Research article Special Issues

Modeling disease awareness and variable susceptibility with a structured epidemic model

  • Received: 02 October 2023 Revised: 15 January 2024 Accepted: 12 February 2024 Published: 28 February 2024
  • We developed an epidemic model with disease awareness and variable susceptibility, consisting of a two-dimensional, nonlocal, transport equation. From this model, we deduced a 3D ordinary differential equation (ODE) model, which is reminiscent of (but not reducible to) more traditional susceptible-infectious-susceptible (SIS)-type models, where the dynamical variables are the infected population proportion, the mean awareness of the population, and the mean susceptibility to reinfection. We show that a reproduction number $ R_0 $ exists whose threshold value determines the stability of the disease-free equilibrium, alongside the existence of an endemic one. We deduced conditions on the model parameters and ensured the stability and uniqueness of the endemic equilibrium. The transport equation was studied, and we showed some numerical experiments. Our results suggest that disease awareness dynamics can have a major role in epidemiological outcomes: we showed that even for high $ R_0 $, the infection prevalence could be made as small as desired, as long as the awareness decay was small. On the other hand, numerical evidence suggested that the relation between epidemiological outcomes and awareness levels was not straightforward, in the sense that sustained high awareness may not always lead to better outcomes, as compared to time-limited awareness peaks in response to outbreaks.

    Citation: Paulo Amorim, Alessandro Margheri, Carlota Rebelo. Modeling disease awareness and variable susceptibility with a structured epidemic model[J]. Networks and Heterogeneous Media, 2024, 19(1): 262-290. doi: 10.3934/nhm.2024012

    Related Papers:

  • We developed an epidemic model with disease awareness and variable susceptibility, consisting of a two-dimensional, nonlocal, transport equation. From this model, we deduced a 3D ordinary differential equation (ODE) model, which is reminiscent of (but not reducible to) more traditional susceptible-infectious-susceptible (SIS)-type models, where the dynamical variables are the infected population proportion, the mean awareness of the population, and the mean susceptibility to reinfection. We show that a reproduction number $ R_0 $ exists whose threshold value determines the stability of the disease-free equilibrium, alongside the existence of an endemic one. We deduced conditions on the model parameters and ensured the stability and uniqueness of the endemic equilibrium. The transport equation was studied, and we showed some numerical experiments. Our results suggest that disease awareness dynamics can have a major role in epidemiological outcomes: we showed that even for high $ R_0 $, the infection prevalence could be made as small as desired, as long as the awareness decay was small. On the other hand, numerical evidence suggested that the relation between epidemiological outcomes and awareness levels was not straightforward, in the sense that sustained high awareness may not always lead to better outcomes, as compared to time-limited awareness peaks in response to outbreaks.



    加载中


    [1] G. Agaba, Y. Kyrychko, K. Blyuss, Mathematical model for the impact of awareness on the dynamics of infectious diseases, Math Biosci, 286 (2017), 22–30. https://doi.org/10.1016/j.mbs.2017.01.009 doi: 10.1016/j.mbs.2017.01.009
    [2] G. Agaba, Y. Kyrychko, K. Blyuss, Time-delayed sis epidemic model with population awareness, Ecol. Complex., 31 (2017), 50–56. https://doi.org/10.1016/j.ecocom.2017.03.002 doi: 10.1016/j.ecocom.2017.03.002
    [3] F. Al Basir, S. Ray, E. Venturino, Role of media coverage and delay in controlling infectious diseases: A mathematical model, Appl. Math. Comput., 337 (2018), 372–385. https://doi.org/10.1016/j.amc.2018.05.042 doi: 10.1016/j.amc.2018.05.042
    [4] O. Angulo, F. Milner, L. Sega, A SIR epidemic model structured by immunological variables, J Biol Syst, 21 (2013), 1340013. https://doi.org/10.1142/S0218339013400135 doi: 10.1142/S0218339013400135
    [5] M. S. Aronna, R. Guglielmi, L. M. Moschen, A model for COVID-19 with isolation, quarantine and testing as control measures, Epidemics, 34 (2021), 100437. https://doi.org/10.1016/j.epidem.2021.100437 doi: 10.1016/j.epidem.2021.100437
    [6] P. Auger, P. Magal, S. Ruan, Structured population models in biology and epidemiology, Berlin: Springer, 2008.
    [7] J. Bedson, L. A. Skrip, D. Pedi, S. Abramowitz, S. Carter, M. F. Jalloh, et al., A review and agenda for integrated disease models including social and behavioural factors, Nat. Hum. Behav., 5 (2021), 834–846. https://doi.org/10.1038/s41562-021-01136-2 doi: 10.1038/s41562-021-01136-2
    [8] B. Berrhazi, M. El Fatini, A. Lahrouz, A. Settati, R. Taki, A stochastic SIRS epidemic model with a general awareness-induced incidence, Physica A, 512 (2018), 968–980. https://doi.org/10.1016/j.physa.2018.08.150 doi: 10.1016/j.physa.2018.08.150
    [9] B. Bonzi, A. Fall, A. Iggidr, G. Sallet, Stability of differential susceptibility and infectivity epidemic models, J. Math. Biology, 62 (2011), 39–64. https://doi.org/10.1007/s00285-010-0327-y doi: 10.1007/s00285-010-0327-y
    [10] B. Buonomo, Effects of information-dependent vaccination behavior on coronavirus outbreak: insights from a SIRI model, Ric. di Mat., 69 (2020), 483–499. https://doi.org/10.1007/s11587-020-00506-8 doi: 10.1007/s11587-020-00506-8
    [11] B. Buonomo, R. Della Marca, Effects of information-induced behavioural changes during the COVID-19 lockdowns: the case of Italy, Royal Soc. Open Sci., 7 (2020), 201635. https://doi.org/10.1098/rsos.201635 doi: 10.1098/rsos.201635
    [12] B. Buonomo, A. d'Onofrio, D. Lacitignola, Global stability of an SIR epidemic model with information dependent vaccination, Math Biosci, 216 (2008), 9–16. https://doi.org/10.1016/j.mbs.2008.07.011 doi: 10.1016/j.mbs.2008.07.011
    [13] V. Capasso, G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math Biosci, 42 (1978), 43–61. https://doi.org/10.1016/0025-5564(78)90006-8 doi: 10.1016/0025-5564(78)90006-8
    [14] S. Collinson, J. M. Heffernan, Modelling the effects of media during an influenza epidemic, BMC Public Health, 14 (2014), 1–10. https://doi.org/10.1186/1471-2458-14-744 doi: 10.1186/1471-2458-14-744
    [15] S. Collinson, K. Khan, J. M. Heffernan, The effects of media reports on disease spread and important public health measurements, PloS one, 10 (2015), e0141423. https://doi.org/10.1371/journal.pone.0141423 doi: 10.1371/journal.pone.0141423
    [16] J. Daunizeau, R. Moran, J. Brochard, J. Mattout, R. Frackowiak, K. Friston, Modelling lockdown-induced 2nd COVID waves in france, MedRxiv, [Preprint], (2020), [cited 2024 Feb 28]. Available from: . https://doi.org/10.1101/2020.06.24.20139444
    [17] O. Diekmann, H. Heesterbeek, T. Britton, Mathematical tools for understanding infectious disease dynamics, Princeton: Princeton University Press, 2013.
    [18] O. Diekmann, H. Inaba, A systematic procedure for incorporating separable static heterogeneity into compartmental epidemic models, J. Math. Biology, 86 (2023), 29. https://doi.org/10.1007/s00285-023-01865-0 doi: 10.1007/s00285-023-01865-0
    [19] A. d'Onofrio, P. Manfredi, Behavioral SIR models with incidence-based social-distancing, Chaos Soliton Fract, 159 (2022), 112072. https://doi.org/10.1016/j.chaos.2022.112072 doi: 10.1016/j.chaos.2022.112072
    [20] A. d'Onofrio, P. Manfredi, Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases, J Theor Biol, 256 (2009), 473–478.
    [21] A. Fonda, Uniformly persistent semidynamical systems, Proc Am Math Soc, 104 (1998), 111–116.
    [22] S. Funk, E. Gilad, V. A. Jansen, Endemic disease, awareness, and local behavioural response, J Theor Biol, 264 (2010), 501–509. https://doi.org/10.1016/j.jtbi.2010.02.032 doi: 10.1016/j.jtbi.2010.02.032
    [23] S. Funk, E. Gilad, C. Watkins, V. A. Jansen, The spread of awareness and its impact on epidemic outbreaks, Proc. Natl. Acad. Sci., 106 (2009), 6872–6877. https://doi.org/10.1073/pnas.0810762106 doi: 10.1073/pnas.0810762106
    [24] S. Funk, M. Salathé, V. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: a review, J R Soc Interface, 7 (2010), 1247–1256. https://doi.org/10.1098/rsif.2010.0142 doi: 10.1098/rsif.2010.0142
    [25] A. Gandolfi, A. Pugliese, C. Sinisgalli, Epidemic dynamics and host immune response: a nested approach, J. Math. Biology, 70 (2015), 399–435. https://doi.org/10.1007/s00285-014-0769-8 doi: 10.1007/s00285-014-0769-8
    [26] D. Greenhalgh, S. Rana, S. Samanta, T. Sardar, S. Bhattacharya, J. Chattopadhyay, Awareness programs control infectious disease–multiple delay induced mathematical model, Appl. Math. Comput., 251 (2015), 539–563. https://doi.org/10.1016/j.amc.2014.11.091 doi: 10.1016/j.amc.2014.11.091
    [27] J. P. Gutiérrez-Jara and C. Saracini, Risk perception influence on vaccination program on COVID-19 in Chile: A mathematical model, Int. J. Environ. Res. Public Health, 19 (2022), 2022.
    [28] H. W. Hethcote, Age-structured epidemiology models and expressions for $r_0$, in Mathematical Understanding of Infectious Disease Dynamics, Singapore: World Scientific, 2009, 91–128.
    [29] J. M. Hyman, J. Li, Differential susceptibility epidemic models, J. Math. Biology, 50 (2005), 626–644. https://doi.org/10.1007/s00285-004-0301-7 doi: 10.1007/s00285-004-0301-7
    [30] J. M. Hyman, J. Li, Differential susceptibility and infectivity epidemic models, Math Biosci Eng, 3 (2006), 89–100. https://doi.org/10.3934/mbe.2006.3.89 doi: 10.3934/mbe.2006.3.89
    [31] D. Ibarra-Vega, Lockdown, one, two, none, or smart. modeling containing covid-19 infection. a conceptual model, Sci. Total Environ., 730 (2020), 138917. https://doi.org/10.1016/j.scitotenv.2020.138917 doi: 10.1016/j.scitotenv.2020.138917
    [32] H. Inaba, Mathematical analysis for an evolutionary epidemic model, Mathematical Models in Medical and Health Sciences, (1998), 213–236.
    [33] H. Inaba, Kermack and McKendrick revisited: the variable susceptibility model for infectious diseases, Jan J Ind Appl Math, 18 (2001), 273–292. https://doi.org/10.1007/BF03168575 doi: 10.1007/BF03168575
    [34] H. Inaba, Age-structured population dynamics in demography and epidemiology, Berlin: Springer, 2017.
    [35] K. A. Kabir, K. Kuga, J. Tanimoto, Analysis of SIR epidemic model with information spreading of awareness, Chaos Soliton Fract, 119 (2019), 118–125. https://doi.org/10.1016/j.chaos.2018.12.017 doi: 10.1016/j.chaos.2018.12.017
    [36] W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics. Ⅱ.—the problem of endemicity, Proc. Math. Phys. Eng. Sci., 138 (1932), 55–83.
    [37] W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics. Ⅲ.—Further studies of the problem of endemicity, Proc. Math. Phys. Eng. Sci., 141 (1933), 94–122.
    [38] A. Khatua, T. K. Kar, Impacts of media awareness on a stage structured epidemic model, Int. J. Appl. Comput. Math, 6 (2020), 1–22. https://doi.org/10.1007/s40819-020-00904-4 doi: 10.1007/s40819-020-00904-4
    [39] I. Z. Kiss, J. Cassell, M. Recker, P. L. Simon, The impact of information transmission on epidemic outbreaks, Math Biosci, 225 (2010), 1–10. https://doi.org/10.1016/j.mbs.2009.11.009 doi: 10.1016/j.mbs.2009.11.009
    [40] W. M. Liu, H. W. Hethcote, S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biology, 25 (1987), 359–380.
    [41] W. M. Liu, S. A. Levin, Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biology, 23 (1986), 187–204. https://doi.org/10.1007/BF00276956 doi: 10.1007/BF00276956
    [42] P. Manfredi, A. D'Onofrio, Modeling the interplay between human behavior and the spread of infectious diseases, Berlin: Springer Science & Business Media, 2013.
    [43] A. Misra, A. Sharma, J. Shukla, Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases, Math. Comput. Mod., 53 (2011), 1221–1228. https://doi.org/10.1016/j.mcm.2010.12.005 doi: 10.1016/j.mcm.2010.12.005
    [44] A. Nande, B. Adlam, J. Sheen, M. Z. Levy, A. L. Hill, Dynamics of COVID-19 under social distancing measures are driven by transmission network structure, Plos Comput Biol, 17 (2021), e1008684. https://doi.org/10.1371/journal.pcbi.1008684 doi: 10.1371/journal.pcbi.1008684
    [45] A. S. Novozhilov, On the spread of epidemics in a closed heterogeneous population, Math Biosci, 215 (2008), 177–185. https://doi.org/10.1016/j.mbs.2008.07.010 doi: 10.1016/j.mbs.2008.07.010
    [46] C. M. Pease, An evolutionary epidemiological mechanism, with applications to type A influenza, Theor Popul Biol, 31 (1987), 422–452.
    [47] B. Perthame, Transport equations in biology, Berlin: Springer Science & Business Media, 2006.
    [48] Q. Richard, M. Choisy, T. Lefèvre, R. Djidjou-Demasse, Human-vector malaria transmission model structured by age, time since infection and waning immunity, Nonlinear Anal-real, 63 (2022), 103393. https://doi.org/10.1016/j.nonrwa.2021.103393 doi: 10.1016/j.nonrwa.2021.103393
    [49] M. Sadeghi, J. M. Greene, E. D. Sontag, Universal features of epidemic models under social distancing guidelines, Annu. Rev. Control, 51 (2021), 426–440. https://doi.org/10.1016/j.arcontrol.2021.04.004 doi: 10.1016/j.arcontrol.2021.04.004
    [50] S. Samanta, S. Rana, A. Sharma, A. K. Misra, J. Chattopadhyay, Effect of awareness programs by media on the epidemic outbreaks: A mathematical model, Appl. Math. Comput., 219 (2013), 6965–6977. https://doi.org/10.1016/j.amc.2013.01.009 doi: 10.1016/j.amc.2013.01.009
    [51] J. Sooknanan, D. Comissiong, Trending on social media: integrating social media into infectious disease dynamics, Bull. Math. Biol., 82 (2020), 1–11. https://doi.org/10.1007/s11538-020-00757-4 doi: 10.1007/s11538-020-00757-4
    [52] Y. Sun, Y. Xue, B. Xie, S. Sun, Dynamics analysis of an SIS epidemic model with the effects of awareness, J. Nonl. Model. Anal., 3 (2021), 35–51. http://dx.doi.org/10.12150/jnma.2021.1 doi: 10.12150/jnma.2021.1
    [53] A. Teslya, T. M. Pham, N. G. Godijk, M. E. Kretzschmar, M. C. Bootsma, G. Rozhnova, Impact of self-imposed prevention measures and short-term government-imposed social distancing on mitigating and delaying a COVID-19 epidemic: A modelling study, Plos Med, 17 (2020), e1003166. https://doi.org/10.1371/journal.pmed.1003166 doi: 10.1371/journal.pmed.1003166
    [54] T. P. B. Thu, P. N. H. Ngoc, N. M. Hai, L. A. Tuan, Effect of the social distancing measures on the spread of COVID-19 in 10 highly infected countries, Sci. Total Environ., 742 (2020), 140430. https://doi.org/10.1016/j.scitotenv.2020.140430 doi: 10.1016/j.scitotenv.2020.140430
    [55] P. K. Tiwari, R. K. Rai, A. K. Misra, J. Chattopadhyay, Dynamics of infectious diseases: local versus global awareness, Int J Bifurcat Chaos, 31 (2021), 2150102. https://doi.org/10.1142/S0218127421501029 doi: 10.1142/S0218127421501029
    [56] M. R. Tocto-Erazo, J. A. Espíndola-Zepeda, J. A. Montoya-Laos, M. A. Acuña-Zegarra, D. Olmos-Liceaga, P. A. Reyes-Castro, et al., Lockdown, relaxation, and acme period in COVID-19: A study of disease dynamics in Hermosillo, Sonora, Mexico, PloS One, 15 (2020), e0242957. https://doi.org/10.1371/journal.pone.0242957 doi: 10.1371/journal.pone.0242957
    [57] F. Verelst, L. Willem, P. Beutels, Behavioural change models for infectious disease transmission: a systematic review (2010–2015), J R Soc Interface, 13 (2016), 20160820. https://doi.org/10.1098/rsif.2016.0820 doi: 10.1098/rsif.2016.0820
    [58] J. S. Weitz, S. W. Park, C. Eksin, J. Dushoff, Awareness-driven behavior changes can shift the shape of epidemics away from peaks and toward plateaus, shoulders, and oscillations, Proc. Natl. Acad. Sci., 117 (2020), 32764–32771.
    [59] A. D. Zewdie and S. Gakkhar, An epidemic model with transport-related infection incorporating awareness and screening, J. Appl. Math. Comput., 68 (2021), 3107–3146. https://doi.org/10.1007/s12190-021-01653-3 doi: 10.1007/s12190-021-01653-3
    [60] W. Zhou, Y. Xiao, J. M. Heffernan, Optimal media reporting intensity on mitigating spread of an emerging infectious disease, Plos One, 14 (2019), e0213898. https://doi.org/10.1371/journal.pone.0213898 doi: 10.1371/journal.pone.0213898
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(484) PDF downloads(100) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog