Research article Special Issues

Effects of heterogeneous opinion interactions in many-agent systems for epidemic dynamics

  • Received: 14 November 2023 Revised: 02 February 2024 Accepted: 18 February 2024 Published: 27 February 2024
  • In this work we define a kinetic model for understanding the impact of heterogeneous opinion formation dynamics on epidemics. The considered many-agent system is characterized by nonsymmetric interactions which define a coupled system of kinetic equations for the evolution of the opinion density in each compartment. In the quasi-invariant limit we may show positivity and uniqueness of the solution of the problem together with its convergence towards an equilibrium distribution exhibiting bimodal shape. The tendency of the system towards opinion clusters is further analyzed by means of numerical methods, which confirm the consistency of the kinetic model with its moment system whose evolution is approximated in several regimes of parameters.

    Citation: Sabrina Bonandin, Mattia Zanella. Effects of heterogeneous opinion interactions in many-agent systems for epidemic dynamics[J]. Networks and Heterogeneous Media, 2024, 19(1): 235-261. doi: 10.3934/nhm.2024011

    Related Papers:

  • In this work we define a kinetic model for understanding the impact of heterogeneous opinion formation dynamics on epidemics. The considered many-agent system is characterized by nonsymmetric interactions which define a coupled system of kinetic equations for the evolution of the opinion density in each compartment. In the quasi-invariant limit we may show positivity and uniqueness of the solution of the problem together with its convergence towards an equilibrium distribution exhibiting bimodal shape. The tendency of the system towards opinion clusters is further analyzed by means of numerical methods, which confirm the consistency of the kinetic model with its moment system whose evolution is approximated in several regimes of parameters.



    加载中


    [1] G. Albi, G. Bertaglia, W. Boscheri, G. Dimarco, L. Pareschi, G. Toscani, et al., Kinetic modelling of epidemic dynamics: social contacts, control with uncertain data, and multiscale spatial dynamics, Predicting Pandemics in a Globally Connected World, 1 (2022), 43–108. https://doi.org/10.1007/978-3-030-96562-4_3 doi: 10.1007/978-3-030-96562-4_3
    [2] F. Auricchio, G. Toscani, M. Zanella, Trends to equilibrium for a nonlocal Fokker-Planck equation, Appl. Math. Lett., 145 (2023), 108746. https://doi.org/10.1016/j.aml.2023.108746 doi: 10.1016/j.aml.2023.108746
    [3] F. Brauer, C. Castillo-Chavez, Z. Feng, Mathematical Models in Epidemiology, New York: Springer-Verlag, 2019. https://doi.org/10.1007/978-1-4939-9828-9
    [4] M. Bisi, J. A. Carrillo, G. Toscani, Contractive metrics for a Boltzmann equation for granular gases: diffusive equilibria, J. Stat. Phys., 118 (2005), 301–331. https://doi.org/10.1007/s10955-004-8785-5 doi: 10.1007/s10955-004-8785-5
    [5] A. Bondesan, G. Toscani, M. Zanella, Kinetic compartmental models driven by opinion dynamics: vaccine hesitancy and social influence, Math. Mod. Meth. Appl. Sci., (Online Ready). https://doi.org/10.1142/S0218202524400062
    [6] D. Borra, T. Lorenzi, Asymptotic analysis of continuous opinion dynamics models under bounded confidence, Commun. Pure Appl. Anal., 12 (2013), 1487–1499. https://doi.org/10.3934/cpaa.2013.12.1487 doi: 10.3934/cpaa.2013.12.1487
    [7] B. Buonomo, R. Della Marca, Effects of information-induced behavioural changes during the COVID-19 lockdowns: the case of Italy, R. Soc. Open Sci., 7 (2020), 201635. https://doi.org/10.1098/rsos.201635 doi: 10.1098/rsos.201635
    [8] B. Buonomo, R. Della Marca, A. D'Onofrio, M. Groppi, A behavioural modeling approach to assess the impact of COVID-19 vaccine hesitancy, J. Theoret. Biol., 534 (2022), 110973. https://doi.org/10.1016/j.jtbi.2021.110973 doi: 10.1016/j.jtbi.2021.110973
    [9] C. Cercignani, R. Illner, M. Pulvirenti, The Mathematical Theory of Dilute Gases, Berlin: Springer Science & Business Media, 2013. https://doi.org/10.1007/978-1-4419-8524-8
    [10] J. A. Carrillo, M. Fornasier, G. Toscani, F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in G. Naldi, L. Pareschi, and G. Toscani, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Birkhäuser Boston: Modeling and Simulation in Science and Technology, (2010), 297–-336. https://doi.org/10.1007/978-0-8176-4946-3_12
    [11] J. A. Carrillo, J. Rosado, F. Salvarani, 1D nonlinear Fokker–Planck equations for fermions and bosons, Appl. Math. Letters, 21 (2008), 148-–154. https://doi.org/10.1016/j.aml.2006.06.023 doi: 10.1016/j.aml.2006.06.023
    [12] C. Castellano, S. Fortunato, V. Loreto, Statistical physics of social dynamics, Rev. Mod. Phys., 81 (2009), 591–646. https://doi.org/10.1103/RevModPhys.81.591 doi: 10.1103/RevModPhys.81.591
    [13] E. Cristiani, A. Tosin, Reducing complexity of multiagent systems with symmetry breaking: an application to opinion dynamics with polls, Multiscale Model. Simul., 16 (2018), 528–549. https://doi.org/10.1137/17M113397X doi: 10.1137/17M113397X
    [14] R. Colombo, M. Garavello, Hyperbolic consensus games, Commun. Math. Sci., 17 (2019), 1005–1024. https://dx.doi.org/10.4310/CMS.2019.v17.n4.a7 doi: 10.4310/CMS.2019.v17.n4.a7
    [15] R. Della Marca, N. Loy, M. Menale, Intransigent vs. volatile opinions in a kinetic epidemic model with imitation game dynamics, Math. Med. Biol., 40 (2023), 111–140. https://dx.doi.org/10.1093/imammb/dqac018 doi: 10.1093/imammb/dqac018
    [16] L. Desvillettes, M. Mischler, About the splitting algorithm for Boltzmann and BGK equations, Math. Mod. Meth. Appl. Sci., 6 (1996), 1079–1101. https://doi.org/10.1142/S0218202596000444 doi: 10.1142/S0218202596000444
    [17] G. Dimarco, L. Pareschi, G. Toscani, M. Zanella, Wealth distribution under the spread of infectious diseases, Physical Review E, 102 (2020), 022303. https://doi.org/10.1103/PhysRevE.102.022303 doi: 10.1103/PhysRevE.102.022303
    [18] G. Dimarco, B. Perthame, G. Toscani, M. Zanella, Kinetic models for epidemic dynamics with social heterogeneity, J. Math. Biol., 83 (2021), 4. https://doi.org/10.1007/s00285-021-01630-1 doi: 10.1007/s00285-021-01630-1
    [19] G. Dimarco, G. Toscani, M. Zanella, Optimal control of epidemic spreading in the presence of social heterogeneity, Phil. Trans. R. Soc. A, 380 (2022), 20210160. https://doi.org/10.1098/rsta.2021.0160 doi: 10.1098/rsta.2021.0160
    [20] B. Düring, P. Markowich, J. F. Pietschmann, M. T. Wolfram, Boltzmann and Fokker-Planck equations modeling opinion formation in the presence of strong leaders, Proc. R. Soc. A, 465 (2009), 3687–3708. https://doi.org/10.1098/rspa.2009.0239 doi: 10.1098/rspa.2009.0239
    [21] B. Düring, M. T. Wolfram, Opinion dynamics: inhomogeneous Boltzmann-type equations modeling opinion leadership and political segregation, Proc. R. Soc. A, 471 (2015), 20150345. https://doi.org/10.1098/rspa.2015.0345 doi: 10.1098/rspa.2015.0345
    [22] D. Flocco, B. Palmer-Toy, R. Wang, H. Zhu, R. Sonthalia, J. Lin, et al., An analysis of COVID-19 knowledge graph construction and applications, IEEE International Conference on Big Data (Big Data) (2021), 2631–2640. https://doi.org/10.1109/BigData52589.2021.9671479 doi: 10.1109/BigData52589.2021.9671479
    [23] J. Franceschi, A. Medaglia, M. Zanella, On the optimal control of kinetic epidemic models with uncertain social features, Optim Contr Appl Met, (2023). https://doi.org/10.1002/oca.3029 doi: 10.1002/oca.3029
    [24] J. Franceschi, L. Pareschi, E. Bellodi, M. Gavanelli, M. Bresadola, Modeling opinion polarization on social media: Application to COVID-19 vaccination hesitancy in Italy, PLoS ONE, 18 (2023), 1–26. https://doi.org/10.1371/journal.pone.0291993 doi: 10.1371/journal.pone.0291993
    [25] S. Funk, M. Salathé, V. A. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: a review, J. R. Soc. Interface, 7 (2010), 1247–1256. https://doi.org/10.1098/rsif.2010.0142 doi: 10.1098/rsif.2010.0142
    [26] E. Gabetta, G. Toscani, B. Wennberg, Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation, J. Statist. Phys., 81 (1995), 901–934. https://doi.org/10.1007/BF02179298 doi: 10.1007/BF02179298
    [27] M. Gatto, E. Bertuzzo, L. Mari, S. Miccoli, L. Carraro, R. Casagrandi, et al., Spread and dynamics of the COVID-19 epidemic in Italy: effect of emergency containment measures, PNAS, 117 (2020), 10484–10491. https://doi.org/10.1073/pnas.2004978117 doi: 10.1073/pnas.2004978117
    [28] C. Giambiagi Ferrari, J. P. Pinasco, N. Saintier, Coupling epidemiological models with social dynamics, Bullet. Math. Biol., 83 (2021), 74. https://doi.org/10.1007/s11538-021-00910-7 doi: 10.1007/s11538-021-00910-7
    [29] S. Y. Ha, E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415–435. https://doi.org/10.3934/krm.2008.1.415 doi: 10.3934/krm.2008.1.415
    [30] R. Hegselmann, U. Krause, Opinion dynamics and bounded confidence: models, analysis, and simulation, J. Artif. Soc. Soc. Simulat., 5 (2002), 1–33.
    [31] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907
    [32] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [33] N. Kontorovsky, C. Giambiagi Ferrari, J. P. Pinasco, N. Saintier, Kinetic modeling of coupled epidemic and behavior dynamics: The social impact of public policies, Math. Mod. Meth. Appl. Sci., 32 (2022), 2037–2076. https://doi.org/10.1142/S0218202522500488 doi: 10.1142/S0218202522500488
    [34] K. Sznajd-Weron, J. Sznajd, Opinion evolution in closed community, Int. J. Mod. Phys. C, 11 (2000), 1157–1165. https://doi.org/10.1142/S0129183100000936 doi: 10.1142/S0129183100000936
    [35] L. Pareschi, G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods, New York: Springer-Verlag, 2019.
    [36] L. Pareschi, G. Toscani, A. Tosin, M. Zanella, Hydrodynamic models of preference formation in multi-agent societies, J. Nonlin. Sci., 29 (2019), 2761–2796. https://doi.org/10.1007/s00332-019-09558-z doi: 10.1007/s00332-019-09558-z
    [37] L. Pareschi, M. Zanella, Structure preserving schemes for nonlinear Fokker–Planck equations and applications, J. Sci. Comput., 74 (2018), 1575–1600. https://doi.org/10.1007/s10915-017-0510-z doi: 10.1007/s10915-017-0510-z
    [38] A. Perisic, C. Bauch, Social contact networks and the free-rider problem in voluntary vaccination policy, PLoS Comput. Biol., 5 (2009), e1000280. https://doi.org/10.1371/journal.pcbi.1000280 doi: 10.1371/journal.pcbi.1000280
    [39] B. Piccoli, N. Pouradier Duteil, E. Trélat, Sparse control of Hegselamnn-Krause models: black hole and declustering, SIAM J. Contr. Optim., 57, 4 (2019), 2628–2659. https://doi.org/10.1137/18M1168911 doi: 10.1137/18M1168911
    [40] R. Temam, Sur la résolution exacte at aprochée d'un probléme hyperbolique non linéaire de T. Carleman, Arch. Ration. Mech. Anal., 35 (1969), 351–362. https://doi.org/10.1007/BF00247682 doi: 10.1007/BF00247682
    [41] G. Toscani, Kinetic models of opinion formation, Communications in Mathematical Sciences, 4 (2006), 481–496.
    [42] G. Toscani, A. Tosin, M. Zanella, Opinion modeling on social media and marketing aspects, Phys. Rev. E, 98 (2018), 022315. https://doi.org/10.1103/physreve.98.022315 doi: 10.1103/physreve.98.022315
    [43] B. Tunçgenç, M. El Zein, J. Sulik, M. Newson, Y. Zhao, G. Dezecache, et al., Social influence matters: we follow pandemic guidelines most when our close circle does, Br. J. Psychol., 112 (2021), 763–780. https://doi.org/10.1111/bjop.12491 doi: 10.1111/bjop.12491
    [44] M. Zanella, Kinetic models for epidemic dynamics in the presence of opinion polarization, Bullet. Math. Biol., 85 (2023), 36. https://doi.org/10.1007/s11538-023-01147-2 doi: 10.1007/s11538-023-01147-2
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(939) PDF downloads(104) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog