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Abstract:  This paper presents several sufficient fr ameworks fo r mu lIti-cluster flo cking of the

thermodynamic Cucker-Smale model with a unit-speed constraint (in short, TCSUS) under a singular
kernel. By providing precise estimates and deriving the dissipative structure of TCSUS, it was proved
that under specific well-prepared conditions for particle positions and fully separated initial velocities,
multi-cluster flocking occurs in the TCSUS system under a strong singular k ernel. Furthermore, the
velocities and temperatures converge to the average final data for each cluster group.
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1. Introduction

Emergent dynamics in interacting multi-agent systems are commonly observed in nature. Natural
phenomena, including animal migration [1], bacterial movement [2], and synchronization of coupled
cells [3] and fireflies [4], exhibit collective behaviors. For instance, in the field of ecology, collective
behaviors can facilitate population reproduction, predator evasion, and the reduction of competition
among individuals. Ultimately, these behaviors can enhance the population’s safety coefficient.
Therefore, studying collective behaviors is of significant importance and meaning.

To investigate aggregation phenomena, biophysicist T. Vicsek et al. conducted numerical
experiments to elucidate the mechanisms underlying collective motion [5]. A. Jadbabaie subsequently
verified these experiments through analytical methods [6]. Following the pioneering work of T.
Vicsek et al. numerous mathematical models have been developed to study emergent behavior.
Professors Cucker and Smale proposed the Cucker-Smale model, which characterizes aggregation
phenomena [7]. The Cucker-Smale model describes a flocking dynamic system with position and
velocity following Newtonian dynamics. For the i — th particle in the Cucker-Smale model, let x; € R?
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and v; € R? denote its position and velocity. Here, R¢ represents d-dimensional Euclidean space. The
Cucker-Smale model is governed by

?:vi, t>0, i€[N]:={1,2,---,N},
P 2, b= =, (b

(x,(0),vi(0)) = (xi ) €RIXRY,

where N represents the number of particles, k denotes the non-negative coupling strength, and || - ||
denotes the standard />-norm. ¢ signifies the communication weight. The Cucker-Smale model offers
unique advantages in mathematical analysis due to its high degree of symmetry. Additionally, the
solution’s large-time behavior is determined solely by the initial conditions and the interaction function
¢. Since its proposal, the Cucker-Smale model has been the subject of extensive research, with scholars
exploring diverse communication weights ¢(r) tailored to specific application contexts. For instance,

the authors of [8] adopted the communication weight ¢(r) as ¢(r) = 5 known as the singular kernel,
1L
to conduct a detailed analysis of its clustering behavior.

However, the Cucker-Smale model cannot describe the aggregative behaviors influenced by
external factors, including light and temperature. For instance, Bhaya et al. [9] and Jakob et al. [10]
observed that cyanobacteria actively migrate toward light sources under certain conditions. Ha et al.
[11] investigated the effect of temperature on aggregative behavior, resulting in the development of a
thermodynamic Cucker-Smale (in short, TCS) model. Since then, the TCS model has also been a
subject of extensive research. Two sufficient frameworks for the emergence of mono-cluster flocking
on a digraph for the continuous and discrete models were presented in [12]. The emergent behaviors
of a TCS ensemble confined in a harmonic potential field was studied in [13]. The coupling of a
kinetic TCS equation and viscous fluid system was proposed and considered in [14, 15]. Based on
system (1.1), we set T; to denote the temperature of the i — th particle, and then the TCS model is
governed by

%:vi, t>0, i€[N]:={1,2,---,N},

Wi _ — x; ||>( ! )

jt N i (1.2)
= (Tl- + 5l ) . ;é(llx, x,u)(— - —)

(x:(0), vi(0), T{0)) = (2,0, T%) € R? x RY x (0, +oo)

where N denotes the number of particles, while «; and «, represent strictly positive coupling strengths.
Moreover, ¢,, which are mappings from (0, +c0) — (0, +o0), serve as the communication weights.
These functions are non-negative, locally Lipschitz continuous, and monotonically decreasing.

Based on the conceptual framework for the unit-speed Cucker-Smale model presented in [16], Ahn
modified the velocity coupling term to guarantee that each velocity possesses a constant positive
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modulus [17], as follows:

dx;

d_-xt:vh t>05 ZE[N] ::{1’27.."N}’

dv; K1 Z vi i, vj)vi

— = B(llx; — lel)(— - > )

jf Nl— 1 e T; Tj||Vi||1 (1.3)
Ky 1

—1\T; v I1? = i — X — T

(i 0P) = 727 25 = i - o

J#i J

(x,(0),v;(0), T:(0)) = (x?,V, T?) € R? x ! % (0, +0),

where N, ki, k», and communication weights ¢, £ are defined as above. The term S¢~!' denotes the unit
(d — 1)-sphere. However, the author of [17] only addressed the scenarios where the communication
weights ¢ and ¢ are non-negative, bounded, locally Lipschitz continuous, and monotonically
decreasing.

Furthermore, the author of [18] employed suitable subdivided configurations {Z,}'_, and
demonstrated that the velocity and temperature of all agents within each cluster group converge to
identical values. In addition, based on the results of [17], the authors of [19] proved that asymptotic
flocking occurs when the communication weights ¢, { are singular kernels.

This article considers the multi-cluster flocking dynamics of the thermodynamic Cucker-Smale
model with a unit-speed constraint (TCSUS) under a singular kernel. The system (1.3) is reorganized
into a multi-cluster framework, which is governed by,

d i .
:lcl = Vais l>07 le[N(z] = {1’23 ’N(Z}’ CZE[I’l] = {1,2,"'”}, I/LZ3,
N,
dve K1 S Vaj Vais Vaj>vai K1 . Vgj <Vaiav,6'j>vai
= (%ai = Xa11) (— - + (i = x5l | =22 — 22
di N-1 ;¢ T\To; Tojlvaill? ) N-1 ﬁ; ;¢ PIUNT  TailvadlP
JEI
T+ 2val?) = =22 i((n D — )+ 2 Zf«n D - =)
—|Tai + 5lVaill”) = Xai = Xajl) (== = = Xai = XD = 77)s
dt 2 N-1 — ! T, Taj N-1 — hi T, Tﬂj
j=1 B*a j=1
J#i
(%ai(0), 4i(0), Ti(0)) = (x2,12, T%) € RY x 47! x (0, +00),
(1.4)

where f represents time, n represents the number of clusters, N represents the number of particles, and
N, represents the number of particles in the a — th cluster. Additionally, x,;, v4;, and T,; denote the
position, velocity, and temperature of the i — th particle in the a — th cluster, respectively. Furthermore,
k1 and «, represent strictly positive coupling strengths, and S9! is the unit (d — 1)-sphere. Specifically,
we assume that when the communication weights ¢,  are singular kernels, they will take the following

explicit assumption: ¢(r) = rl/l’ {(r) = r—#(/l, u>0).

In fact, system (1.4) corresponds exactly to system (1.3). The formulation of system (1.4)
specifically highlights the influence of different clusters on particle dynamics.

Previous studies in [17, 18] thoroughly explored mono-cluster, bi-cluster, and multi-cluster
flocking behaviors in system (1.4) under a standard kernel. More recently, studies cited in [19] have
concentrated on mechanical flocking and thermal homogenization within the TCSUS model under a
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singular kernel. However, a comprehensive study about the multi-cluster flocking of TCSUS under a

singular kernel remains largely unexplored. In this paper, we mainly focus on studying the

multi-cluster flocking under a strong singular kernel and provide relevant conclusions and estimates.
For simplicity, we apply the following notation:

Notation 1.1. For the vector u € R?, we denote by ||u|| and «' the Euclidean />~norm of u and its i — th
component, respectively. The standard inner product of two vectors u, v € R? is denoted by {(u, v). The
distance between two sets A and B is denoted by d(A, B) := inf{d(x,y) : x € A,y € B}. For simplicity,
we define [N] := {1,2,--- , N}. Given fixed real sequences {a;}"_, and {b;}! |, we define the family of
sets {I,}"_, such that I, := [a,,b,]. The solution of system (1.3) is denoted by A := (a;,az,- - ,ay),
where A € {X,V,T}, and a € {x,v,T}. After we reorganize the system (1.3) into a multi-cluster
configuration (1.4), if we denote the solution of the @ — th cluster as A, := (aq1, G2, - * , Aan,), Where
A e {X,V,T} and a € {x,v,T}, it becomes evident that A = (a;,a,- - ,ay) = (A1,A,,--- ,A,). In
addition, we define a° := a(0). The generic constant C may differ from line to line. We define the

centers for position, velocity, and temperature of the @ — th cluster as x," := S Z Xais
¥ €[N,]
cen 1 cen 1 : oy
vy = — Z Vai, and T, 1= — Z T,;, respectively. Furthermore, we define the minimum
@ ie[N,] @ i€[N,]

temperature of the a — th cluster as T,,,(t) := min T,,;(¢) and the maximum temperature of the o — th

1€ Ny

cluster as T, () := n%]%x] T,i(t). We define the minimum temperature of the whole system as
i€[N,
T, = m%r} T, () and the maximum temperature of the whole system as Ty, (?) := m:Eu]( Tou(t). The
a€Eln ae€l|n

minimum inner product throughout the system is denoted as A(v) := nﬁli[n] (Vai» Vgj)-
a,Beln
i€[Nq ], j€[Np]
First, we define the L*— diameters for position, velocity, and temperature of each cluster group
Zy = {(Xqis Vais m)} “ as follows:
o(p051t10n—ve10c1ty—temperature diameters for the a — th cluster group)

Dy, := max |[|x4; — Xl Dy, := max |[[vai — Vaill, Dy, := max [Ty — Tyjl,
i,j€[Ng] i,j€[Nq] i,j€[Nq]

o(position-velocity-temperature diameters for the whole system)
DX = Z DX(,a DV = Z Dva, DT = Z DT,]-

a=1 a=1 a=1
Then, we define the following three configuration vectors for each cluster group:

Xo = (Yo, Xa2, " " 7xaN,])a Vo := Va1, Va2, s VaN,])a Ty :=(Tot, Tz, "+, TaN,])s where | <a <n.
Next, we introduce the definition of the multi-cluster flocking behavior of system (1.4):

Definition 1.1. Let Z = {(x;, v;, T,-)}f\i , be a solution to system (1.4). Then, the configuration Z exhibits
multi-cluster flocking if there exist n cluster groups Z, = {(Xi, Vais Tm)}?i'l such that the following
assertions hold for2<n<Nand 1 <a <n:

o|Z,| = Ny > Li 1Z.| = iNa =N, OZQ =Z,

oVa € [I/L] sup maX ”x(zk xal” < 0, hm maX ”Vak Val” O lim maX |Tak (l/ll =0
0<r<oo 1<k, t—oo 1<k,I<N, t—oo 1<k, I<N,

e inf m1n||x(,k xﬁlll_oo,ISkSNa,lSlSNﬁ,ISQ/i,BSn.

0<t<co
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To describe adequate frameworks for multi-cluster flocking estimation, we display the admissible
data and conditions (H) as follows:

(H) := {(X(0), V(0), T(0)) € R*N x (0, +00)"|(Ho), (H,), (H,), and (H5) hold.}

(i) (Hy) (Notation): For brevity, we have the following notation:

T, = Tw(0), Ty := Ty(0), 60 := inf = min_[lx;(#) —x; @,

m 0<t<o0 1<i#j<

rp := min (xgj(O) - xm-(O)), Ry := max (xﬁj(()) - xjfn.(O)) for some fixed 1 < k < d,
a<Bii.j a<B.ij

o kmin(NVi  N)AWS (DY) Kz(min(Nl, § )_ (DY)
Ao (DY) = (N- DTS . Ao (DY) := )
__Dy(0)  4(n—-1)Nk To 4(n — 1)Nk;
R VR TV Y (2 ) TN = D Mitreamr Ao e )T Ao f P(s)ds,
KN, — D(60) ki (N = N,)
A7V VI e S T/ 0 ANY) f Ps)ds.

(ii) (‘H,) (Well prepared conditions): There exists a strictly positive number DY > 0 such that

- Dy(0)Ty;
DY > Dx(0) + max | A, and A, u > 1 (strong kernel).

K AV)G(DY) )
(@ii) (H,) (Separated initial data): For fixed 1 < k < d in (H,), there exist real sequences
{a;}!_, and {b;}}_, such that the initial data and system parameters are appropriately split as follows:

r0>0, a<b <ay<by---<a,<b,, I,=l[a,bC[-1,1], I,NI=0p# a),
DE0) = A V(0 + Al C 1, = [ag, bl € [-1,1], a@,B=1,...,n, i=1,...,N,.

(iv) (H3) (Small fluctuations): The local velocity perturbation for all cluster groups is sufficiently
small as follows:
K1A(VO)

Ty Jbyo

Dy(0) <

¢(S)dS- (1.5)

Finally, we present the main theorems of this article.

Theorem 1.1. Assume that Z, = {(x4, Vais T(,i)}?i“l is a solution to system (1.4). Suppose that (H)
holds. It follows that

. . ro
min [lxai(0) = x,0)| 2 (lsggg_l d (I, Ia+1>)r+ 5> €0, +00). (1.6)

Theorem 1.2. Assume that Z, = {(X4, Vais m)} =, is a solution to system (1.4). Suppose that (H)
holds. Then, it follows that for ¢ € (0, +o0):
1. (Velocity alignment for each cluster group)

2ki(n— DN A
Dy(t) <Dy(0) exp (—Aor) + % exp (——Or) p (@)
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2Kl (l’l - 1)N (min1§(l§n—1 d(Im I(H—l)) I+ro (1 7)
TeAo(N —-1) 2 ' '
2. (Temperature equilibrium for each cluster group)
- 2ko(n— 1N [ 1 1 Ao ( 0)
D7(t) <D -A _— -—
7(t) <Dr(0) exp ( ol‘)+ T (Tw Tw)ep( 2r)4 >
N 2= DN (1T 1\ ((min<ecn1 d os Los1)) T+ 1 (1.8)
N-1 T;;;’ Ty, 2

Remark 1.1. It is evident that Theorems 1.1 and 1.2 demonstrate that system (1.4) exhibits the
phenomenon of multi-cluster flocking.

Theorem 1.3. Assume that Z, = {(Xui, Vai, m)} ', 1s a solution to system (1.4). Then, under the
sufficient frameworks (), there exist some strictly positive convergence constants Vi, V, and Ty, T,
that satisfy the subsequent criteria for ¢ € (0, +00).

1. (Velocity convergence value for each cluster group) If we define vy, := hm vee" then the existence

of vy is guaranteed, and the two values V| and V), satisfy the following mequahty for all @ € [n] and
iy € [Ng].

1 = Z ”V%(t) OO” = - 1’ t = oo. (1.9)

2. (Temperature convergence value for each cluster group) If we define 7,° := lim 75, then the

—o0

existence of 7, is guaranteed, and the two values T and T, satisfy the following inequality for all
a € [n] and i, € [N,].

Z”Tma(t) T < ﬁ’ t = co. (1.10)
Remark 1.2. In [18], Ahn proved that when the communication weights ¢ and ¢ are standard kernels,
which are non-negative, bounded, locally Lipschitz continuous, monotonically decreasing, and
integrable, the multi-cluster flocking of the system (1.4) is exhibited under some sufficient framework.
However, when the communication weights ¢ and { are singular kernels, they will blow up as r
approaches 0, meaning they will not be bounded and integrable over the interval (0, +c0). In [19],
Ahn et al. proved the mono-cluster flocking of system (1.4) under the singular kernel. However, the
multi-cluster flocking of system (1.4) under a singular kernel remains unexplored. In this article, by
employing a new sufficient framework, we address the non-regularity of the singular kernel at r = 0

and obtain the multi-cluster flocking of the system (1.4) under the singular kernels based on the work
of [19].

This article is organized as follows. In Section 2, several basic results of the TCSUS model are
briefly reviewed initially. Subsequently, some previous results related to the TCSUS model under a
singular kernel in [19] are reviewed to prepare for the proof of multi-cluster flocking. In Section 3,
several fundamental frameworks for achieving multi-cluster flocking in system (1.4) with a strongly
singular kernel are provided, and appropriate dissipative differential inequalities for position, velocity,
and temperature are derived. Then, by using self-consistent parameters for these inequalities, we derive
sufficient conditions to ensure multi-cluster flocking of system (1.4) based on initial data and system
parameters.
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2. Preliminaries

This section reviews several basic results for the TCSUS to guarantee its multi-cluster flocking.
These estimates will be crucial throughout this paper.

2.1. Basic estimates

Proposition 2.1. For 7 € (0, +0), let (X, V,T) be a solution to system (1.4) in the time-interval (0, 7).
Then, the following assertions hold:
(1) (Conservation laws): The modulus of velocities and the total sum of temperatures are conserved.

dZZTma) . vl =1, 1€ 0,7),

a=1 ai=1

(2) (Monotonicity of temperature): External temperatures 7,,(f) and Tj(f) are monotonically
increasing and decreasing, respectively, and one has positivity and uniform boundedness.

0<T,) <Tu(t)<Ty, aecln], i€[N,], tel0,71).

(3) (Monotonicity of A(v)): If the initial data satisfies that A(V°) := mln(vm, J.> > 0, then A(v) is
monotonically increasing: If 0 < s <t < 7, then 0 < A(’) < A(V)(s) < AW)(¥) < 1.

Proof. (1) To demonstrate speed conservation, we take the inner product of the second equation in
system (1.4) with 2v,, to obtain

dvm- 2K1 e <Vaia V(yj> <Vai9 vozj><vozi> Vai>
<2vm-, —> = 7 ,Zl $(llxa; — xa,-n)( -

dt Taj T(ljllv(li”z
J#L
2K1 < VBj» Vm> <Vai, Vﬁj><vm” V(zi)
+ P(l|Xai = II)( =0.
N - ; ; PN T Tl Ivail

dl|vaill® :
=0, i.e., [Vai(DIl = [[vei(O)ll = 1. Then, we employ {(|lx; — x;|) = {(Ilx; — xill)

and exchange ai < «j and @i < (] respectively to get

a Z Z Toilt) = 57— Z Z Z Zlxoi - x(,]n)( )

a=1 ai=1 a=1 ai=1 j=1
JEI

This implies that

no Na Ny | X
IR oD (7 - E)’

a=1 ai=1 p#a j=1
1 1
LIxej = Xail )77 = 77)
a=1 aj= 1; Taj Tai
i#]
xﬁlll)(— - —) = 2.1)
,8 1 Bj=1 a#B i=1
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(2) We induce that i, depends on time ¢ € [0, 7) satisfying 7},(¢) = T,,;(t), and then we have

Nai

N,
dT,; K 1 1 K> 3 1 1
— = L0, = Xo ) (= = ) o > D L, = Xgll) (= = =)
dt N - 1 Z%H/_t]/ Tml} Ta/t. N - 1 ;. %/_]/ T(Itit T ]
A A e P
/ >0 >0
Therefore, —* > 0, i.e., T,,(?) is increasing. By the same token, we get that T,(7) is decreasing. This

implies that 0 < 7> < T,i(t) <T,;,, a€[n], i€[N,], te€][0,7).
(3) We split the proof into two steps:
e First, we show that the functional A(v) is strictly positive in the time interval (0, 7), A(v) > 0.
d
e Second, we verify that in the time interval (0, 7), —A(v) > 0.

Step A: For fixed € (0, 7), we choose two indices a;i;, B, j; (@, € [n],i € [N,], j € [Ng]) such that
Vasies Vgji? = A(v)(0). Then, we define a temporal set S| and its supremum 77 as

S1:={teO,DAW(@) >0}, 7] :=supS;.
Since A(W*) > 0, and A(v) is continuous, the set S| is an open set, and 0 < 7] < 7. Next, we claim
T =T
Suppose the contrary holds, i.e., 7] < 7, which implies A(v)(7] — 0) = 0. We differentiate A(v) with
respect to time 7 € (0, 77) to find

d
EA(V) = <va/,in Vﬁ1j1> + <vﬂ/1i1’ "),31]'1>

No
K] ' <Vaja V,B,j,) - <Va,i,’ Vaj><va,i,a V,B,j,)
= " 31, = Xl
j=1

N—-14% To;
J#i
Ng
—Kl <Vﬁ‘jl’ V:BJ> B <V(Y1it’ Vﬁj><varin Vﬁ,j1>
eI —xmu)( L
ﬁi(lr j:l ﬁ,]
Np:
K1 <Va/,itvﬁ,j> - <Vﬁtjt, Vﬂtj><vatirv,3tj1>
+ Xp i — Xp ;
N-1 Z¢(|| Bt ﬁr}”)( Tﬂj
J=1 A
J#Ji
N5
ol (va,i,vﬁj> — <v:8fjt’ vﬁj><va,itv,3,jt>
L Z Z Plxg,j, = xlel)( T ‘ 2.2)
BB J=1 J

For any v,,, vg; which are the components of V, the unit-speed constraint yields
[(Vais vl < [Iaill - [lvgill < 1.
Thus, the positivity and minimality of A(v) lead to
Wy vg,j,) = AW) = Vains Vi) = Vaies Vi) Vayiy» Vyie)

and
Wyos Vasi) = AW) = Vasis V8,70 = Vayis VXV, j» Vyi)s 1Y € [n].
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Since each temperature is bounded below by a positive constant, each summand of Eq (2.2) is non-
negative, and one has %A(v) >0, t € (0,77). Therefore, A(v)(r] — 0) > A(v)(0) > 0, which is
contradictory to A(v)(r] — 0) = 0. Finally, we have 7] = 7 and A(v) > 0, 1 € (0, 7).

Step B: It follows from Eq (2.2) that %A(v) >0, te(0,71). O

Remark 2.1. Based on Proposition 2.1, it can be immediately inferred that the system (1.4) can be
simplified into the following system:

Ay .
dxt = Vai» t>07 le[Na] ::{172,""Na}a Q’E[n] ::{152"“”}’ l’l23,
dVa/i _ K1 i(b(”x - ”) Vaj — <vai’ Vaj>vai " K1 Z f:(p(”x - ||) Vﬁ, - <Vm', Vﬁj)V(u'
d ~ N-1&7 T, N—1 &g Ty
J;l B#a j=1
JFI
N,
AT, K & 11 K : 11
= ai ~ Xejl 7 — 7))+ ai T A1 VAP R }
el ; s = D= = 7o)+ 5 ; ;anx 5l = )
i
(%ai(0), Vai(0), Tai(0)) = (X, Vi To) € R X ST (0, +00).

2.2. Previous results

In this subsection, we will give some previous results about the mono-cluster flocking of system
(1.3) under a singular kernel. These results are necessary for later sections.

Definition 2.1. We suppose that ¢, € (0, +c0) is the first collision time of the system (1.3) ensemble,
and the [ — th particle is one of the such colliding particles at time #,. Then, we denote by [/] the
collection of all particles colliding with the [/ — th particle at time ¢,

[l:={ie [N]Iggl_llxi(t) - x (Il = 0}.

For Vt € [0,1y) and Vi ¢ [/], we define the constant ¢ such that ¢ is a strictly positive real number
satisfying ||x;(¢) — x;(¢)|| = 6 > 0. Then, we define the following L*— diameters as follows:

Dy :=max||x; — xi||, Dy :=max]|lv; —vil, Apv) := minlv;,v;).
X[ = max [lx; = x| v = Max lvi — vl () quﬂ( V)

Proposition 2.2. [19] Let (X, V,T) be a solution to system (1.3). If A(vy) > 0, then sub-ensemble
diameters satisfy the following system of dissipative differential inequalities: For a.e. t € (0, 1),

d
‘EDX,[I]' < Dyp, >0,
d AR () 4x1(N — |[71D¢(6)
< Dy ) Dy +
S TNoDTS ¢(Dx, i) Dy N DT
dDr < k(N —2){(Dx
dt = (N—=1)(Ty)?
Proposition 2.3 (Collision avoidance). [19] We suppose that communication weight and initial data
satisfy 4 > 1, A(vg) > 0, 1 mi_nN [lx:(0) — x;(0)I| > 0, and let (X, V,T) be a solution to the system (1.3).
<i#j<

, t>0, (2.3)

Dr.

Then, collision avoidance occurs, i.e., x;(t) # x;(t) (i # j,i,j€[N],t>0).
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Proposition 2.4. [19] We suppose that communication weight and initial data satisfy the following
conditions:
(1) The parameter A and initial configuration satisfy A > 1,A(*) > 0, | minN |1x:(0) — x;(0)|| > 0.
<i#j<

Dy(O)TS

KIAWV)P(DY)
solution to system (1.3), then thermodynamic flocking emerges asymptotically:

(2) If there exists a positive constant DY such that Dx(0) + < DY and (X,V,T)is a

(i) sup Dx(t) < DY, Dy(t) < Dy(0)exp (—

0<t<+co
.. Kl (DY)(N — 2)
(i1) D7(¢) < D7 (0) exp (— 2|T;4°|;(N ) )

(iii)) (A uniform positive lower bound for relative distances) We suppose that

K AW
Dy(0) < = Eo )
. M . DX(O) ., . . . . .
exists a strictly positive lower bound for the relative spatial distances, i.e.,

0o := inf min ||x;(¢) — x;(®)| > 0.
0<t<co 1<i#j<N

KlA(VO)¢(D§(°)
Ty, '

@¢(s)ds holds, and (X, V, T) is a global solution of the system (1.3). Then, there

3. Multi-cluster flocking of TCSUS

In this section, we derive suitable dissipative differential inequalities initially with respect to
position, velocity, and temperature. By employing a bootstrapping technique with these inequalities,
we apply appropriate sufficient conditions based on the initial conditions and system parameters to
ensure multi-cluster flocking within system (1.4).

3.1. Dissipative structure

In the following, we derive several dissipative differential inequalities with respect to
position-velocity-temperature to establish adequate frameworks based on system parameters and
initial conditions.

Lemma 3.1 (Dissipative structure). Assume that Z, = {(X4i, Vais m)}l ', 1s a solution to the system

(1.4). We define ¢y (1) := max P(l1xs; = Xaill) and Ly (1) := max {(llxg; = XailD)-

Then, we have the following three differential inequalities for a.e. t € (0, +00):

{2 <
dDr ko (min(Ny, - -+, No) — 2){(Dy) 2K(n — 1)N
2.—1 < - Dr+ =y — ==
ar N - (T3 TN gM( )
3 dDV p _Kl min(Nl, RN NQ)A(VO)(]S(D)() 2K1(I’l - 1)N¢M
Cdr T (N - DT TN DTe

Proof. The first assertion follows directly from the Cauchy-Schwarz inequality. To prove the second
assertion, we select two indices, M, and m, depending on #, such that

DTQ(I) = TaMl(t) - Tam,(t)’ 1< ni, Mt < Na'

Then, for a.e. t € (0, +00), one can show that by using the definitions of M, and m;,
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dDr, < 1 1 1
g N—-1 ;é(llxaM,—xajll)(Ta ,_T«j - xa]||)( T E_)
J#i jii
1
PN = 7~ -G 7o)

ﬂrﬁa Jj=1 ﬁqf:a/ j=1
=71, +[2+I3+I4.
(1) (Estimate of 7} + 7,) In the same method as the proof of Proposition 2.2, the following inequality

holds for a.e. t € (0, +o0):
k2(No — 2){(Dx,)

(N = IXTy)?
(i1) (Estimate of 73+ 7,4) From Proposition 2.1 and the definitions of {3, and £,,, we derive the following
inequality for a.e. t € (0, +oo)-

Dy

o

Il+IQS—

I3+ 1 {1 xXam, II)( - —) Z(1xam, II)( - —)
3 4 < /; ,le XaM, — Xgj Tow, T, ;; ,Z; Xam, = Xgj Tom  Tg;
< 2k2(N — N(z)gM(_ _ L)

N-1 Ty Ty '

Thus, combining 7| + 7, and 73 + 14 yields that, for a.e. t € (0, +00),
dD N, —2)(D 2k:(N = N, 1 1
T _ _ka( )( XQ)DT N Ka( )§M(_ 1y
dt (N = 1)(T};)? “ N-1 Ty Ty
Therefore, summing for o from 1 to n to the above inequality, we obtain that for a.e. t € (0, +00),
dD in(Ny, - ,N,) —2)(D 2 —1N
T _ ka(min(N, 30 _ ) ( X)DT N Kka(n—1) §M(— B _DO)
dt (N = 1)Ty)) N - Ty,
To verify the third assertion, we select two indices M, and m, dependlng on ¢ which satisfy

DV(,(I) = ”Vont(t) - vam,(t)”, 1 < mtaMt < Na-

Hence, we attain that for a.e. t € (0, +00),
14dDj,
2 dt

= <Va'M, — Vam,» vaM, - Va;m,>

(V(U <V(th9 Va/>von,))
- <Va/M, - varm,’ N 1 Z QMt]( Ta/j
i ( (vaj - <vam,, Vaj>vam,) )>
< am,j Taj

N -

e (Vﬁ'_<V M, V,B'>V M,)

e ZZ (I aM,xﬁ,n)( S °)
Bra j=1

((Vﬂj - <V(1m;’ Vﬂj>vam,)

= J1 + />

)

ﬁiafjl
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(iii) (Estimate of J;) Replacing [/] with [N,] and in the same method as the proof of Proposition
2.2, fora.e. t € (0, +00), we have

KiNAW)
(N - 1Ty,
(iv) (Estimate of J,) We employ the identities

Ji < ¢(Dx,)Dy, .

vgj = Vams VeidVamll < 1, 1Ivgj = (Vam,> Vaj)Vam, Il < 1

with the Cauchy-Schwarz inequality and Proposition 2.3 to estimate that for a.e. ¢ € (0, +0),

N Vgj = Vam,> Vgj)VaM,
D0 dlxan, - xﬁle( T, )‘

Bra j=1 J

Ng
Vgj — (Vam,a V '>Vam,
DD Bl — gl e )
BJj

B+a j=1

ki1Dy,

a

N-1

Jr <

< 2ki(N = No)puDy,
- (N - DTy

KiDy,
+
N-1

Then, we combine J; and J, to derive that for a.e. t € (0, +0),

dD N,A 0 2k1(N — N,
Vo o _ K1 (vo)o‘ﬁ(DXa)DVa N K1 ( ZO¢M
dr (N-DTZ (N - DT

Summing the above inequality from a = 1 to n, we obtain that

dDy Lk min(Ny, .. .,NQ)A(VO)¢(DX)D N 2k1(n — 1)Noy,
dr = (N - DTS TN -DTe
since the monotonicity of ¢ implies that min(¢(Dy, ), ..., ¢(Dx,)) > ¢(Dyx). Finally, we demonstrate
the third assertion. O

3.2. Multi-cluster flocking

The proofs of Theorems 1.1-1.3 are presented in this subsection. First of all, we give a brief
comment regarding (H).

The assumption (H)) is the sufficient condition which guarantees group formation within each
cluster. The assumption (#;) implies that the initial positions for each cluster group should be
sufficiently separated from each other to achieve a multi-cluster flocking result. In fact, if v*.(0) is
covered by I, = [aq,bo], then we can take sufficiently small «; such that
[ny [(0) = A, vﬁ :(0) + A,] C I, because A, is linearly proportional to «.

The assumption (#3) ensures that a uniformly strictly positive lower bound exists for relative
distances. Here, we can find the admissible data meeting the assumption (/H3) requirements when «;
is sufficiently small. Moreover, under sufficiently large ry, suitable temperature initial data and small

coupling strength regime, we can check that the sufficient framework () is admissible data.

Lemma 3.2. Assume that Z, = {(x4, Vai» TC,,-)}?L”1 is a solution to the system (1.4) and suppose that ()
holds. We define the following set:

S, = {s > O‘ min ||x,(¢) — x5;(0)l| > ( min d([a,IaH))t + @, t €0, s)}.
a#B,i,j l<a<n-1 2
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Then, S, is nonempty, and it follows that Dx(¢) < DY, t € [0, T*], where T* := sup S .

Proof. We observe that S, is nonempty due to the assumption () and the continuity of [|x,,(#)—xz;(®)I|.
Then, we just need to prove Dx(t) < DY, t € [0, T™]. First of all, we consider the following set:

Sy:={s>0]|VYre[0,s],Dx(r) <D, s<T}. (3.1

We set supS3 =: T**. Then, we have Dx(T**) = DY and suppose that 7" < T~ for the proof by
contradiction. Then, for V¢ € [0, T**], one has

_kymin(Ny, - -+, No) ¢ (Dx) < h min (N, - ’N")QS(D?)
(N-DTy ) (N'= DTy

(3.2)
Thus, for a.e. t € (0,T*), the second assertion of Lemma 3.1 and the above estimates lead to the
following inequalities:

dDy <k min (N, -+, Ny) AQ°)¢ (DX)DV N 2ki(n — )Ny

dr = (N - DTS (N - DT
__aminW - N)ACS(DT) 20— DNGy
- (N - DTS TN - DT
_ 2ki(n—1)Noy
= —-AyDy + (N — l)T;lo (33)

For ¢t € [0, T*], we integrate inequality (3.3) from time O to # through multiplying both sides of the
inequality by the integral factor exp (Ao?).

" 2k1(n — DNoy

Dy(f) < Dy(0) exp (—Aot) + f exp (Ao(s - t))ds

o (N-DT=
5 M 2k (n = DN
= Dy(0) exp (—=Ap?) + [‘fo + L) K(ll(\’;_ 1))T;M exp (Ao(s — t))ds
2 (n = N A
< Dy(0) exp (~Agl) + m(ﬁ (%) [exp (—7%) _exp (—Aot)]

+ 2Kl (I’l - I)N (minISQSn—l d(lm Ia+1)) I+ry
(N = DATy 2

< DU exp (Ao + D g( D) exp (-@t)

el

(N — DA \2 2
2K1(n - I)N (miHISaSn—l d(lm Ia+1)) I+ry (3 4)
(N = DATS 2 ’ '

where we used the definition of S; and the fact that ¢y, < ¢ ((1 min d(/,, I[,H))t + @).

<a<n-1 2
In the latter case, we estimate from inequality (3.4) that for ¢ € [0, T™"],

Dx(t) SDx(0)+va(S)dS
0
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Dy (0)exp (—Ayps) + M exp (—@s) 0] (@)

<Dx(0) + f
0

(N = DTA 2 2
2kiN(n - 1) ((minl<a<n—l d Iy, Ios1)) s + ’”o)) Js
(N — DT=A, 2
<Dx(0) + A < DY. (3.5)

Accordingly, Dx (T**) < DY, which is contradictory to Dx(T**) = DY. Finally, supS3 = T* = T™.
We have reached the desired lemma. |

Proof of Theorem 1.1. Following Lemma 3.2, we just need to prove that 7* = co, which is equivalent
to

min [l = 30| = min | dosfu)) 1+ 5 1€ O, 400) (3.6)
aBii,j I<a<n-1 2

For the proof by contradiction, we suppose that 7" < oco. From the definition of §S,, we select four
indices that satisfy

I<a"<f <n i"€fl,---,No} and j e{l,--- ,Ng (3.7)
such that ,
o @) = o (T = min (G o)) 774 2 (3.8)

Then, we show that for the k € {1,--- ,d} chosen in (H,),

|l (%) = x5 > xf o (T7) = X (T7)

[07

-
= x5 . (0) — x5 .(0) + Vi o (8) = Ve (D)) dt
BJ 0 BJ

-
> o + f (Vh- () = V() dit.
0

From the third assertion of Proposition 2.3, we set a positive number ¢, such that
0 := inf m1n [lx:(£) — x;(DI > 0.

0<t<o0 1<i#j<
Next, we 1ntegrate the second equation of system (1.4) and employ the following relation:

”vm’ - V(rj||2

2

=1- <v(,,~,v(,j>2 = (1 - <vm~,v(,j>) (1 + <va,~,vaj>) < D%,a

1- <vaia Vaj) =

and
2

Vaj — <Vai’ Vaj> Vai

to attain that for r € [0, T],

Va0 = Vi (0)] < [ail®) = vai(O)I] < f IVaill ds

k1 (Ng = D)¢p(60)
=~ w-nrz J, D (s + 1>T°° f Puls)ds
K1(No — 1)ép(60) K1 (N No) . ro
< N DT Dy, (s)ds + —(N T 1) (1<r(£1<1r111_l d,, I,.1) s+ E)ds
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k1(No — D(60) ki (N=N,) [ . ro

< (N — I)T;;’ Dv(S)dS + m . [0} (152?-1 d([a, Ioz+1) s + E)ds
K1 (Ny — 1D)gp(60) ki(N=Ny) . ro

ST NSO A+ N=DT> J, ¢(1Srgslrrll_ld(la,la+1)s+ E)ds

_ k1(No — 1)é(60) ki (N = N,) * .

ST wonry Mo DTy (minm i d Ia+1))f’g Po)ls = Ao

< 1, and A was estimated in inequality (3.5). Therefore,

where we used ¢ < ¢(dy), Hvﬁj - <Vm', vﬁj> Vi
it follows by (H,) that fora = 1,--- ,n,

VEA0) + Ag > vE(0) + [VE(8) = VA,(0)] > vE(1) = 1V5,(0) + vE(1) — vEL(0)

> VE(0) = R0 = vE(O)] 2 VA, 0) — A, = VE () € I

= Yai

By using the assumption (), we derive that

-
||xa*,~* (T*) = xp: jr (T*)H >ro+ I) (vlg*j*(t) - v];*l-*(t)) dt

> %Jr min d(I,.1.)T..

1<a<n-1

which gives a contradiction to 7" < co. Consequently, we conclude that 7% = co. Subsequently, we
claim that 7" = oo, which is crucial to derive the multi-cluster flocking estimate of the system (1.4). O

Proof of Theorem 1.2. We apply the second assertion of Lemma 3.1, the definition of the set S, , and
Theorem 1.1 to have that for a.e. t € (0, +00),

dDy 2ki(n — )N
Y < _AgDy + S
d = VT TN -1 i
2ki(n—1)N (1 )
< ~AoDy+ i o(5+ min du L), (3.9)

Similar to inequality (3.4), we recall that for ¢ € (0, +00),

2k1(n — 1N Ao 1o
Dv(t) SD\/(O) exp (—Aof) + m exp (—71‘) ¢ (5)

2ki(n = 1N ((minj<y<p—1 d Uy, 1os1)) t + 1y
T=Ao(N - 1) 2 '

(3.10)

Hence, we reach the desired first assertion.
To prove the second assertion, we employ the third assertion of Lemma 3.1 and Theorem 1.1 to get
that for ¢ € (0, +00),

dDr < _Kz(min(Nl,--- ,N,) —2)§(DX)D N 2k2(n — 1)N M( 1 1 )

E r T " T%
dt (N - 1)(T;)2 N -1 Ty Ty
- 2i(n— 1N [ 1 1 ) ro
< —RoDy + LI (ﬁ - T—;)C((lgrgslg_l Ao L)1+ 2). 3.11)
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We use Gronwall’s lemma to yield that for 7 € (0, +00),

Dr(t) < Dr(0) exp (~=Agf) + f M(T—m - %)exp (Ao(s—t))ds
= Dr(0)exp (—=Agt) + [f f) 262 = I)NéVM (F - %) exp (Ao(s — t))ds
_ 2 - DN 1 Ao
< Dr(0)exp (—Aot) + Kzl(\lfifl) (ﬁ - T—;;){(};) [exp (—71) —exp(— Aot)]
2k(n—=1)N [ 1 1 (minj<qp—1 d Loy, Los1)) I+ 1o Ao
e L e M L |
i} 2k(n—1)N [ 1 1 A
< D7(0) exp (—Aot) + ’Q](\;lfl) (Tw TW) Xp(_gt)g(%)
2K2(7’l - I)N (_ _ _) ((mlnl<(x<n 1 d(I(y’ Ia/+1)) r+ 7"0) (312)
N-1 T T 2
We conclude the desired second assertion. O

As a direct consequence, we present the following result that the velocity and temperature of each
agent in each cluster group converge to some same non-negative value, respectively. We prove the
following lemma at first.

Lemma 3.3. Assume that Z, = {x4, Vai, Tm} “ 1is a solution to the system (1.4). Each local average

(xcen, veer TE) then satisfies the following relatlons

dx;ei’l cen £>0 el ) >3
_— =y . . a Sttt n N n > s
y ” [ [
VaillVaj = Vai
Noz . ¢(||Xm - xaj”)J—
Z o)
S Va/illvaj - V(xi”2 1 (313)
-1 ZZZ¢(”X(H x,Bj”) (V,Bj Vai T+ f i,
ﬁ;&a i=1 ] 1 J
NoTe" = Z Z Zz(llxm xpjll)( - T_ﬁ])
p#a i=1 j=1

Proof. The first assertion is trivial. For the second assertion, we take Zﬁ(’l to v,; and use the standard
trick of interchanging i and j to obtain that

Vi = vajll? 1
T <Vm VajsVai — Vaj>

- % (it Vo) + (s V) = 20005 va)

=1 = (Vais Vaj)- (3.14)
Therefore, we have
K1

o D W=l

1<i# j<N,

N.peen = ( —Vai t Vai — <Vm" Vaj>Vai)
aVeq —

T,

Networks and Heterogeneous Media Volume 19, Issue 2, 547-568.



563

Vai T Vai — <Val V,Bj>v(l/l)

ﬁ; Z«»(me xﬁ]n)("’ o

i=1 j=1

Vm'llvaj - Vm'” )
Ty,

K
= N_1 Z ¢(”xa/i_xaj”) Vaj_vai"'f

1<i#j<N,
e X ”) (V Vaillvaj lelz)
BJj Bj — Vai T T
ﬁ;&(z i=1 j=1 2 Tﬁj
_ K1 (li||v(lj - vm’”
- N — 1 Z ¢(”-xm xaj”) 2Taj
1<i#j<N,
vaillvaj vazllz
-x,Bj”) Vgj — Vai 2— T_ (315)
B;ta' i=1 j=1 B
For the third assertion, we take Z to T,,; and again use the standard trick as above. Finally, we prove
the lemma. o
Proof of Theorem 1.3. According to Lemma 3.3,
N = 1 Z ¢ ([[xoi — x ||)L‘V“||2
a¥a - N—l at aj 2T .
1<z¢j<N
Vai [|[VBj — Vai 1
(et = 555])) [vﬁ, Vai + 12 ]F’ (3.16)
ﬁ;&a i=1 j=1 Bj
and thus we have
K1 ! Vai va/j - Vm'”2
ver (@) = vee'(0) + Xgi — Xgil|| ———ds
SO = O+ ey ak;j]wfocb(ll ==
Vai ||V,BJ Va/l” 1
||xm xﬁ,” [vﬁ, Voi + ——— | =—ds.
(N—l)N ;Z;I T;
(3.17)

For Vt,, 1, € (0, +0), we have

vcen(t ) — vcen(t )”

[Vl - ||va, Vil
(N—l)Na 1<;Nf (e = o) @

vl v = ved ) 1
> —ds

Xai — xﬁ]” [ |Vﬂ] Vai

Na
(N_l) “;;;‘f T;
K
< (N—ll) am#wf ¢ (60) Vds+(N—1)N ﬂ;;;ﬁ ||xm xm”
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< Ck1¢ (60) ftz e (Minj<p<p-1 d Ly, Lp41)) S + 19 s
2T=(N - DN, 2

1<i#j<N,
(V2 + Dy - g
T TN DN, ZZZI ¢\ min, d(lmlaﬂ))ﬂz)ds. (3.18)
B#a i=1 j=1 1
By employing the Cauchy  convergence  criterion and the  existence  of

f¢(( min d(la,1a+1))s+%)ds and f¢2((Iﬂlﬂ1§q§n—1d(la,1a+1))S+I”O)dS, © s
0 0

l<asn-1 2
Ve (t2) = v (1))

straightforward to observe that can be arbitrarily small when both #; and ¢, are
sufficiently large. Therefore, the existence of lim v¢”*(¢) is guaranteed.
t—o00

By employing v;’ := lim v{™(¢) and
—o0

Vai ||vaj vm||

yeen = yeen(y 4 — KL f (I[vos = e
( _1) a 1<1#:]<N

S ! Vai V87 = vedl| ) 1
TWN-DN, l)N 2.2, Z fo @ ([ = 3s5) (Vﬁf 7 Vei T M] Eds’

p#a i=1 j=1

we have that

2
5 [Vadll - |[Vay = Vai| p
=) ;
Xai @] ZTQJ

V() — VOOH = 1) @ 155N,
N aall - 755 = ved]* 1
SET) ;f, e
(3.19)

Then, the multi-flocking estimate studied in Theorem 1.1 and Theorem 1.2 and the monotonicity
and non-negativity of ¢ imply that

V(c;n(l) _ V;O” <0 (f ¢ ((mIHIS(xSn—l d(zlm Ia+1)) s+ rO) dS)
t

1

Drawing from from Theorem 1.1 and Theorem 1.2, we observe that

||Va[(t) _ V(C;n(l)” -0 (exp (—%[) +¢ ((miHISaSn—l d(2lm Iyi1)) s + rO)) 0(1)_ t = oo, (321)

We combine the above estimates to derive that for all « € [n] and i € [N,],

[vait®) =3 <

V() — vy || + ||vm-<r> - v“"(r)ll

= 0(1)— + 0(1)— < 0(1) t — oo, (3.22)

/11’
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Conversely, it is evident that for Ve, g € [n], and Vi € [N, ], j € [Ngl,

!
s = 3 = ) = 3 O+ [ s = v
<Rp+ ft Dy(s)ds < Ry + (Dy(0) + Cy) ¢, (3.23)
0

4 - 1N
where Cj := M(ﬁ ro . Therefore, the multi-flocking estimate studied in Theorem 1.2 and
T=Ao(N — 1) g

the monotomclty and non- negatwlty of ¢ imply that for Va € [N,]

Ve — vyl = 0 ( f i ¢ (Ro + (Dy(0) + Co)r) ds — exp (—Aot)
1
> O(I)ﬂ—_1 — 0, t > oo. (3.24)

Then, we combine the above estimates to derive that for all @ € [n] and i € [N,],

[vai® = || = |ve @ = viy|| - ||vm~(t) - v“"(r)ll
1
:O(I)ﬂ—_] - 0(1)— 0(1)?, t — oo. (3.25)
Finally, there exist 2n strictly positive values V,;, V,, such that

Va Vo :
7 < Ve =7 < S5 @ € [l i € [N, (3.26)

Therefore, there exist two strictly positive values V;, V, such that for all @ € [n] and i, € [N,],

tu—ZHVm(f) e (3.27)

Similar to the previous proof, the existence of T;” can be demonstrated, and there exist two positive
values 7| and T, such that for all @ € [n] and i, € [N,],

— < Z ||Ta,y(t) T, || < —, t — 0. (3.28)

We conclude the desired results. O
4. Conclusion

This study provides proof for the fundamental properties and multi-cluster flocking behaviors of the
TCSUS system (1.4) under a singular kernel.
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Specifically, Propositions 2.1-2.4 establish the foundational characteristics of the TCSUS model
and present essential findings that facilitate the investigation of multi-cluster flocking within the
TCSUS framework. Lemma 3.1 establishes the dissipative structure of the TCSUS system as derived
from its configuration.

Subsequently, the bootstrapping technique is utilized to derive the multi-cluster flocking outcome
within a finite time interval. Furthermore, in Theorem 1.1, by enforcing particular initial velocity
conditions and applying bootstrapping methods, we ascertain that the divergence rate of distinct
clusters is bounded below by a linear function of time.

Theorem 1.2 provides estimates of the position-velocity-temperature L*-diameters for all cluster
groups by using Gronwall inequalities. Consequently, it is also demonstrated that the velocities and
temperatures of all clusters converge to common values, respectively.

Lemma 3.3 establishes the differential equalities for the central velocity and temperature of a cluster,
derived by summing the velocities and temperatures of its constituent particles. Finally, Theorem 1.3
provides the convergence values for velocity and temperature within each cluster group by asserting
Lemma 3.3 and Theorem 1.2.

Author contributions

Shenglun Yan: Methodology, analysis, calculation, and writing original draft; Wanqian Zhang:
Discussion, review and editing; Weiyuan Zou: Supervision, validation, and revision.

Use of Al tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The work of Shenglun Yan was supported by the Innovation and Entrepreneurship Projects for
College Students in Beijing University of Chemical Technology (X202410010342), and the work of
Weiyuan Zou was supported by the National Natural Science Foundation of China (NSFC)12001033.

Conflict of interest

The authors declare no conflict of interest.

References
1. J. Toner, Y. Tu, Flocks, herds, and Schools: A quantitative theory of flocking, Phys. Rev. E, 58
(1998), 4828—4858. https://doi.org/10.1103/physreve.58.4828

2. C. M. Topaz, A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic
model for biological groups, SIAM J. Appl. Math., 65 (2004), 152-174.
https://doi.org/10.1137/S0036139903437424

Networks and Heterogeneous Media Volume 19, Issue 2, 547-568.


https://dx.doi.org/https://doi.org/10.1103/physreve.58.4828
https://dx.doi.org/https://doi.org/10.1137/S0036139903437424

567

10.

11.

12.

13.

14.

15.

16.

17.

18.

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor.
Biol., 16 (1967), 15-42. https://doi.org/10.1016/0022-5193(67)90051-3

J. Buck, E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562-564.
https://doi.org/10.1038/211562a0

T. Vicsek, A. Czirok, E. Ben-Jacob, 1. Cohen, O. Sochet, Novel type of phase
transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.
https://doi.org/10.1103/PhysRevLett.75.1226

A. Jadbabaie, J. Lin, A. S. Morse, Coordination of groups of mobile autonomous
agents using nearest neighbor rules, IEEE Trans. Autom. Control., 48 (2008), 988—1001.
https://doi.org/10.1109/tac.2003.812781

F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Trans. Autom. Control., 52 (2007),
852-862. https://doi.org/10.1109/TAC.2007.895842

X. Zhang, T. Zhu, Complete classification of the asymptotical behavior for singular C-S model on
the real line, J. Differ. Equations., 269 (2020), 201-256. https://doi.org/10.1016/j.jde.2019.12.004

D. Bhaya, Light matters: Phototaxis and signal transduction in unicellular cyanobacteria, Mol.
Microbiol., 53 (2004), 745-754. https://doi.org/10.1111/j.1365-2958.2004.04160.x

A. Jakob, N. Schuergers, A. Wilde, Phototaxis assays of synechocystis sp. PCC
6803 at macroscopic and microscopic scales, Bio-protocol, T (2017), e2328.
https://doi.org/10.21769/BioProtoc.2328

S.Y. Ha, T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch.
Rational Mech. Anal., 223 (2017), 1397-1425. https://doi.org/10.1007/s00205-016-1062-3

J. G. Dong, S. Y. Ha, D. Kim, Emergent behaviors of continuous and discrete thermomechanical
Cucker-Smale models on general digraphs, Math. Models Methods Appl. Sci., 29 (2019), 589-632.
https://doi.org/10.1142/S0218202519400013

H. Cho, L. Du, S. Y. Ha, Emergence of a periodically rotating one-point cluster in a thermodynamic
Cucker-Smale ensemble, Quart. Appl. Math., 80 (2022), 1-22. https://doi.org/10.1090/qam/1602

Y. P. Choi, S. Y. Ha, J. Jung, J. Kim, Global dynamics of the thermomechanical Cucker-
Smale ensemble immersed in incompressible viscous fluids, Nonlinearity, 32 (2019), 1597-1640.
https://doi.org/10.1088/1361-6544/aafaae

Y. P. Choi, S. Y. Ha, J. Jung, J. Kim, On the coupling of kinetic thermomechanical Cucker
Smale equation and compressible viscous fluid system, J. Math. Fluid Mech., 22 (2020), 1-34.
https://doi.org/10.1007/s00021-019-0466-x

S. H. Choi, S. Y. Ha, Emergence of flocking for a multi-agent system moving with constant speed,
Commun. Math. Sci., 14 (2016), 953-972. https://doi.org/10.4310/CMS.2016.V14.N4.A4

H. Ahn, Emergent behaviors of thermodynamic Cucker-Smale ensemble with a
unit-speed constraint, Discrete Contin. Dyn. Syst. Ser. B, 28 (2023), 4800-4825.
https://doi.org/10.3934/dcdsb.2023042

H. Ahn, Non-emergence of mono-cluster flocking and multi-cluster flocking of the thermodynamic
Cucker-Smale model with a unit-speed constraint, Netw. Heterog. Media., 18 (2023), 1493-1527.
https://doi.org/10.3934/nhm.2023066

Networks and Heterogeneous Media Volume 19, Issue 2, 547-568.


https://dx.doi.org/https://doi.org/10.1016/0022-5193(67)90051-3
https://dx.doi.org/https://doi.org/10.1038/211562a0
https://dx.doi.org/https://doi.org/10.1103/PhysRevLett.75.1226
https://dx.doi.org/https://doi.org/10.1109/tac.2003.812781
https://dx.doi.org/https://doi.org/10.1109/TAC.2007.895842
https://dx.doi.org/https://doi.org/10.1016/j.jde.2019.12.004
https://dx.doi.org/https://doi.org/10.1111/j.1365-2958.2004.04160.x
https://dx.doi.org/https://doi.org/10.21769/BioProtoc.2328
https://dx.doi.org/https://doi.org/10.1007/s00205-016-1062-3
https://dx.doi.org/https://doi.org/10.1142/S0218202519400013
https://dx.doi.org/https://doi.org/10.1090/qam/1602
https://dx.doi.org/https://doi.org/10.1088/1361-6544/aafaae
https://dx.doi.org/https://doi.org/10.1007/s00021-019-0466-x
https://dx.doi.org/https://doi.org/10.4310/CMS.2016.V14.N4.A4
https://dx.doi.org/https://doi.org/10.3934/dcdsb.2023042
https://dx.doi.org/https://doi.org/10.3934/nhm.2023066

568

19. H. Ahn, J. Byeon,

S. Y. Ha, Interplay of unit-speed constraint and singular

communication in the thermodynamic Cucker-Smale model, Chaos, 33 (2023), 123132.

https://doi.org/10.1063/5.0165245

@ AIMS Press

Networks and Heterogeneous Media

©2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Volume 19, Issue 2, 547-568.


https://dx.doi.org/https://doi.org/10.1063/5.0165245
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Basic estimates
	Previous results

	Multi-cluster flocking of TCSUS
	Dissipative structure
	Multi-cluster flocking

	Conclusion



