 1)(T∞M)2 DT .

(2.3)

Proposition 2.3 (Collision avoidance). [19] We suppose that communication weight and initial data
satisfy λ > 1, A(v0) > 0, min

1≤i, j≤N
||xi(0) − x j(0)|| > 0, and let (X,V,T ) be a solution to the system (1.3).

Then, collision avoidance occurs, i.e., xi(t) , x j(t) (i , j, i, j ∈ [N], t ≥ 0).
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Proposition 2.4. [19] We suppose that communication weight and initial data satisfy the following
conditions:

(1) The parameter λ and initial configuration satisfy λ > 1, A(v0) > 0, min
1≤i, j≤N

||xi(0) − x j(0)|| > 0.

(2) If there exists a positive constant D∞X such that DX(0) +
DV(0)T∞M
κ1A(v0)ϕ(D∞X )

< D∞X and (X,V,T ) is a

solution to system (1.3), then thermodynamic flocking emerges asymptotically:

(i) sup
0≤t<+∞

DX(t) ≤ D∞X , DV(t) ≤ DV(0) exp
(
−
κ1A(v0)ϕ(D∞X )

T∞M

)
.

(ii) DT (t) ≤ DT (0) exp
(
−
κ2ζ(D∞X )(N − 2)
|T∞M |2(N − 1)

)
.

(iii) (A uniform positive lower bound for relative distances) We suppose that

DV(0) ≤
κ1A(v0)

T∞M

∫ D∞X

DX(0)
ϕ(s)ds holds, and (X,V,T ) is a global solution of the system (1.3). Then, there

exists a strictly positive lower bound for the relative spatial distances, i.e.,
δ0 := inf

0≤t≤∞
min

1≤i, j≤N
||xi(t) − x j(t)|| > 0.

3. Multi-cluster flocking of TCSUS

In this section, we derive suitable dissipative differential inequalities initially with respect to
position, velocity, and temperature. By employing a bootstrapping technique with these inequalities,
we apply appropriate sufficient conditions based on the initial conditions and system parameters to
ensure multi-cluster flocking within system (1.4).

3.1. Dissipative structure

In the following, we derive several dissipative differential inequalities with respect to
position-velocity-temperature to establish adequate frameworks based on system parameters and
initial conditions.

Lemma 3.1 (Dissipative structure). Assume that Zα = {(xαi, vαi,Tαi)}
Nα
i=1 is a solution to the system

(1.4). We define ϕM(t) := max
α,β,i, j

ϕ(∥xβ j − xαi∥) and ζM(t) := max
α,β,i, j

ζ(∥xβ j − xαi∥).

Then, we have the following three differential inequalities for a.e. t ∈ (0,+∞):

1.
∣∣∣∣∣dDX

dt

∣∣∣∣∣ ≤ DV ,

2.
dDT

dt
≤ −
κ2(min(N1, · · · ,Nα) − 2)ζ(DX)

(N − 1)(T∞M)2 DT +
2κ2(n − 1)N

N − 1
ζM(

1
T∞m
−

1
T∞M

),

3.
dDV

dt
≤ −
κ1 min(N1, . . . ,Nα)A(v0)ϕ(DX)

(N − 1)T∞M
DV +

2κ1(n − 1)NϕM

(N − 1)T∞m
.

Proof. The first assertion follows directly from the Cauchy-Schwarz inequality. To prove the second
assertion, we select two indices, Mt and mt depending on t, such that

DTα(t) = TαMt(t) − Tαmt(t), 1 ≤ mt,Mt ≤ Nα.

Then, for a.e. t ∈ (0,+∞), one can show that by using the definitions of Mt and mt,
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dDTα

dt
=
κ2

N − 1

Nα∑
j=1
j,i

ζ(∥xαMt − xα j∥)(
1

TαMt

−
1

Tα j
) −

κ2
N − 1

Nα∑
j=1
j,i

ζ(∥xαmt − xα j∥)(
1

Tαmt

−
1

Tα j
)

+
κ2

N − 1

∑
β,α

Nβ∑
j=1

ζ(∥xαMt − xβ j∥)(
1

TαMt

−
1

Tβ j
) −

κ2
N − 1

∑
β,α

Nβ∑
j=1

ζ(∥xαmt − xβ j∥)(
1

Tαmt

−
1

Tβ j
)

=: I1 + I2 + I3 + I4.

(i) (Estimate of I1 + I2) In the same method as the proof of Proposition 2.2, the following inequality
holds for a.e. t ∈ (0,+∞):

I1 + I2 ≤ −
κ2(Nα − 2)ζ(DXα)

(N − 1)(T∞M)2 DTα .

(ii) (Estimate of I3+I4) From Proposition 2.1 and the definitions of ζM and ζm, we derive the following
inequality for a.e. t ∈ (0,+∞):

I3 + I4 ≤
κ2

N − 1

∣∣∣∣∣∣∣∑
β,α

Nβ∑
j=1

ζ(∥xαMt − xβ j∥)(
1

TαMt

−
1

Tβ j
)

∣∣∣∣∣∣∣ + κ2
N − 1

∣∣∣∣∣∣∣∑
β,α

Nβ∑
j=1

ζ(∥xαmt − xβ j∥)(
1

Tαmt

−
1

Tβ j
)

∣∣∣∣∣∣∣
≤

2κ2(N − Nα)ζM
N − 1

(
1

T∞m
−

1
T∞M

).

Thus, combining I1 + I2 and I3 + I4 yields that, for a.e. t ∈ (0,+∞),
dDTα

dt
≤ −
κ2(Nα − 2)ζ(DXα)

(N − 1)(T∞M)2 DTα +
2κ2(N − Nα)ζM

N − 1
(

1
T∞m
−

1
T∞M

).

Therefore, summing for α from 1 to n to the above inequality, we obtain that for a.e. t ∈ (0,+∞),
dDT

dt
≤ −
κ2(min(N1, · · · ,Nα) − 2)ζ(DX)

(N − 1)(T∞M)2 DT +
2κ2(n − 1)N

N − 1
ζM(

1
T∞m
−

1
T∞M

).

To verify the third assertion, we select two indices Mt and mt depending on t which satisfy

DVα(t) = ∥vαMt(t) − vαmt(t)∥, 1 ≤ mt,Mt ≤ Nα.

Hence, we attain that for a.e. t ∈ (0,+∞),

1
2

dD2
Vα

dt
=

〈
vαMt − vαmt , v̇αMt − ˙vαmt

〉
=

〈
vαMt − vαmt ,

κ1
N − 1

Nα∑
j=1

ϕαMt j

( (vα j − ⟨vαMt , vα j⟩vαMt)
Tα j

)
−
κ1

N − 1

Nα∑
j=1

ϕαmt j

( (vα j − ⟨vαmt , vα j⟩vαmt)
Tα j

)〉
+

〈
vαMt − vαmt ,

κ1
N − 1

∑
β,α

Nα∑
j=1

ϕ(||xαMt−xβ j ||)
( (vβ j − ⟨vαMt , vβ j⟩vαMt)

Tβ j

)
−
κ1

N − 1

∑
β,α

Nα∑
j=1

ϕ(||xαmt−xβ j ||)
( (vβ j − ⟨vαmt , vβ j⟩vαmt)

Tβ j

)〉
=: J1 + J2.
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(iii) (Estimate of J1) Replacing [l] with [Nα] and in the same method as the proof of Proposition
2.2, for a.e. t ∈ (0,+∞), we have

J1 ≤ −
κ1NαA(v0)
(N − 1)T∞M

ϕ(DXα)D
2
Vα .

(iv) (Estimate of J2) We employ the identities

||vβ j − ⟨vαMt , vβ j⟩vαMt || ≤ 1, ||vβ j − ⟨vαmt , vβ j⟩vαmt || ≤ 1

with the Cauchy-Schwarz inequality and Proposition 2.3 to estimate that for a.e. t ∈ (0,+∞),

J2 ≤
κ1DVα

N − 1

∣∣∣∣∣∣∣∣∣∣∑
β,α

Nβ∑
j=1

ϕ(||xαMt − xβ j||)
(vβ j − ⟨vαMt , vβ j⟩vαMt

Tβ j

)∣∣∣∣∣∣∣∣∣∣
+
κ1DVα

N − 1

∣∣∣∣∣∣∣∣∣∣∑
β,α

Nβ∑
j=1

ϕ(||xαmt − xβ j||)
(vβ j − ⟨vαmt , vβ j⟩vαmt

Tβ j

)∣∣∣∣∣∣∣∣∣∣ ≤ 2κ1(N − Nα)ϕMDVα

(N − 1)T∞m
.

Then, we combine J1 and J2 to derive that for a.e. t ∈ (0,+∞),

dDVα

dt
≤ −
κ1NαA(v0)
(N − 1)T∞M

ϕ(DXα)DVα +
2κ1(N − Nα)ϕM

(N − 1)T∞m
.

Summing the above inequality from α = 1 to n, we obtain that

dDV

dt
≤ −
κ1 min(N1, . . . ,Nα)A(v0)ϕ(DX)

(N − 1)T∞M
DV +

2κ1(n − 1)NϕM

(N − 1)T∞m
,

since the monotonicity of ϕ implies that min(ϕ(DX1), . . . , ϕ(DXα)) ≥ ϕ(DX). Finally, we demonstrate
the third assertion. □

3.2. Multi-cluster flocking

The proofs of Theorems 1.1–1.3 are presented in this subsection. First of all, we give a brief
comment regarding (H).

The assumption (H1) is the sufficient condition which guarantees group formation within each
cluster. The assumption (H2) implies that the initial positions for each cluster group should be
sufficiently separated from each other to achieve a multi-cluster flocking result. In fact, if vk

αi(0) is
covered by Iα := [aα, bα], then we can take sufficiently small κ1 such that
[vk
αi(0) − Λα, vk

αi(0) + Λα] ⊂ Iα because Λα is linearly proportional to κ1.
The assumption (H3) ensures that a uniformly strictly positive lower bound exists for relative

distances. Here, we can find the admissible data meeting the assumption (H3) requirements when κ1
is sufficiently small. Moreover, under sufficiently large r0, suitable temperature initial data and small
coupling strength regime, we can check that the sufficient framework (H) is admissible data.

Lemma 3.2. Assume that Zα = {(xαi, vαi,Tαi)}
Nα
i=1 is a solution to the system (1.4) and suppose that (H)

holds. We define the following set:

S 2 :=
{
s > 0

∣∣∣∣∣ min
α,β,i, j

||xαi(t) − xβ j(t)|| ≥
(

min
1≤α≤n−1

d(Iα, Iα+1)
)
t +

r0

2
, t ∈ [0, s)

}
.
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Then, S 2 is nonempty, and it follows that DX(t) ≤ D∞X , t ∈ [0,T ∗], where T ∗ := sup S 2.

Proof. We observe that S 2 is nonempty due to the assumption (H2) and the continuity of ||xαi(t)−xβ j(t)||.
Then, we just need to prove DX(t) ≤ D∞X , t ∈ [0,T ∗]. First of all, we consider the following set:

S 3 :=
{
s > 0 | ∀t ∈ [0, s],DX(t) ≤ D∞X , s ≤ T ∗

}
. (3.1)

We set sup S 3 =: T ∗∗. Then, we have DX(T ∗∗) = D∞X and suppose that T ∗∗ < T ∗ for the proof by
contradiction. Then, for ∀t ∈ [0,T ∗∗], one has

−
κ1 min (N1, · · · ,Nα) ϕ (DX)

(N − 1)T∞M
≤ −
κ1 min (N1, · · · ,Nα) ϕ

(
D∞X

)
(N − 1)T∞M

. (3.2)

Thus, for a.e. t ∈ (0,T ∗∗), the second assertion of Lemma 3.1 and the above estimates lead to the
following inequalities:

dDV

dt
≤ −
κ1 min (N1, · · · ,Nα) A(v0)ϕ (DX)

(N − 1)T∞M
DV +

2κ1(n − 1)NϕM

(N − 1)T∞m

≤ −
κ1 min (N1, · · · ,Nα) A(v0)ϕ

(
D∞X

)
(N − 1)T∞M

DV +
2κ1(n − 1)NϕM

(N − 1)T∞m

= −Λ0DV +
2κ1(n − 1)NϕM

(N − 1)T∞m
. (3.3)

For t ∈ [0,T ∗∗], we integrate inequality (3.3) from time 0 to t through multiplying both sides of the
inequality by the integral factor exp (Λ0t).

DV(t) ≤ DV(0) exp (−Λ0t) +
∫ t

0

2κ1(n − 1)NϕM

(N − 1)T∞m
exp

(
Λ0(s − t)

)
ds

= DV(0) exp (−Λ0t) +
∫ t

2

0
+

∫ t

t
2

 2κ1(n − 1)NϕM

(N − 1)T∞m
exp

(
Λ0(s − t)

)
ds

≤ DV(0) exp (−Λ0t) +
2κ1(n − 1)N

(N − 1)Λ0T∞m
ϕ
(r0

2

) [
exp

(
−
Λ0

2
t
)
− exp (−Λ0t)

]
+

2κ1(n − 1)N
(N − 1)Λ0T∞m

ϕ

(
(min1≤α≤n−1 d (Iα, Iα+1)) t + r0

2

) [
1 − exp

(
−
Λ0

2
t
)]

≤ DV(0) exp (−Λ0t) +
2κ1(n − 1)N

(N − 1)Λ0T∞m
ϕ
(r0

2

)
exp

(
−
Λ0

2
t
)

+
2κ1(n − 1)N

(N − 1)Λ0T∞m
ϕ

(
(min1≤α≤n−1 d (Iα, Iα+1)) t + r0

2

)
, (3.4)

where we used the definition of S 3 and the fact that ϕM ≤ ϕ
((

min
1≤α≤n−1

d (Iα, Iα+1)
)

t +
r0

2

)
.

In the latter case, we estimate from inequality (3.4) that for t ∈ [0,T ∗∗],

DX(t) ≤DX(0) +
∫ t

0
DV(s)ds
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≤DX(0) +
∫ t

0

[
DV(0) exp (−Λ0s) +

2κ1N(n − 1)
(N − 1)T∞mΛ0

exp
(
−
Λ0

2
s
)
ϕ
(r0

2

)
+

2κ1N(n − 1)
(N − 1)T∞mΛ0

ϕ

(
(min1≤α≤n−1 d (Iα, Iα+1)) s + r0)

2

)]
ds

<DX(0) + Λ ≤ D∞X . (3.5)

Accordingly, DX (T ∗∗) < D∞X , which is contradictory to DX(T ∗∗) = D∞X . Finally, sup S 3 = T ∗∗ = T ∗.
We have reached the desired lemma. □

Proof of Theorem 1.1. Following Lemma 3.2, we just need to prove that T ∗ = ∞, which is equivalent
to

min
α,β,i, j

∥∥∥xαi(t) − xβ j(t)
∥∥∥ ≥ (

min
1≤α≤n−1

d (Iα, Iα+1)
)

t +
r0

2
, t ∈ (0,+∞). (3.6)

For the proof by contradiction, we suppose that T ∗ < ∞. From the definition of S 2, we select four
indices that satisfy

1 ≤ α∗ < β∗ ≤ n, i∗ ∈ {1, · · · ,Nα∗} and j∗ ∈
{
1, · · · ,Nβ∗

}
(3.7)

such that ∥∥∥xα∗i∗ (T ∗) − xβ∗ j∗ (T ∗)
∥∥∥ = (

min
1≤α≤n−1

d (Iα, Iα+1)
)

T ∗ +
r0

2
. (3.8)

Then, we show that for the k ∈ {1, · · · , d} chosen in (H0) ,∥∥∥xα∗i∗ (T ∗) − xβ∗ j∗ (T ∗)
∥∥∥ ≥ xk

β∗ j∗ (T ∗) − xk
αi∗ (T ∗)

= xk
β∗ j∗(0) − xk

α∗i∗(0) +
∫ T ∗

0

(
vk
β∗ j∗(t) − vk

α∗i∗(t)
)

dt

≥ r0 +

∫ T ∗

0

(
vk
β∗ j∗(t) − vk

α∗i∗(t)
)

dt.

From the third assertion of Proposition 2.3, we set a positive number δ0 such that
δ0 := inf

0≤t≤∞
min

1≤i, j≤N
||xi(t) − x j(t)|| > 0.

Next, we integrate the second equation of system (1.4) and employ the following relation:

1 − ⟨vαi, vα j⟩ =
||vαi − vα j||

2

2

and ∥∥∥∥vα j −
〈
vαi, vα j

〉
vαi

∥∥∥∥2
= 1 −

〈
vαi, vα j

〉2
=

(
1 −

〈
vαi, vα j

〉) (
1 +

〈
vαi, vα j

〉)
≤ D2

Vα

to attain that for t ∈ [0,T ∗],∣∣∣vk
αi(t) − vk

αi(0)
∣∣∣ ≤ ∥vαi(t) − vαi(0)∥ ≤

∫ t

0
∥v̇αi∥ ds

≤
κ1(Nα − 1)ϕ(δ0)

(N − 1)T∞m

∫ t

0
DVα(s)ds +

κ1 (N − Nα)
(N − 1)T∞m

∫ t

0
ϕM(s)ds

≤
κ1(Nα − 1)ϕ(δ0)

(N − 1)T∞m
DVα(s)ds +

κ1 (N − Nα)
(N − 1)T∞m

∫ ∞

0
ϕ
(

min
1≤α≤n−1

d (Iα, Iα+1) s +
r0

2

)
ds
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≤
κ1(Nα − 1)ϕ(δ0)

(N − 1)T∞m
DV(s)ds +

κ1 (N − Nα)
(N − 1)T∞m

∫ ∞

0
ϕ
(

min
1≤α≤n−1

d (Iα, Iα+1) s +
r0

2

)
ds

≤
κ1(Nα − 1)ϕ(δ0)

(N − 1)T∞m
Λ +
κ1 (N − Nα)
(N − 1)T∞m

∫ ∞

0
ϕ
(

min
1≤α≤n−1

d (Iα, Iα+1) s +
r0

2

)
ds

=
κ1(Nα − 1)ϕ(δ0)

(N − 1)T∞m
Λ +

κ1 (N − Nα)
(N − 1)T∞m (min1≤α≤n−1 d (Iα, Iα+1))

∫ ∞

r0
2

ϕ(s)ds =: Λα,

where we used ϕ ≤ ϕ(δ0),
∥∥∥∥vβ j −

〈
vαi, vβ j

〉
vαi

∥∥∥∥ ≤ 1, and Λ was estimated in inequality (3.5). Therefore,
it follows by (H2) that for α = 1, · · · , n,

vk
αi(0) + Λα ≥ vk

αi(0) +
∣∣∣vk
αi(t) − vk

αi(0)
∣∣∣ ≥ vk

αi(t) = vk
αi(0) + vk

αi(t) − vk
αi(0)

≥ vk
αi(0) −

∣∣∣vk
αi(t) − vk

αi(0)
∣∣∣ ≥ vk

αi(0) − Λα =⇒ vk
αi(t) ∈ Iα.

By using the assumption (H2), we derive that

∥∥∥xα∗i∗ (T ∗) − xβ∗ j∗ (T ∗)
∥∥∥ ≥ r0 +

∫ T ∗

0

(
vk
β∗ j∗(t) − vk

α∗i∗(t)
)

dt

>
r0

2
+ min

1≤α≤n−1
d (Iα, Iα+1) T∗,

which gives a contradiction to T ∗ < ∞. Consequently, we conclude that T ∗ = ∞. Subsequently, we
claim that T ∗ = ∞, which is crucial to derive the multi-cluster flocking estimate of the system (1.4). □

Proof of Theorem 1.2. We apply the second assertion of Lemma 3.1, the definition of the set S 2 , and
Theorem 1.1 to have that for a.e. t ∈ (0,+∞),

dDV

dt
≤ −Λ0DV +

2κ1(n − 1)N
T∞m (N − 1)

ϕM

≤ −Λ0DV +
2κ1(n − 1)N
T∞m (N − 1)

ϕ
(r0

2
+ min

1≤α≤n−1
d (Iα, Iα+1) t

)
. (3.9)

Similar to inequality (3.4), we recall that for t ∈ (0,+∞),

DV(t) ≤DV(0) exp (−Λ0t) +
2κ1(n − 1)N

T∞mΛ0(N − 1)
exp

(
−
Λ0

2
t
)
ϕ
(r0

2

)
+

2κ1(n − 1)N
T∞mΛ0(N − 1)

ϕ

(
(min1≤α≤n−1 d (Iα, Iα+1)) t + r0

2

)
. (3.10)

Hence, we reach the desired first assertion.
To prove the second assertion, we employ the third assertion of Lemma 3.1 and Theorem 1.1 to get

that for t ∈ (0,+∞),

dDT

dt
≤ −
κ2(min (N1, · · · ,Nα) − 2)ζ (DX)

(N − 1)
(
T∞M

)2 DT +
2κ2(n − 1)N

N − 1
ζM

(
1

T∞m
−

1
T∞M

)

≤ −Λ̄0DT +
2κ2(n − 1)N

N − 1

(
1

T∞m
−

1
T∞M

)
ζ
((

min
1≤α≤n−1

d (Iα, Iα+1)
)

t +
r0

2

)
. (3.11)
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We use Gronwall’s lemma to yield that for t ∈ (0,+∞),

DT (t) ≤ DT (0) exp (−Λ̄0t) +
∫ t

0

2κ2(n − 1)NζM
N − 1

(
1

T∞m
−

1
T∞M

)
exp

(
Λ̄0(s − t)

)
ds

= DT (0) exp (−Λ̄0t) +
∫ t

2

0
+

∫ t

t
2

 2κ2(n − 1)NζM
N − 1

(
1

T∞m
−

1
T∞M

)
exp

(
Λ̄0(s − t)

)
ds

≤ DT (0) exp (−Λ̄0t) +
2κ2(n − 1)N

N − 1

(
1

T∞m
−

1
T∞M

)
ζ
(r0

2

) [
exp

(
−
Λ̄0

2
t
)
− exp (−Λ̄0t)

]
+

2κ2(n − 1)N
N − 1

(
1

T∞m
−

1
T∞M

)
ζ

(
(min1≤α≤n−1 d (Iα, Iα+1)) t + r0

2

) [
1 − exp

(
−
Λ̄0

2
t
)]

≤ DT (0) exp
(
−Λ̄0t

)
+

2κ2(n − 1)N
N − 1

(
1

T∞m
−

1
T∞M

)
exp

(
−
Λ̄0

2
t
)
ζ
(r0

2

)
+

2κ2(n − 1)N
N − 1

(
1

T∞m
−

1
T∞M

)
ζ

(
(min1≤α≤n−1 d (Iα, Iα+1)) t + r0

2

)
. (3.12)

We conclude the desired second assertion. □

As a direct consequence, we present the following result that the velocity and temperature of each
agent in each cluster group converge to some same non-negative value, respectively. We prove the
following lemma at first.

Lemma 3.3. Assume that Zα = {xαi, vαi,Tαi}
Nα
i=1 is a solution to the system (1.4). Each local average

(xcen
α , ν

cen
α ,T

cen
α ) then satisfies the following relations:

dxcen
α

dt
= vcen

α , t > 0, α ∈ {1, · · · , n}, n ≥ 3,

Nαv̇cen
α =

κ1
N − 1

∑
1≤i, j≤Nα

ϕ(∥xαi − xα j∥)
vαi∥vα j − vαi∥

2

2Tα j

+
κ1

N − 1

∑
β,α

Nα∑
i=1

Nβ∑
j=1

ϕ(∥xαi − xβ j∥)
(
vβ j − vαi +

vαi∥vα j − vαi∥
2

2

)
1

Tβ j
,

NαṪ cen
α =

κ2
N − 1

∑
β,α

Nα∑
i=1

Nβ∑
j=1

ζ(∥xαi − xβ j∥)(
1

Tαi
−

1
Tβ j

).

(3.13)

Proof. The first assertion is trivial. For the second assertion, we take
∑Nα

i=1 to v̇αi and use the standard
trick of interchanging i and j to obtain that

∥vαi − vα j∥
2

2
=

1
2
⟨vαi − vα j, vαi − vα j⟩

=
1
2

(
⟨vαi, vαi⟩ + ⟨vα j, vα j⟩ − 2⟨vαi, vα j⟩

)
= 1 − ⟨vαi, vα j⟩. (3.14)

Therefore, we have

Nαv̇cen
α =

κ1
N − 1

∑
1≤i, j≤Nα

ϕ(||xαi − xα j||)
(
vα j − vαi + vαi − ⟨vαi, vα j⟩vαi

Tα j

)
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+
κ1

N − 1

∑
β,α

Nα∑
i=1

Nβ∑
j=1

ϕ(||xαi − xβ j||)
(
vβ j − vαi + vαi − ⟨vαi, vβ j⟩vαi

Tβ j

)

=
κ1

N − 1

∑
1≤i, j≤Nα

ϕ(∥xαi − xα j∥)
(
vα j − vαi +

vαi∥vα j − vαi∥
2

2

)
1

Tα j

+
κ1

N − 1

∑
β,α

Nα∑
i=1

Nβ∑
j=1

ϕ(∥xαi − xβ j∥)
(
vβ j − vαi +

vαi∥vα j − vαi∥
2

2

)
1

Tβ j

=
κ1

N − 1

∑
1≤i, j≤Nα

ϕ(∥xαi − xα j∥)
vαi∥vα j − vαi∥

2

2Tα j

+
κ1

N − 1

∑
β,α

Nα∑
i=1

Nβ∑
j=1

ϕ(∥xαi − xβ j∥)
(
vβ j − vαi +

vαi∥vα j − vαi∥
2

2

)
1

Tβ j
. (3.15)

For the third assertion, we take
∑Nα

i=1 to Ṫαi and again use the standard trick as above. Finally, we prove
the lemma. □

Proof of Theorem 1.3. According to Lemma 3.3,

Nαv̇cen
α =

κ1
N − 1

∑
1≤i, j≤Nα

ϕ
(∥∥∥xαi − xα j

∥∥∥) vαi

∥∥∥vα j − vαi

∥∥∥2

2Tα j

+
κ1

N − 1

∑
β,α

Nα∑
i=1

Nβ∑
j=1

ϕ
(∥∥∥xαi − xβ j

∥∥∥) vβ j − vαi +
vαi

∥∥∥vβ j − vαi

∥∥∥2

2

 1
Tβ j
, (3.16)

and thus we have

vcen
α (t) = vcen

α (0) +
κ1

(N − 1)Nα

∑
1≤i, j≤Nα

∫ t

0
ϕ
(∥∥∥xαi − xα j

∥∥∥) vαi

∥∥∥vα j − vαi

∥∥∥2

2Tα j
ds

+
κ1

(N − 1)Nα

∑
β,α

Nα∑
i=1

Nβ∑
j=1

∫ t

0
ϕ
(∥∥∥xαi − xβ j

∥∥∥) vβ j − vαi +
vαi

∥∥∥vβ j − vαi

∥∥∥2

2

 1
Tβ j

ds.

(3.17)

For ∀t1, t2 ∈ (0,+∞), we have∥∥∥vcen
α (t2) − vcen

α (t1)
∥∥∥

≤
κ1

(N − 1)Nα

∑
1≤i, j≤Nα

∫ t2

t1
ϕ
(∥∥∥xαi − xα j

∥∥∥) ∥vαi∥ ·
∥∥∥vα j − vαi

∥∥∥2

2Tα j
ds

+
κ1

(N − 1)Nα

∑
β,α

Nα∑
i=1

Nβ∑
j=1

∫ t2

t1
ϕ
(∥∥∥xαi − xβ j

∥∥∥) ∥∥∥vβ j − vαi

∥∥∥ + ∥vαi∥ ·
∥∥∥vβ j − vαi

∥∥∥2

2

 1
Tβ j

ds

≤
κ1

(N − 1)Nα

∑
1≤i, j≤Nα

∫ t2

t1
ϕ (δ0)

D2
V

2T∞m
ds +

κ1
(N − 1)Nα

∑
β,α

Nα∑
i=1

Nβ∑
j=1

∫ t2

t1
ϕ
(∥∥∥xαi − xβ j

∥∥∥) √2 + 1
T∞m

ds
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≤
Cκ1ϕ (δ0)

2T∞m (N − 1)Nα

∑
1≤i, j≤Nα

∫ t2

t1
ϕ2

(
(min1≤α≤n−1 d (Iα, Iα+1)) s + r0

2

)
ds

+
(
√

2 + 1)κ1
T∞m (N − 1)Nα

∑
β,α

Nα∑
i=1

Nβ∑
j=1

∫ t2

t1
ϕ
((

min
1≤α≤n−1

d (Iα, Iα+1)
)

s +
r0

2

)
ds. (3.18)

By employing the Cauchy convergence criterion and the existence of∫ ∞

0
ϕ
((

min
1≤α≤n−1

d (Iα, Iα+1)
)

s +
r0

2

)
ds and

∫ ∞

0
ϕ2

(
(min1≤α≤n−1 d (Iα, Iα+1)) s + r0

2

)
ds, it is

straightforward to observe that
∥∥∥vcen
α (t2) − vcen

α (t1)
∥∥∥ can be arbitrarily small when both t1 and t2 are

sufficiently large. Therefore, the existence of lim
t→∞

vcen
α (t) is guaranteed.

By employing v∞α := lim
t→∞

vcen
α (t) and

vcen
α = vcen

α (0) +
κ1

(N − 1)Nα

∑
1≤i, j≤Nα

∫ t

0
ϕ
(∥∥∥xαi − xα j

∥∥∥) vαi

∥∥∥vα j − vαi

∥∥∥2

2Tα j
ds

+
κ1

(N − 1)Nα

∑
β,α

Nα∑
i=1

Nβ∑
j=1

∫ t

0
ϕ
(∥∥∥xαi − xβ j

∥∥∥) vβ j − vαi +
vαi

∥∥∥vβ j − vαi

∥∥∥2

2

 1
Tβ j

ds,

we have that

∥∥∥vcen
α (t) − v∞α

∥∥∥ ≤ κ1
(N − 1)Nα

∑
1≤i, j≤Nα

∫ ∞

t
ϕ
(∥∥∥xαi − xα j

∥∥∥) ∥vαi∥ ·
∥∥∥vα j − vαi

∥∥∥2

2Tα j
ds

+
κ1

(N − 1)Nα

∑
β,α

Nα∑
i=1

Nβ∑
j=1

∫ ∞

t
ϕ
(∥∥∥xαi − xβ j

∥∥∥) ∥vβ j − vαi∥ +
∥vαi∥ ·

∥∥∥vβ j − vαi

∥∥∥2

2

 1
Tβ j

ds.

(3.19)

Then, the multi-flocking estimate studied in Theorem 1.1 and Theorem 1.2 and the monotonicity
and non-negativity of ϕ imply that∥∥∥vcen

α (t) − v∞α
∥∥∥ ≤ O

(∫ ∞

t
ϕ

(
(min1≤α≤n−1 d (Iα, Iα+1)) s + r0

2

)
ds

)
≤ O(1)

1
tλ−1 → 0, t → ∞. (3.20)

Drawing from from Theorem 1.1 and Theorem 1.2, we observe that∥∥∥vαi(t) − vcen
α (t)

∥∥∥ = O
(
exp

(
−
Λ0

2
t
)
+ ϕ

(
(min1≤α≤n−1 d (Iα, Iα+1)) s + r0

2

))
≤ O(1)

1
tλ
, t → ∞. (3.21)

We combine the above estimates to derive that for all α ∈ [n] and i ∈ [Nα],∥∥∥vαi(t) − v∞α
∥∥∥ ≤ ∥∥∥vcen

α (t) − v∞α
∥∥∥ + ∥∥∥vαi(t) − vcen

α (t)
∥∥∥

= O(1)
1

tλ−1 + O(1)
1
tλ
≤ O(1)

1
tλ−1 , t → ∞. (3.22)
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Conversely, it is evident that for ∀α, β ∈ [n], and ∀i ∈ [Nα], j ∈ [Nβ],∥∥∥xαi − xβ j

∥∥∥ ≤ ∥∥∥xαi(0) − xβ j(0)
∥∥∥ + ∫ t

0

∥∥∥vαi − vβ j

∥∥∥ dt

≤ R0 +

∫ t

0
DV(s)ds ≤ R0 + (DV(0) +C0) t, (3.23)

where C0 :=
4κ1(n − 1)N

T∞mΛ0(N − 1)
ϕ
(r0

2

)
. Therefore, the multi-flocking estimate studied in Theorem 1.2 and

the monotonicity and non-negativity of ϕ imply that for ∀α ∈ [Nα]∥∥∥vcen
α (t) − v∞α

∥∥∥ ≥ O
(∫ ∞

t
ϕ (R0 + (DV(0) +C0)t) ds − exp (−Λ0t)

)
≥ O(1)

1
tλ−1 → 0, t → ∞. (3.24)

Then, we combine the above estimates to derive that for all α ∈ [n] and i ∈ [Nα],∥∥∥vαi(t) − v∞α
∥∥∥ ≥ ∥∥∥vcen

α (t) − v∞α
∥∥∥ − ∥∥∥vαi(t) − vcen

α (t)
∥∥∥

=O(1)
1

tλ−1 − O(1)
1
tλ
≥ O(1)

1
tλ−1 , t → ∞. (3.25)

Finally, there exist 2n strictly positive values Vα1, Vα2 such that

Vα1

tλ−1 ≤
∥∥∥vαi(t) − v∞α

∥∥∥ ≤ Vα2

tλ−1 , α ∈ [n], i ∈ [Nα]. (3.26)

Therefore, there exist two strictly positive values V1, V2 such that for all α ∈ [n] and iα ∈ [Nα],

V1

tλ−1 ≤

n∑
α=1

∥∥∥vαiα(t) − v∞α
∥∥∥ ≤ V2

tλ−1 , t → ∞. (3.27)

Similar to the previous proof, the existence of T∞α can be demonstrated, and there exist two positive
values T1 and T2 such that for all α ∈ [n] and iα ∈ [Nα],

T1

tµ−1 ≤

n∑
α=1

∥∥∥Tαiα(t) − T∞α
∥∥∥ ≤ T2

tµ−1 , t → ∞. (3.28)

We conclude the desired results. □

4. Conclusion

This study provides proof for the fundamental properties and multi-cluster flocking behaviors of the
TCSUS system (1.4) under a singular kernel.
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Specifically, Propositions 2.1–2.4 establish the foundational characteristics of the TCSUS model
and present essential findings that facilitate the investigation of multi-cluster flocking within the
TCSUS framework. Lemma 3.1 establishes the dissipative structure of the TCSUS system as derived
from its configuration.

Subsequently, the bootstrapping technique is utilized to derive the multi-cluster flocking outcome
within a finite time interval. Furthermore, in Theorem 1.1, by enforcing particular initial velocity
conditions and applying bootstrapping methods, we ascertain that the divergence rate of distinct
clusters is bounded below by a linear function of time.

Theorem 1.2 provides estimates of the position-velocity-temperature L∞-diameters for all cluster
groups by using Gronwall inequalities. Consequently, it is also demonstrated that the velocities and
temperatures of all clusters converge to common values, respectively.

Lemma 3.3 establishes the differential equalities for the central velocity and temperature of a cluster,
derived by summing the velocities and temperatures of its constituent particles. Finally, Theorem 1.3
provides the convergence values for velocity and temperature within each cluster group by asserting
Lemma 3.3 and Theorem 1.2.
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