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Abstract: We developed an epidemic model with disease awareness and variable susceptibility,
consisting of a two-dimensional, nonlocal, transport equation. From this model, we deduced a 3D
ordinary differential equation (ODE) model, which is reminiscent of (but not reducible to) more
traditional susceptible-infectious-susceptible (SIS)-type models, where the dynamical variables are the
infected population proportion, the mean awareness of the population, and the mean susceptibility
to reinfection. We show that a reproduction number R0 exists whose threshold value determines
the stability of the disease-free equilibrium, alongside the existence of an endemic one. We
deduced conditions on the model parameters and ensured the stability and uniqueness of the endemic
equilibrium. The transport equation was studied, and we showed some numerical experiments. Our
results suggest that disease awareness dynamics can have a major role in epidemiological outcomes:
we showed that even for high R0, the infection prevalence could be made as small as desired, as
long as the awareness decay was small. On the other hand, numerical evidence suggested that the
relation between epidemiological outcomes and awareness levels was not straightforward, in the sense
that sustained high awareness may not always lead to better outcomes, as compared to time-limited
awareness peaks in response to outbreaks.
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1. Introduction

The literature on epidemiological models incorporating behavioral aspects dates back, at least, to
the pioneering works [13,40,41], in which the authors analyzed models with nonlinear incidence rates,
which can be interpreted as behavioral changes due to awareness [24]. Since then, many authors have
proposed epidemiological models that incorporated either the roles of awareness, information, or the
influence of media reports in a more explicit way. We refer to the general reviews [7, 24, 57], where
many references may be found, not only from mathematics, but also from economics, biology, and the
social sciences. Even when looking specifically at the mathematical biology literature, the available
works are still too numerous to mention. Therefore, besides the aforementioned reviews, we refer to
the following works, which include useful summaries of existing works: [1, 26, 42, 51, 52, 55, 59, 60].

In the context of susceptible-infected-recovered (SIR)/ susceptible-infectious-susceptible
(SIS)-type (or mean-field) models, one can detect a general trend, namely that many existing works
model awareness by introducing new ‘aware’ compartments for the susceptible or infected
populations, respectively—see, for instance, [1, 22, 35, 39, 43, 52, 53] and especially the references
cited in [60]. Other approaches include the use of a media function, which directly influences the
incidence rate (although this approach is discouraged in [14]), or the use of an additional variable that
models the cumulative number of media reports, thereby governing the transition from the unaware to
the aware compartments [15, 26, 50, 51, 55]. For more in-depth reviews of the available literature, we
point the reader to the aforementioned review papers, as well as the summary (up to 2015) compiled
in [26].

Other models that incorporated awareness payed special attention to the contribution of spatial
dynamics [23, 59], introduced delays [2, 3, 26], explored the consequences of imposed lockdown or
isolation measures [5, 11, 16, 31, 49, 54, 56], considered stochastic models [8], or detected
information-induced oscillations [20], the effect of vaccinations [10, 12, 27], models with stage
structure [38], hospitalization [11, 44, 58], and so on.

Notwithstanding these contributions, it would be desirable to have a more fine-grained description
of the awareness states, instead of a simple aware/non-aware dicothomy. Additionally, it is reasonable
to suppose that disease susceptibility can be similarly measured along a scale, and that awareness
is an important factor to modulate the susceptibility: for instance, an individual who complies with
preventive measures may be less likely to be infected.

With these aspects in mind, in this work, we introduce a model of epidemiological dynamics with
heterogeneous susceptibility and disease awareness, which takes the form of a two-dimensional partial
differential equation of transport type, a so-called structured model [47]. This will be the system (1.5)
described below.

The model consists of a transport partial differential equation (PDE) acting on the healthy
population. Moreover, in this work, we also focus on a system of ordinary differential equations
(ODEs) (system (1.6) below), which are satisfied by integral quantities of the solutions of the PDE, in
which the dynamical variables are the infected proportion, the mean susceptibility, and the mean
awareness levels of the population. Besides providing an alternative viewpoint on infectious diseases
modeling, we believe that the present approach has some advantages over more traditional ones found
in the literature, which we discuss in more detail below.

An outline of the paper is as follows. In Section 1.1, we motivate and present our model, which, in its
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general form, consists of a two-dimensional transport equation, and deduce a 3× 3 ODE system for its
integral quantities. In Section 2, we provide an analysis of the transport equation, including the study of
the characteristic curves and the definition of solution. In Section 3, we provide the theoretical results
for the ODE system, including the threshold properties of the reproduction number R0. In Section 4,
we show an asymptotic result linking solutions of the structured model to the solutions of the ODE
system. Finally, in Section 5, we provide some numerical experiments to illustrate the dynamics and
our results, before some discussion and outlooks in Section 6.

1.1. Presentation of the model

As it turns out, even in epidemiology, the idea of using structured models (i.e., models in which
the population is described by a density with respect to some property like age or size) dates back to
the very first works on the subject [36, 37], where the time since infection was taken as a structure
variable. Since then, several works have considered epidemiological models with continuous structure
variables. Among these, we can mention the books [6, 17, 34], where examples of various models
and approaches can be found. Among the wider literature, we single out [32, 46], where a structured
model with virus evolution was studied. In those works, the number of cumulative virus aminoacid
substitutions due to a mutation influenced the susceptibility rate. In [33], the models from [36, 37]
were revisited and given rigorous mathematical treatment. We also cite [28], where an age-structured
model was considered. Then, [4] considered an infected population structured by a viral load, while
[25] modeled within-host dynamics, with the infected structured by pathogen load and the level of
immunity. Recently, [48] considered a model for malaria with age, time since infection, and immunity.
As far as we know, no structured model in epidemiology has considered a disease awareness and
a susceptibility structure (see, however, [45] for a related model). Finally, we mention the recent
work [18], where a systematic approach to deduce models that took heterogeneity into account was
developed, and where more references can be found.

Susceptibility and awareness structure

In this work, our proposal is to consider an epidemiological model where the susceptible (or healthy)
part H of a population is structured by two attributes: the susceptibility to infection, s ∈ [0, 1], and
a measure of the population’s awareness of the disease, measured by the variable λ ∈ [0, 1]. Here, s
ranges from no susceptibility to infection (s = 0) to maximum susceptibility (s = 1), while λ ranges
from no awareness (λ = 0) to maximum awareness (λ = 1). In this way, for each time t, H(t, s, λ)
is the density of the susceptible population with respect to s, λ, and

∫ s2

s1

∫ a2

a1
H(t, s, λ) ds dλ represents

the total population that has susceptibility in [s1, s2] and awareness in [a1, a2]. For convenience, and
since we do not consider deaths or other population dynamics in our model, we normalize the total
population (susceptible and infected) to be one.

Awareness dinamics

As previously described, awareness may change according to many different factors [22]. In a
structured model, these factors can be modeled by drift terms in a transport equation. Here, we will
suppose that two main influences play a role: first, awareness may increase (i.e., the profile λ 7→
H(t, s, λ) shifts to the right) proportionally to the total infected amount, with a saturation term (1 − λ)
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preventing H(t, s, ·) from going beyond λ = 1. In our framework, this gives rise to the following term:

∂λ
(
α3H(t, s, λ)(1 − λ)I(t)

)
,

where I(t) = 1 −
!

H(t) ds dλ is the total amount of infected population.
Second, the disease awareness naturally decays to λ = 0 at a background rate α1, yielding the term

∂λ(−α1λH(t, s, λ)).

Susceptibility dynamics

Similarly, the susceptibility dynamics gives rise to the following drift terms:

∂s
(
α2(1 − s)H − α4sH Gλ

)
,

where the quantity Gλ ≥ 0 describes how the awareness of the population influences the speed at
which susceptibility decreases. At this point, observe that we do not specify the form of Gλ; reasonable
choices include some explicit function of λ such as, Gλ(λ) = λ, or nonlocal quantities of the healthy
population distribution, such as the average awareness of the population. Thus, the first term models
the natural growth of susceptibility towards the maximum s = 1, while the second term expresses that
the susceptibility of the population decreases to zero with a speed governed by the awareness of the
population, in a manner that we will make precise below.

Infection dynamics

The susceptible population can become infected by contact with the infected population I(t) through
a mass-action law with a background transmission rate b > 0. Additionally, the infection probability
should be influenced by the awareness and susceptibility of the population. In general, we can suppose
that this influence takes the following form:

−bFsFλ H(t, s, λ)I(t), (1.1)

on the right hand side of the differential equation, for some quantities Fs, Fλ which describe the
influence of susceptibility and awareness on the infection rate. As a general rule, Fs should increase
with the susceptibility, and Fλ should decrease with the awareness, thus reflecting the assumption that
individuals with a lower susceptibility and a greater awareness have a smaller chance of being
infected. Again, we purposefully introduce these quantities here with a great degree of generality,
noting that reasonable choices include functions of either s or λ (for instance, Fs(s) = s and
Fλ(λ) = 1 − λ), or nonlocal, time-dependent functions of the population, such as the mean
susceptibility and the mean awareness.

The infected population recovers with a mean infectious period 1/γ, and this is modeled by a
boundary term at s = 0, since we suppose that individuals recover with minimal susceptibility.
Finally, when recovered individuals return to the susceptible pool at s = 0, we must specify what their
distribution is according to awareness, which we do by considering a function f (λ) ≥ 0. This gives a
boundary term of the following form:

H(t, s = 0, λ) =
γ

α2
I(t) f (λ), λ ∈ [0, 1],
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where α2 appears in order to ensure the proper units. Note that integrating the previous boundary
condition in λ ∈ (0, 1) shows that it is natural to assume that

∫ 1

0
f (λ) dλ = 1 due to mass conservation,

which we will do henceforth.
With the addition of the initial datum H0(s, λ) ≥ 0, these assumptions give rise to the following

transport equation for H(t, s, λ):

∂tH + ∂s
(
α2H(1 − s) − α4Hs Gλ

)
+ ∂λ

(
− α1Hλ + α3H(1 − λ)I(t)

)
= −bFsFλH(t, s, λ)I(t),

(1.2)

for s, λ ∈ [0, 1], t ≥ 0, with the following boundary and initial conditions:

H(t, s = 0, λ ∈ [0, 1]) =
γ

α2
I(t) f (λ),

H|∂([0,1]2)\{s=0} = 0, t > 0, H(t = 0, s, λ) = H0(s, λ),
(1.3)

and where I(t) = 1 −
!

[0,1]2 H(t, s, λ) ds dλ.
Since the specification of problem (1.2),(1.3) is, in fact, dependent on the choice of the response

terms Gλ, Fs, Fλ, it actually represents a family of models from which we hope particular and useful
cases can be studied. Now, we present the particular choice for Eq (1.4), which we will focus on in this
work.

A model depending on mean awareness and mean susceptibility

As mentioned, problem (1.2),(1.3) requires the specification of the quantities Gλ, Fs, Fλ which (we
recall) represent the contribution of awareness on the decrease of susceptibility, the influence of
susceptibility on the infection rate, and the influence of awareness on the infection rate, respectively.

It makes sense to choose some configuration which is tractable as a first object of study, but still
nontrivial. In particular, it would be useful if at least some of the dynamics of the transport equation
could be described by a system of ODEs through a reduction to certain integral quantities. It would be
even more useful if the resulting system contained interesting and nontrivial dynamics related to the
awareness and susceptibility, which are amenable to the analysis.

One simple way to achieve this is to assume that the dynamics are primarily determined by the mean
values of the population’s awareness and susceptibility distributions at each time, which we denote by
Λ(t) and Σ(t), respectively, in such a way that the infection rate should increase with the susceptibility
and decrease with the awareness. This leads to the following choice:

Fs = Σ(t), Fλ = 1 − Λ(t), Gλ = Λ(t) (1.4)

in Eq (1.2) above.

Remark 1.1. Other choices are possible in Eq (1.4), which would lead to models stressing different
aspects of the dynamics. One natural possibility is to consider Fs = s, Fλ = 1 − λ, Gλ = λ, or
other functions such as sα, (1 − λ)α, for α > 0. This type of choice would explicitly account for
the fact that parts of the population with different levels of (say) susceptibility, in fact, should have a
different disease transmission rate. In contrast, taking the average values within (1.4) means that we are
approximating the transmission rate at each time with an “effective” transmission rate determined by
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the mean value of the relevant attribute of the population at that time. Despite this simplification, it is
still true that different levels of awareness or susceptibility (but now seen as time-dependent averages)
dictate the dynamics. Moreover, the choice Eq (1.4), as we shall see in the following, allows us to build
a system of ODEs, which describe many of the aspects of the transport equation. In that system, the
awareness and susceptibility dynamics play a major role, and that analysis is one of the main goals of
this paper. To choose s, λ−dependent functions in Eq (1.4) would require different techniques, which
are more focused on the study of the transport equation (1.2) itself. That is an obvious next step which
we leave for further works.

In view of the previous discussion, we now introduce the system under consideration in this paper:

∂tH + ∂s
(
α2H(1 − s) − α4HsΛ(t)

)
+ ∂λ

(
− α1Hλ + α3H(1 − λ)I(t)

)
= −bΣ(t)(1 − Λ(t))HI(t), t > 0, (s, λ) ∈ [0, 1]2,

H(t, s = 0, λ ∈ [0, 1]) =
γ

α2
I(t) f (λ),

H|∂([0,1]2)\{s=0} = 0, t > 0,
H(t = 0, s, λ) = H0(s, λ),

where

I(t) = 1 − u(t), u(t) =
"

H(t, s, λ) ds dλ,

Σ(t) =
1

u(t)

"
sH(t, s, λ) ds dλ, Λ(t) =

1
u(t)

"
λH(t, s, λ) ds dλ,

(1.5)

and all integrals are taken in [0, 1]2. Here, u(t) is the total susceptible proportion, I(t) is the infected
proportion, Σ(t) is the mean susceptibility, Λ(t) is the mean awareness, and f (λ) is the awareness
distribution of the population reentering the susceptible pool. The variables and parameters are
described in Table 1 below.

1.2. Reduction to an ODE system

Despite the choice of time dependent averages for the response functions (cf. Eq (1.4) and Remark
1.1), the full transport equation model (1.5) is still challenging, from both analytical and numerical
standpoints; see, for instance, Section 2.2, where some effort is required just to define the solution.
However, the form of equations (1.5) and (1.4) allows us to deduce an ODE system from Eq (1.5), from
which epidemiological results may be obtained. To this end, we now consider the integral quantities
u(t), Σ(t), and Λ(t) of Eq (1.5), and check that they actually verify a 3 × 3 system of ODEs, which will
be the object of the analysis in Section 3.

As previously mentioned, we assume that
∫ 1

0
f (λ) dλ = 1, and let λ0 =

∫ 1

0
λ f (λ) dλ be the mean

awareness level of the recovered population. Then, from Eq (1.5), we can compute the time evolution
of the quantities u(t),Σ(t),Λ(t). For instance,

u′(t) =
∫

α2H(t, 0, λ) dλ − b
"
Σ(t)(1 − Λ(t))I(t)H(t, s, λ) ds dλ

= γI(t) − bΣ(t)(1 − Λ(t))I(t)u(t),
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where we have used integration by parts and the boundary condition. Similarly, denoting by

v(t) =
"

sH(t, s, λ) ds dλ,

using the equation and with an integration by parts, we obtain the following:

v′(t) = α2(u − v) − α4vΛ − bΣ(1 − Λ)Iv.

After a little computation, this leads to the following:

Σ′(t) =
(v(t)
u(t)

)′
= α2(1 − Σ) − α4ΣΛ − γ

1 − u
u
Σ.

Proceeding in a similar way to compute Λ′(t), we arrive at the following system for the healthy
proportion u, the mean susceptibility Σ, and the mean awareness Λ:

u′ = −bΣ(1 − Λ)u(1 − u) + γ(1 − u)

Σ′ = α2(1 − Σ) − α4ΛΣ − γ
1 − u

u
Σ

Λ′ = −α1Λ + α3(1 − u)(1 − Λ) + γ
1 − u

u
(λ0 − Λ),

(1.6)

supplemented with initial data u(0),Σ(0),Λ(0). Note that the initial values can be computed from the
initial susceptible density H0(s, λ) according to the expressions in Eq (1.5). In Table 1, we summarize
the variables and parameters that appear in systems (1.5) and (1.6).

Table 1. Variables and parameters in systems (1.5) and (1.6).

Notation Definition Value
t Time t ∈ (0,+∞)
s Measure of susceptibility s ∈ [0, 1]
λ Measure of awareness λ ∈ [0, 1]
H(t, s, λ) Susceptible density H ∈ [0,+∞)
u(t) Susceptible proportion u =

!
H dsdλ ∈ [0, 1]

I(t) Infected proportion I = 1 − u ∈ [0, 1]
Σ(t) Mean susceptibility See (1.5), ∈ [0, 1]
Λ(t) Mean awareness See (1.5), ∈ [0, 1]
b Background transmission rate > 0
1/γ Mean infectious period > 0
α1 Background mean awareness decay rate ≥ 0
α2 Background mean susceptibility growth rate ≥ 0
α3 Rate of awareness growth per infected ≥ 0
α4 Rate of susceptibility decay per awareness ≥ 0
λ0 Mean awareness of recovered λ0 =

∫
λ f (λ)dλ ∈ [0, 1]
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In what follows, it will be useful to consider the variable I = 1 − u, yielding the following system:
I′ = bΣ(1 − Λ)I(1 − I) − γI

Σ′ = α2(1 − Σ) − α4ΛΣ − γ
I

1 − I
Σ

Λ′ = −α1Λ + α3I(1 − Λ) + γ
I

1 − I
(λ0 − Λ).

(1.7)

Remark 1.2. We note that the reduction of the PDE (1.5) to the system (1.6) was possible only because
of the choice Eq (1.4) for the response functions. In this way, solutions to the PDE with equal total
initial masses and first moments will originate the same ODE solution. At least, when the conditions for
the asymptotic results in Section 4 are verified, this determines the long time behavior of the solutions
to the PDE (1.5). However, this does not preclude that different behaviors in the s and λ variables may
occur, while maintaining the same evolution for the integral quantites present in the ODE system. This
exploration, however, falls beyond the scope of the present work.

We have the following well-posedness theorem for Eq (1.6).

Theorem 1.3. Solutions of Eq (1.6) with an initial condition in (0, 1] × [0, 1]2 are unique and globally
defined in the future, and the set (0, 1] × [0, 1]2 is positively invariant for the flow associated to Eq
(1.6). An analogous result holds for system (1.7) when the initial condition lies in [0, 1) × [0, 1]2.

Proof. Uniqueness is guaranteed by the fact that the vector field is locally Lipschitz. As to the global
existence, we will prove it for system (1.7) and hence the global existence for Eq (1.6) immediately
follows. We prove this by ensuring that all the solutions with initial condition in [0, 1) × [0, 1]2 enter
in the compact set

(I,Σ,Λ) ∈ X = [0, 1 − ϵ] × [0, 1]2,

for some small ϵ > 0 and stay there. First, observe that Σ,Λ ∈ [0, 1] for all t ≥ 0, which is a
consequence of the signs of Σ′,Λ′ when Σ,Λ ∈ {0, 1}. Now, supposing that I ≥ 1 − ϵ, we find that
I′(t) ≤ bϵ + γ(ϵ − 1). Thus, choosing

ϵ =
1
4

γ

γ + b

we find that I′(t) < −γ/2. Therefore, we can say that I(t) ∈ [1 − ϵ, 1) ⇒ I′(t) < −γ/2, from which the
result follows. □

1.3. Relation with other models with disease awareness

Before proceeding to the more technical parts of this work, let us briefly comment on a few aspects
of our model and results that highlight some points in our approach. First, we note that in earlier works,
which divided the population into aware and unaware compartments in a binary way, two reproduction
numbers appear, one for each compartment, thus leading to case-by-case analyses of their relative
values (for example, in [22]); the same can be said for models with only two stages of susceptibility.
Our approach only gives a single reproduction number R0,which determines the dynamics and depends
only on the transmission rate and the mean infectious period, just as in the traditional models. However,
this does not mean that the awareness has no influence on the dynamics. Indeed, in Corollary 3.3
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below, we show that the system parameters related to the awareness can have a large influence on the
asymptotically-infected proportion.

Our model has a continuum of states for both the disease awareness and the susceptibility. For
instance, works such as [9, 29, 30] only considered a finite number of susceptibility states, while [45]
considered a continuum of states, although in a different approach.

Additionally, we note that our results can be compared to [19], where it was found that certain
types of delayed memory models related to disease awareness could have a destabilizing effect, which
generated a periodic behavior. Our approach also leads to the bifurcation phenomena and the
appearance of limit cycles, as we show with numerical experiments below.

All in all, the present model exhibits a wide range of previously observed effects related to
awareness dynamics, while being of a type not hitherto applied to these questions. Additionally, our
methods provide new insights into the influence of awareness on epidemic outcomes, namely
regarding the efficacy of sustained versus punctual awareness campaigns, as discussed in Section 5
below.

2. Study of the transport equation

2.1. Characteristic curves and notations

In this section, we provide a basic theoretical study of the transport equation (1.5). To define its
solutions, we first define the characteristic curves of the equation and explore their dynamics. We
show that all characteristics eventually end up inside the unit square (s, λ) ∈ (0, 1)2. This allows us to
define an appropriate concept of solution in Definition 2.2.

Equation (1.5) has two families of characteristic curves, namely for t ≥ 0, t + r ≥ 0,

ϕr(t; s, λ) = se−
∫ t+r

t α2+α4Λ(v) dv + α2

∫ t+r

t
e−

∫ t+r
v α2+α4Λ(y) dy dv,

ψr(t; s, λ) = λe−
∫ t+r

t α1+α3I(v) dv + α3

∫ t+r

t
e−

∫ t+r
v α1+α3I(y) dyI(v) dv.

(2.1)

They are obtained by integration of the following characteristic equations:s′ + (α2 + α4Λ)s = α2,

λ′ + (α1 + α3I)λ = α3I,
(2.2)

which are easily deduced from the equation (1.5). Here, Λ(t), I(t) are the solutions of the system (1.6)
with the initial data computed from H0(s, λ).

Therefore, the characteristic curve that passes by the point (s, λ) at time t is parametrised by r 7→
(ϕr(t; s, λ), ψr(t; s, λ)) in such a way that

(ϕ0(t; s, λ), ψ0(t; s, λ)) = (s, λ).

In particular, the foot of the characteristic curve which reaches (s, λ) at time t is as follows:

(s0, λ0) = ((ϕ−t(t; s, λ), ψ−t(t; s, λ)).
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Similarly, given (s0, λ0) at t = 0, then at time t > 0, the characteristic curve starting at (s0, λ0) is at the
point (ϕt(0; s0, λ0), ψt(0; s0, λ0)).

As long as I and Λ remain continuous and bounded functions of t, then for each t > 0, t + r ≥ 0, the
maps

(s, λ) 7→ (ϕr(t; s, λ), ψr(t; s, λ))

define diffeomorphisms of R2.
Here, we record the following consequence of Eq (2.1), which we use throughout this work:

ϕt(0; s, λ) = se−
∫ t

0 α2+α4Λ(v) dv + α2

∫ t

0
e−

∫ t
r α2+α4Λ(y) dy dr,

ψt(0; s, λ) = λe−
∫ t

0 α1+α3I(v) dv + α3

∫ t

0
e−

∫ t
r α1+α3I(y) dyI(r) dr.

(2.3)

2.2. Definition of solution to the transport equation

With the characteristic curves in hand, we are able to define the solution by integrating along the
characteristics. The domain of interest is the square (s, λ) ∈ [0, 1]2. Therefore, our first task is to
guarantee that the characteristics point into the interior of [0, 1]2 along its boundary. However, this is
immediate from the characteristic equations (2.2), as can be seen by setting in turn s = 0, 1, λ ∈ [0, 1],
and s ∈ [0, 1], λ = 0, 1. From this, it follows that each characteristic crosses the boundary ∂ [0, 1]2 at
most once.

Now, we prove that all characteristic curves must eventually end up inside (0, 1)2:

Proposition 2.1. Let (s, λ) ∈ R2. Then, there exists t∗ ≥ 0 such that for all t > t∗,

(ϕt(0; s, λ), ψt(0; s, λ)) ∈ (0, 1)2.

Proof. Let s ∈ R. Suppose that, for some time t > 0, we have that ϕt(0; s, λ) = 0. From Eq (2.3), this
is equivalent to the following:

s = −α2

∫ t

0
eα2r+α4

∫ r
0 Λ(v) dv dr,

so that necessarily s ≤ 0. Since the function t 7→ −α2

∫ t

0
eα2r+α4

∫ r
0 Λ(v) dv dr is surjective over (−∞, 0), we

conclude that for any s ≤ 0, there exists t such that ϕt(0; s, λ) = 0. Similarly, if λ ∈ R and ψt(0; s, λ) = 0
for some t, then from Eq (2.3) we must have the following:

λ = −α3

∫ t

0
eα1r+α3

∫ r
0 I(v) dvI(r) dr,

and so λ ≤ 0 necessarily. As t 7→ −α3

∫ t

0
eα1r+α3

∫ r
0 I(v) dvI(r) dr is surjective over (−∞, 0), then for any

λ ≤ 0, there exists t such that ψt(0; s, λ) = 0.
Suppose now that ψt(0; s, λ) = 1 for some t. This is equivalent to the following:

λ = eα1t+α3
∫ t

0 I(r) drI(t) − α3

∫ t

0
eα1r+α3

∫ r
0 I(v) dvI(r) dr ≡ h(t).
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First, note that h(0) = 1 and h′(t) = α1eα1t+α3
∫ t

0 I(r) dr > 0, so that h(t) > 0 for all t. Therefore, it is
necessary that λ ≥ 1. Furthermore, we have that h′′(t) = α1(α1 + α3I(t))eα1t+α3

∫ t
0 I(r) dr > 0, and so

h(t) → +∞ as t → ∞ and h(t) is surjective onto R+. Thus, every characteristic starting at some point
with λ > 1 eventually reaches λ = 1. In a similar way, we find that every characteristic starting at
some point with s > 1 eventually reaches s = 1. The situation is summarised in Figure 1. Thus, we
see that from any starting point in the plane, the characteristic curve eventually reaches (0, 1)2, where
it remains for all subsequent times. □

s = 0 s = 1

λ = 1

λ = 0

λ

s

Figure 1. Outline of the dynamics of the characteristics.

Now, for a fixed t > 0, we see from Eq (2.3) that the image of the line segment (say) from (s, λ) =
(0, 0) to (0, 1) under the action of the characteristics at time t is the following set:{

(ϕt(0; 0, λ), ψt(0; 0, λ)) : λ ∈ (0, 1)
}

=
{(
α2

∫ t

0
e−α2(t−r)−α4

∫ t
r Λ(v) dv dr, ψt(0; 0, λ)

)
: λ ∈ (0, 1)

}
in which (cf. Eq (2.3)) is linear in λ, and is therefore a line segment. By the same reasoning applied
to the four sides of the square ∂ (0, 1)2, and by the continuity of the characteristics, we conclude that
for each t > 0, there exists a (filled) rectangle Rt ⊂ (0, 1)2 such that (ϕt(0; s, λ), ψt(0; s, λ)) ⊂ Rt for all
(s, λ) ∈ (0, 1)2 (see Figure 2). Equivalently, for any (s, λ) ∈ Rt, the foot (ϕ−t(t; s, λ), ψ−t(t; s, λ)) of the
characteristic which passes through (s, λ) at time t lies in (0, 1)2. Thus, we conclude that for each t, the
map (s, λ) 7→ (ϕt(0; s, λ), ψt(0; s, λ)) is a bijection from (0, 1)2 to Rt. Therefore, for smooth solutions, at
least, the solution H(t, s, λ) when (s, λ) ∈ Rt should be obtained by integrating along the characteristic
using the initial data on (0, 1)2:

H(t, s, λ) = H0
(
ϕ−t(t; s, λ), ψ−t(t; s, λ)

)
· exp

( ∫ t

0
α1 + α2 + α4Λ + α3I − bΣ(1 − Λ)I dr

)
, (s, λ) ∈ Rt.

Consider now that t > 0 and a point (s, λ) ∈ (0, 1)2 \ Rt. From what we have seen, (s0, λ0) ≡
(ϕ−t(t; s, λ), ψ−t(t; s, λ)) must lie outside of (0, 1)2. In that case, by Lemma 2.1, the characteristic curve
emanating from (s0, λ0) crosses ∂ (0, 1)2 exactly once. This means that there exists a unique t∗ > 0 such
that

((ϕt∗(0; s0, λ0), ψt∗(0; s0, λ0)) ∈ ∂ (0, 1)2.
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However, this point is exactly ((ϕ−(t−t∗)(t; s, λ), ψ−(t−t∗)(t; s, λ)) by the semigroup property. Therefore,
the solution H(t, s, λ) for (s, λ) ∈ (0, 1)2 \ Rt should be obtained by integrating the characteristic curve
from t∗ to t using the boundary data. Since the characteristics point towards the interior of (0, 1)2 on all
the boundaries, and a boundary condition is only active on the segment {s = 0} × {λ ∈ (0, 1)}, we can
consider the function G : R+ × ∂ (0, 1)2 → R such that

G(t, s, λ) =


γ

α2
I(t) f (λ), s = 0, λ ∈ (0, 1),

0, otherwise in ∂ (0, 1)2
(2.4)

and set

H(t, s, λ) = G
(
t∗, ϕ−(t−t∗)(t; s, λ), ψ−(t−t∗)(t; s, λ)

)
· exp

( ∫ t

t∗
α1 + α2 + α4Λ + α3I − bΣ(1 − Λ)I dr

)
,

for (s, λ) ∈ (0, 1)2 \ Rt

where, we recall, t∗ > 0 is the unique time t∗ < t (depending on t, s, λ), at which the characteristic curve
that passes through the point (t, s, λ) departs from the boundary ∂ (0, 1)2.

(s, λ) = (0, 0)

A

B

(s, λ) = (1, 1)

Rt

Figure 2. Rt is the image of (0, 1)2 by the diffeomorphism defined by the characteristics.
A = (ϕt(0; 0, 0), ψt(0; 0, 0)) and B = (ϕt(0; 1, 1), ψt(0; 1, 1)).

Collecting the previous considerations, we arrive at the following definition of solution.

Definition 2.2. For t > 0, define the open rectangle Rt ∈ (0, 1)2 by the following:

Rt = (ϕt(0; 0, 0), ϕt(0; 1, 1)) × (ψt(0; 0, 0), ψt(0; 1, 1)),

see Figure 2. Let H0(s, λ) ∈ C((0, 1)2) with H0 ≥ 0, supp H0 ∈ (0, 1)2, and
!

H0 ds dλ > 0. A solution
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of Eq (1.5) is a function H(t, s, λ) ≥ 0 such that

H(t, s, λ) =



H0
(
ϕ−t(t; s, λ), ψ−t(t; s, λ)

)
· exp

( ∫ t

0
α1 + α2 + α4Λ + α3I − bΣ(1 − Λ)I dr

)
,

for (s, λ) ∈ Rt,

G
(
t∗, ϕ−(t−t∗)(t; s, λ), ψ−(t−t∗)(t; s, λ)

)
· exp

( ∫ t

t∗
α1 + α2 + α4Λ + α3I − bΣ(1 − Λ)I dr

)
,

for (s, λ) ∈ (0, 1)2 \ Rt,

(2.5)

where G is defined in Eq (2.4), t∗ is the unique time at which the characteristic curve that passes through
the point (t, s, λ) departs from the boundary ∂ (0, 1)2, and

Σ(t) =

!
sH(t, s, λ) ds dλ!
H(t, s, λ) ds dλ

, Λ(t) =

!
λH(t, s, λ) ds dλ!
H(t, s, λ) ds dλ

,

I(t) =
"

1 − H(t, s, λ) ds dλ

(2.6)

with all double integrals in (0, 1)2.

With Definition 2.2 in hand, and due to the special structure of the system (1.5), it turns out that the
existence of solution to the transport PDE (1.5) is a consequence of the well-posedness results obtained
on the ODE system (1.6) in Theorem 1.3. Indeed, given an initial datum H0(s, λ) for which the integral
quantities Σ(0),Λ(0), and I(0) are well defined, we can consider the corresponding unique solution
I(t),Σ(t),Λ(t) of system (1.6), defined for t ∈ [0,+∞), and the expression (2.5) gives (by definition) a
solution of the linear transport equation obtained by considering such a triplet in the coefficients and
in the boundary conditions. Then, to show that such H actually solves the nonlocal transport equation
(1.5), one only has to prove that the relations (2.6) hold.

This is done as follows: with H given by (2.5), we define ũ(t) :=
!

Q
H(t, s, λ) dsdλ

ṽ(t) :=
!

Q
sH(t, s, λ) dsdλ and w̃(t) :=

!
Q
λH(t, s, λ). Then, since Q := [0, 1]2 = Rt ∪ (Q \ Rt), we

compute the integrals on Q by means of the changes of variables

(s̃, λ̃)→ (s, λ) = (ϕt(0, s̃, λ̃), ϕt(0, s̃, λ̃)) (2.7)

from Q to Rt (with inverse (s̃, λ̃) = (ϕ−t(t, s, λ), ψ−t(t, s, λ)) ) and

(t∗, λ̃)→ (s, λ) = (ϕt−t∗(t∗, 0, λ̃), ϕt−t∗(t∗, 0, λ̃))

from [0, t∗] × [0, 1]→ Q \ Rt (with inverse (s, λ) = (ϕ−(t−t∗)(t, s, λ), ψ−(t−t∗)(t, s, λ)) )
Computing ũ′(t), ṽ′(t), w′(t), one sees that (ũ, Σ̃, Λ̃) and (u,Σ,Λ) satisfy the same ODE system with

the same initial condition provided by H0; therefore, by the uniqueness of solutions, we conclude that
ũ = u, Σ̃ = Σ, Λ̃ = Λ. We omit the details of the computations.
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3. Dynamics of the ODE sytem

In this section, we will focus on the full ODE system (1.6) and analyze its properties. We begin

by observing that the basic reproduction number is provided, in the case γ > 0, by R0 =
b
γ

, as can be

found by linearizing the first equation around the disease-free equilibrium.

Theorem 3.1. Consider the system (1.6). Then,

1. If R0 < 1 the disease-free equilibrium (u,Σ,Λ) = (1, 1, 0) is locally asymptotically stable and is
the unique equilibrium of system (1.6) in [0, 1]3.
If R0 > 1, then:

2. The disease-free equilibrium is unstable, and there exists at least one endemic equilibrium
(u∗,Σ∗,Λ∗) ∈ (0, 1)3.

3. The endemic equilibrium is unique if either of the following conditions hold:{
α2 + α4 < γ and α1 < γ(1 − λ0)

}
,

or 2γ < α1 + α2 + α3 + λ0α4.
(3.1)

4. Under the conditions

λ0 >
α3

α3 + α1
, 2R2

0α1α2 < α3α4, α4 < α1, (3.2)

an endemic equilibrium is locally asymptotically stable.
5. The system satisfies the following uniform persistence property: there exists a constant η > 0

(depending on R0) such that for all (u0,Σ0,Λ0) ∈ (0, 1] × [0, 1]2, the following holds:

lim inf
t→∞

d
(
(u(t),Σ(t),Λ(t)), ∂([0, 1]3)

)
≥ η.

Proof. At the disease-free equilibrium (u,Σ,Λ) = (1, 1, 0), it is easy to check that the characteristic
equation for the Jacobian matrix is as follows:

λ3 + a1λ
2 + a2λ + a3 = 0,

with
a1 = γ − b + α2 + α1,

a2 = (γ − b)(α1 + α2) + α1α2,

a3 = (γ − b)α1α2.

The Routh-Hurwitz stability criterion reads as follows:

a1, a3 > 0, a1a2 − a3 > 0.

Then. it is trivial to verify that it is equivalent to the condition γ − b > 0, which is precisely R0 < 1.
This proves the stability property in Assertion 1, and also that the disease-free equilibrium is unstable
if R0 > 1. The uniqueness of the disease-free equilibrium is obtained from the equality Σ(1 − Λ) = γ

bu ,

which cannot hold in [0, 1]3 if R0 < 1.
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Suppose now that R0 > 1, and let us sketch the proof that there exists at least one endemic
equilibrium (u∗,Σ∗,Λ∗) in (0, 1)3. Setting the right-hand side of Eq (1.6) equal to zero, we obtain after
some computation that

Λ =
α3u(1 − u) + γλ0(1 − u)

α3u(1 − u) + uα1 + γ(1 − u)
, Σ =

γ

b
·
α3u(1 − u) + uα1 + γ(1 − u)

u2α1 + γu(1 − λ0)(1 − u)
. (3.3)

Then, it is possible to check the following: (i) the denominators in the above expressions are never zero
for u ∈ (0, 1); (ii) a lengthy but straightforward computation shows that Σ′ = 0⇔

p(u) ≡ u3α1α2R0 + u2(1 − u)
(
bα2(1 − λ0) − α2α3 − α4α3

)
− α1α2u2 − u(1 − u)γ

(
α2 + λ0α4 + α1

)
− γα3u(1 − u)2 − γ2(1 − u)2 = 0.

(3.4)

From this, we see that p(0) < 0 and p(1) > 0; thus, there exists at least one u∗ ∈ (0, 1) such that
p(u∗) = 0. Finally, (iii) one can check that, in fact, the expressions Γ∗ and Σ∗ resulting from setting
u = u∗ in Eq (3.3) are in (0, 1), though we omit the details for the sake of brevity.

To find a sufficient condition for uniqueness of u∗ ∈ (0, 1) solving p(u) = 0, write Eq (3.4) as
follows:

p(u) = a3u3 + a2u2 + a1u − γ2 = 0. (3.5)

Then, since p(0) < 0 and p(1) > 0, we see that u∗ will be unique in (0, 1) as long as a3 < 0. Thus, the
condition

α2R0
(
α1 − γ(1 − λ0)

)
+ α3(α2 + α4 − γ) < 0 (3.6)

is sufficient to ensure the uniqueness of u∗ ∈ (0, 1). The stronger (but simpler) conditions

α1 < γ(1 − λ0) and α2 + α4 < γ,

stated in the theorem easily imply Eq (3.6). This proves the first condition in Eq (3.1).
Now, let us check that the second condition in Eq (3.1) is also sufficient for the uniqueness of

u∗ ∈ (0, 1). As we already know, a3 < 0 (cf. Eq (3.5)) is a sufficient condition for the uniqueness of u∗;
Now, suppose that a3 > 0. Since p(0) < 0 and p(1) > 0 still hold, we can see that if there is more than
one root of p(u) in (0, 1), then necessarily we must have p′(0) > 0 and p′(1) > 0. Therefore (always
with a3 > 0), if either p′(0) < 0 or p′(1) < 0, then there will be only one root of p(u) in (0, 1). Writing
p′(0) < 0 gives a1 < 0, which is precisely the second condition in Eq (3.1).

The stability conditions in Assertion 4 remain to be shown. Write (Ai j) as the Jacobian matrix at
(u∗,Σ∗,Λ∗). We have the characteristic equation as follows:

λ3 + a1λ
2 + a2λ + a3 = 0,

where, since A32 = 0,

a1 = −A11 − A22 − A33,

a2 = A11A22 + A11A33 + A22A33 − A13A31 − A12A21,

a3 = −A11A22A33 − A12A23A31 + A13A22A31 + A12A21A33.

(3.7)
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According to the Routh–Hurwitz criterion, linear stability is equivalent to the conditions

a1 > 0, a3 > 0, a1a2 − a3 > 0. (3.8)

In the following, we again omit the subscripts in (u∗,Σ∗,Λ∗). First, we note that a1 > 0 easily follows
from the fact that the equilibrium is in (0, 1)3.

Next, from Eq (3.7) write the term a3 = A + B + C + D, with obvious notations. We have that
A,D > 0 simply by inspecting the signs in the expression of the Jacobian matrix (which we omit). On
the other hand,

B = γα4(1 − u)
(
α3(1 − Λ) +

γ

u2 (λ0 − Λ)
)
,

and
C = α2bu(1 − u)

(
α3(1 − Λ) +

γ

u2 (λ0 − Λ)
)
.

We see that a sufficient condition, which ensures that B,C > 0, is that λ0 − Λ > 0. From Eq (3.3) we
can easily find that this condition is ensured as long as

λ0 >
α3

α3 + α1
. (3.9)

Therefore, under this condition, we have that a3 > 0 in Eq (3.8).
Let us check the third condition in the Routh–Hurwitz criterion Eq (3.8). After some computation

involving Eq (3.7), we find the following:

a1a2 − a3 = −2A11A22A33 − A2
11(A22 + A33) + A11A13A31 + A11A12A21

− A2
22(A11 + A33) + A22A12A21 − A2

33(A11 + A22)
+ A13A31A33 + A12A23A31.

(3.10)

Supposing that Eq (3.9) holds, we have the following sign properties:

A11, A22, A33, A12, A23 < 0, A13, A21 > 0.

Using this, we see from Eq (3.10) that the only non-positive term is as follows:

A12A23A31 =
(
− α3(1 − Λ) −

γ

u2 (λ0 − Λ)
)
γα4(1 − u).

Now, the idea is to find sufficient conditions on the coefficients of the problem, such that some of the
positive terms in Eq (3.10) can compensate the negative contribution from this last term, enough to
make a1a2 − a3 positive.

Putting this strategy into practice with the (negative) term −α3α4γ(1 − Λ)(1 − u) and the (positive)
term −2A11A22A33 in Eq (3.10), we get after some computations that 2R2

0α1α2 < α3α4 implies that the
total contribution of these two terms in Eq (3.10) is positive.

Now, only the term −γ
2

u2α4(λ0 − Λ)(1 − u) remains to compensate with some positive term, which
we do with the term A13A31A33. It turns out (again, we omit the details) that the condition α4 < α1

is sufficient, so that the contribution of these two terms to Eq (3.10) is positive, as announced in the
Theorem.
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Now, we prove the uniform persistence property in Assertion 5. For this, it will be more convenient
to use the infected proportion I = 1− u, and hence consider Eq (1.7). By the proof of Theorem 1.3, we
can restrict ourselves to the following compact set:

(I,Σ,Λ) ∈ X = [0, 1 − ϵ] × [0, 1]2,

for a small ϵ > 0.
Let S = X ∩ {I = 0}. We want to show that S is a uniform repeller by applying [21, Thm.1] with

P(I,Σ,Λ) = I. Define the neighbourhood Uϵ∗ =
{
(I,Σ,Λ) ∈ X : I < ϵ∗

}
of S . We will show that

it is possible to choose a sufficiently small ϵ∗ in such a way that any solution for which I(0) ∈ Uϵ∗

satisfy I(t1) ≥ ϵ∗ for a suitable t1 > 0. Then, assume by contradiction that for any ϵ∗ > 0 there exists
(I,Σ,Λ) ∈ Uϵ∗\S with I(t) < ϵ∗ for all t > 0. Then, from Eq (1.6), we find discarding some non-positive
terms, and taking ϵ∗ < 1/2,

Λ′ ≤ −α1Λ + α3ϵ
∗ + γλ0

ϵ∗

1 − ϵ∗
≤ −α1Λ + (α3 + 2γλ0)ϵ∗.

This way, we have that lim supt→+∞Λ(t) ≤ ϵ∗

α1
(α3 + 2γλ0). Thus, for all t sufficiently large, we have

Λ(t) ≤ 2 ϵ∗

α1
(α3 + 2γλ0) ≡ Cϵ∗.

Turning to the Σ equation, we find that for a large t,

Σ′ ≥ α2 + Σ
(
− α2 − α4Λ − γ

ϵ∗

1 − ϵ∗
)

≥ α2 + Σ
(
− α2 − α4Cϵ∗ − 2γϵ∗

)
= α2 + Σ

(
− α2 −Cϵ∗

)
,

where here and in what follows C > 0 can change from line to line, but only depends on the parameters
of the system. Therefore,

lim inf
t→+∞

Σ(t) ≥
α2

α2 +Cϵ∗
.

Accordingly, we can find ϵ1 > 0 (which goes to zero with ϵ∗) and t1 > 0 such that for all t > t1 one has
Σ > 1 − ϵ1. From (1.7), we obtain the following:

I′(t) ≥
(
b(1 − ϵ1)(1 −Cϵ∗)(1 − ϵ∗) − γ

)
I(t), t > t1.

Now, it suffices to choose a sufficiently small ϵ∗ (and thus also ϵ1) so that b(1−ϵ1)(1−Cϵ∗)(1−ϵ∗)−γ > 0,
which is possible since b − γ > 0. This way, we have that for all t large enough I′(t) ≥ δI(t), for some
δ > 0, which is enough to conclude that eventually I(t) ≥ ϵ∗.

Therefore, S is a uniform repeller (cf. [21]). By using [21, Cor.1], we get that the remaining part of
∂X is also a uniform repeller. Consequently, the persistence property 5 holds. This concludes the proof
of Theorem 3.1. □

Remark 3.2. After extensive numerical testing, the uniqueness property of u∗ ∈ (0, 1), and hence of
the endemic equilibrium, seems to hold only under the more natural condition R0 > 1. However, we
could not prove this fact analytically, since we are lead to expressions that quickly become unwieldy.

The following corollary asserts that, under meaningful conditions on the awareness decay, the
infected proportion can be made as small as we wish for large times.
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Corollary 3.3. Let R0 = b/γ > 1, and suppose that the stability conditions (3.2) are verified. Moreover,
suppose that

γ < max
{
α2,

α2 + α3

2
}
. (3.11)

Then, the endemic equilibrium u∗ of the susceptible proportion can be made unique, (locally) stable,
and as close to one as desired – and thus the infected proportion as small as desired – as long as the
natural decay rate of the mean awareness, α1, is small enough.

Proof. First, we observe that from the stability conditions (3.2), we can see that 1 − λ0 is small if, and
only if, α1 is small, and that the smallness of α1 implies the smallness of α4. Therefore, with a small
α1, we may suppose that all three parameters α1, α4, and 1 − λ0 are small.

From the analysis of the polynomial p(u) whose zeros give the equilibrium(s) u∗ (cf. Eq (3.5)), we
can see one situation in which u∗ is unique in (0, 1) when a3 > 0, p′(0) < 0 and p′(1) > 0. The
condition a3 > 0 reads as follows:

α2α1R0 + α3α2 + α3α4 > bα2(1 − λ0) + γα3.

Thus, with a sufficiently small α1, α4, and 1 − λ0 (in fact, only 1 − λ0 is needed), we have that α2α3 >

γα3 =⇒ a3 > 0. Therefore, we will suppose that γ < α2.
Next, we have that p′(0) < 0 ⇔ a1 < 0, where a1 is defined after Eq (3.5). As observed, a1 < 0

gives 2γ < α1 + α2 + α3 + λ0α4, and so discarding the small terms again, we get that 2γ < α2 + α3 is
enough to guarantee p′(0) < 0 under the present smallness conditions. This justifies the condition Eq
(3.11).

Now, we look at the condition p′(1) > 0. From Eq (3.5), this is equivalent to 3a3 + 2a2 + a1 > 0.
This gives the following:

3α1α2R0 + α1γ + α2α3 + α2γ + α3α4 + α4γλ0 > (1 − λ0)α2b + 2α1α2.

Since the terms on the left-hand side are positive, and the terms on the right-hand side can be made
arbitrarily small, we conclude that p′(1) > 0 for α1, α4 and a sufficiently small 1 − λ0.

These properties of the cubic polynomial p(u) imply that it remains below the secant line from
(0, p(0)) to (1, p(1)) in [0, 1]. Additionally, Recall that, in any case, p(0) = −γ2 < 0, and p(1) =
α1α2(R0 − 1) > 0. Therefore, the (unique) root u∗ of p(u) in [0, 1] lies in [u1, 1], where u1 is the root of
the secant line from (0, p(0)) to (1, p(1)). An easy calculation gives the following:

u1 =
γ2

α1α2(R0 − 1) + γ2 ,

which can be made arbitrarily close to one, by taking a sufficiently small α1. This completes the proof
of Corollary 3.3. □

4. Asymptotic behavior of the transport equation

In this section, we prove an asymptotic result characterizing the limit as t → ∞ of the solutions
of the transport equation (1.5), whose initial data are in the basin of attraction of a stable endemic
equilibrium. We recall that the conditions for the existence, uniqueness, and local asymptotic stability
of the endemic equilibria are provided in Thm. 3.1.

We need the following technical lemma, whose elementary proof we only sketch.
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Lemma 4.1. Let c1 ≥ 0, c2 ≥ 0, c3, c4 be constants with c2
1 + c2

2 > 0, and suppose that w : (0,+∞)→ R
is bounded and measurable with lim

t→∞
w(t) = w∗ > 0. Then,

lim
t→∞

∫ t

0
e−

∫ t
s c1+c2w(r) dr(c3 + c4w(s)) ds =

c3 + c4w∗
c1 + c2w∗

. (4.1)

If c1 > 0, then the condition w∗ > 0 can be relaxed to w∗ ≥ 0.

Proof. Multiply and divide by ec1t+c2w∗t and apply l’Hôspital’s rule. □

The following theorem gives the concentration of the characteristic curves associated to the
transport equation (1.5) on a single point for any suitable initial data and large times, and a
characterisation of limt→∞ H(t, s, λ).

Theorem 4.2. Suppose that the initial datum H0(s, λ) is such that (u0,Σ0,Λ0) lies in the basin of
attraction of an endemic equilibrium (u∗,Σ∗,Λ∗) of the system (1.6). Then:

1. The characteristic curves of the transport equation (1.5), defined in Eq (2.1), satisfy the following:

lim
t→∞

(
ϕt(0; s, λ), ψt(0; s, λ)

)
=

(
α2

α2 + α4Λ∗
,

α3I∗
α1 + α3I∗

)
=: (s∗, λ∗). (4.2)

2. If H(t, s, λ) is the solution of the transport equation (1.5), defined in (2.5), we have limt→∞ H = H∞
on the set

A∞ = {(s, λ) : s ∈ [0, s∗], λ ∈ [λ−∞(s), λ+∞(s)]}, (4.3)

which is the (asymptotic) domain of influence of the boundary {s = 0, λ ∈ [0, 1]}, where

H∞(s, λ) =
γ

α2
I∗ f

(
Ψ∞(s, λ)

)(
1 −

s
s∗

)− α1+α3 I∗+α2+α4Λ∗−bΣ∗(1−Λ∗)I∗
α2+α4Λ∗ , (4.4)

with

Ψ∞(s, λ) =
(
1 −

s
s∗

)− α3 I∗ s∗
α2λ∗ (λ − λ∗) + λ∗, (4.5)

λ−∞(s) = λ∗ − λ∗
(
1 −

s
s∗

)− α3 I∗ s∗
α2λ∗ , λ+∞(s) = λ−∞(s) +

(
1 −

s
s∗

)− α3 I∗ s∗
α2λ∗ , (4.6)

and H∞ = 0 on [0, 1]2 \A∞.

Proof. To show Eq (4.2), apply Lemma 4.1 to Eq (2.3) with the appropriate coefficients ci, and taking
w = Λ and w = I in turn.

Now, we turn to the proof of limt→∞ H = H∞. The key point is to observe that, if (s, λ) can be
reached by a characteristic issuing from the boundary {s = 0}, then in fact

lim
t→∞

t − t∗(t, s) = −
s∗
α2

log
(
1 −

s
s∗

)
, (4.7)

where t∗ is the time at which the characteristic that passes through (t, s, λ) departs from the boundary
{s = 0} (cf. Definition 2.2). Let us prove Eq (4.7). From Eq (2.1) with r = t∗ − t, we find that t∗ is
defined by the following identity:

0 = s e−
∫ t∗

t α2+α4Λ(v) dv + α2

∫ t∗

t
e−

∫ t∗
v α2+α4Λ(y) dy dv. (4.8)
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Note that, formally substituting Λ(v) by its asymptotic value Λ∗ and solving for t − t∗ in the resulting
identity immediately gives Eq (4.7), though we wish to make this more precise.

First, note that by implicitly differentiating Eq (4.8), we can see that ∂t∗
∂t ≥ C > 0, and so t∗ goes

to +∞ with t. Now, since by assumption the equilibrium (u∗,Σ∗,Λ∗) is attractive, then for ϵ > 0 and a
large t we have Λ(t) ∈ [Λ∗ − ϵ,Λ∗ + ϵ]. Then, a comparison with the flows ϕ+ and ϕ− of the equations,
cf. Eq (2.2),

s′ + (α2 + α4(Λ∗ ± ϵ) = α2

(for which the corresponding t− t∗ are given by the same expression as Eq (4.7) but with Λ∗± ϵ instead
of only Λ∗), gives the limit relation Eq (4.7) by taking ϵ → 0.

With Eq (4.7) in hand, we can calculate the asymptotic domain of influence A∞ of the boundary
{s = 0, λ ∈ [0, 1]}. From the definition of the second characteristic field in Eq (2.1), we see that the
points on the boundary {s = 0, λ ∈ [0, 1]} at time t∗ are mapped by the flow to the points ψt−t∗(t∗, 0, λ) ∈
[λ−(t, s), λ+(t, s)], where

λ− = ψt−t∗(t∗, 0, 0), λ+ = ψt−t∗(t∗, 0, 1). (4.9)

Therefore, when t → ∞, we find the expressions (4.6) for λ±∞(s) ≡ limt→∞ λ±(t, s) using Eqs (2.1), (4.2)
and (4.7), and consequently A∞. Then, for (s, λ) ∈ A∞ we find from Eqs (2.4) and (2.5), that

H(t, sλ) =
γ

α2
I(t∗(t, s)) f

(
ψ−(t−t∗)(t, s, λ)

)
· exp

(∫ t

t∗
α2 + α4Λ(y) + α1 + α3I(y) − bI(y)(1 − Λ(y))Σ(y) dy

)
.

(4.10)

The expressions in Eqs (4.4) and (4.5) follow again from Eqs (2.1) and (4.10) and (4.7) after some
computation.

Finally, the concentration of the characteristics on the point (s∗, λ∗) shows that H∞ vanishes outside
of A∞. However, this does not exclude the possibility that a dirac delta could form at that point. To
discard this possibility, it is enough to show that limt→∞

!
Rt

H(t, s, λ) ds dλ = 0. For this, we note that
from the solution on Rt in Def. 2.2 and by the change of variables (2.7), we find the following"

Rt

H(t, s, λ) ds dλ =
"

[0,1]2
H0(s, λ) ds dλ · e−

∫ t
0 bΣ(1−Λ)I dy

= u(0)e−
∫ t

0 bΣ(1−Λ)I dy,

which tends to zero with t → ∞ since Σ(1 − Λ)I → Σ∗(1 − Λ∗)I∗ > 0. □

5. Numerical examples

In this section, we provide some numerical experiments to illustrate the dynamical behavior of the
solutions to the ODE system (1.6), as well as the theoretical results of the previous sections.

Example 1. As other authors have previously observed (see the details in the Introduction),
awareness dynamics can have an important impact on epidemiological outcomes. Here, we present
examples of some of that influence. First, we observe that according to the biological meaning of the
parameters αi, i = 1, 2, 3, 4, in Table 1, we can expect the following relations to occur:
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• Lowering the background mean awareness decay rate α1 should give a positive epidemiological
outcome, as measured by a lower cumulative infections number;
• Lowering the background mean susceptibility growth α2 should give a positive epidemiological

outcome;
• Increasing the rate of awareness growth per infected, α3, should give a positive epidemiological

outcome; and
• Increasing the rate of susceptibility decay per awareness, α4, should give a positive

epidemiological outcome;

In Figure 3, we can check that these relations indeed hold. We plot the cumulative infections for a
solution of Eq (1.7) in red. The curves in cyan correspond to larger values of the parameter being varied
in each plot, and the curves in green correspond to smaller values of the parameter. The parameters
used for the baseline red solution are as follows: I(0) = 0.95,Σ(0) = 0.85,Λ(0) = 0.05,R0 = 2.5, γ =
0.3, α1 = 0.01, α2 = 0.01, α3 = 0.005, α4 = 0.2, and λ0 = 0.5. In the case of α1 and α2, solutions
with increased values of that parameter (in blue/cyan) have higher cumulative infection levels, while
for α3 and α4, the opposite happens. Interestingly (for the parameter ranges tested), the value of the
awareness growth per infected α3 has very little influence on the cumulative infections.

These results are in line with what has been observed in previous models, namely that a higher
awareness response (in a broad sense) reduces the prevalence of the disease [1, 23, 26, 50, 52].

Example 2. The condition (3.2) only gives sufficient conditions for the asymptotic stability of the
endemic equilibrium, which leaves the possibility of limit cycles and bifurcations. Indeed our
numerical tests suggest that the system exhibits sustained oscillations for some parameter regimes.

For instance, increasing the background mean susceptibility growth α2 changes the behavior of
the solution from periodic oscillations, separated by periods of very low prevalence, into convergence
towards an endemic steady state, as shown in Figure 4. In this figure, the red line is plotted using
values of the parameters giving periodic oscillations, and the blue lines have increased values of α2,
which destroy the periodic behavior. Therefore, we can say that decreasing the background mean
susceptibility growth α2 also contributes to the formation of isolated infection peaks separated by
periods of near zero prevalence.

As shown in Figure 3, although our results are in line with other works and variations in the model
parameters yield expected changes to epidemiological outcomes, our experiments reveal some
counter-intuitive facts. In Figure 4, recall that the cyan lines correspond to larger values of the mean
susceptibility growth. As mentioned, this is associated with a higher cumulative prevalence of the
disease, which is to be expected. However, if one were to be given only the second from top plot in
Figure 4, it would be natural to think that the cyan curves are associated with better epidemiological
outcomes, since the population remains in a near-constant state of awareness, which is higher than
that for the dark blue or red lines–and intuitively, more awareness is better. However, the opposite is
true, and in this case higher (but near-constant) awareness levels produce worse outcomes in terms of
cumulative infections.

In other words, a larger, but stable, mean awareness level leads to more stable susceptibility profiles,
which can produce larger cumulative infection numbers; in contrast, periodic “scares” (as in the red line
in Figure 4), where awareness and susceptibility vary more wildly in response to sharp, but localized
in time, infection outbreaks, may in fact contribute to lower cumulative infections over time.
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Figure 3. Influence of the parameters in the cumulative infections. Red lines correspond
to reference values described in the text. Cyan lines correspond to larger values of the
parameter, and green lines correspond to smaller values, while keeping the other parameters
fixed. The time is in days.

6. Discussion and conclusions

We have presented and analyzed a model for epidemiology dynamics including disease awareness
and susceptibility, where both of these aspects were allowed to assume any value in [0, 1]. The base
dynamics took the form of a transport equation (1.5), from which we deduced the ODE system (1.7)
for integral quantities of the solution of the transport equation. This results in an SIS-type model
where, in contrast to traditional models, the dynamical variables were the susceptible (or the infected)
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Figure 4. Increasing the value of the background mean susceptibility growth α2 (blue lines)
destroys the periodic behavior. Numerical solution of the system (1.6). Top: the infected
proportion I(t). Second from top: the mean awareness Λ(t). Second from bottom: the mean
susceptibility Σ(t). Bottom: Cumulative infections. Parameters used in this simulation are
the same as in Example 1, except α1 = 0.02, α2 ∈ [0.01, 0.038]. The time is in days.

proportion, the mean awareness, and the mean susceptibility of the susceptible population.
In our model, the possible range of the awareness and susceptibility were not restricted to two (or

even finitely many [45]) values. We showed that even when considering the awareness and
susceptibility, a single, simply defined, reproduction number R0, which depended only on the mean
infectious period and the background transmission rate (that is, the transmission rate in a setting with
full susceptibility and no awareness, which could therefore be estimated from contact rates and
properties of the particular disease), determined the existence and properties of an endemic
equilibrium. This is in contrast with previous works, where it was often necessary to consider two
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separate reproduction numbers, one for the aware, and one for the unaware population.
However, this result does not mean that awareness dynamics do not play a role in the

epidemiological dynamics. On the contrary, we showed that even with an arbitrarily high
reproduction number, it is possible (in appropriate parameter regimes) to ultimately reduce the
infected proportion to arbitrarily small values, as long as the mean awareness decay rate of the
susceptible population is small enough. This reinforces the results in the related literature in a precise
way, which tends to agree that “more awareness” corresponds to better epidemiological outcomes.

However, in Section 5, we uncovered instances which showed that the relation between awareness
and epidemiological outcomes was not so predictable due to the nonlinear nature of the model, and so
must be analyzed with care. We found cases in our numerical experiments where a sustained high value
of mean awareness originated worse outcomes (as measured by cumulative infections) as compared to
lower levels of awareness interspersed with high peaks. This shows that care must be taken when using
simulations of this nature to guide public policy: the temporal distribution of awareness campaigns
may matter, and so it remains a delicate question whether sustained (but lower level) campaigns or
intense campaigns in response to infection outbreaks are better.

We should remark about how it would be possible to estimate the parameters related to awareness
dynamics, namely α1,3,4 (see Table 1). In each of these parameters, a way must be found to distribute the
population according to some measure of awareness in [0, 1], at least at t = 0. For instance, this could
be acheived with surveys. Ideally, a survey can be used to create an (approximate) density function of
the population supported on [0, 1]. In that case, the precise meaning of an individual having a particular
awareness value would depend on the particular survey and its analysis criteria. For practical purposes,
it would also be necessary to map the possible susceptibility states of a population to the interval
[0, 1], although that could be more easily relatable to existing epidemiological data. Then, a parameter
such as α4 (the rate of susceptibility decay per unit of awareness per unit time) could be estimated by
knowing the susceptibility of the population at given times through epidemiological data and assessing
their disease awareness through surveys or other means. Needless to say, such a careful analysis falls
beyond the scope of this work, where we attempted to show only a qualitative agreement between our
model and epidemiological expectations.

Although our model does not account for demographic effects, these could be included. For
instance, an extra equation for the demography of the infected population I(t) could model
disease-related deaths. This would come at the cost of an extra equation in the ODE system (since the
conservation of the total population would no longer hold); therefore, the analysis performed might
not be straightforward to generalize.

Regarding the main ODE system under consideration, (1.6), a lot remains to be done. Namely,
our results and numerical experiments suggested the possibility of periodic orbits, and so it would be
interesting to check for the presence of (say) Hopf bifurcations. Similarly, we have only mentioned the
most basic properties of the transport equation (1.5). At the very least, a numerical study is in order,
which we leave for future work. Notice also that, despite the asymptotic result in Theorem 4.2, more
interesting structures in the solutions of Eq (1.5) are not ruled out, in the case where the assumptions
of the theorem are not met. For instance, it would be interesting to observe the segregation of the
population into different sub-populations with either different dynamics, oscillatory behaviors, or to
rule out such situations. These are questions which cannot be determined by the behavior of the ODE
system alone and require a study of the PDE.
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In the same vein, as noted in Remark 1.1, the right hand side of the transport equation (1.5) is, in
some sense, the simplest possible within our setting: the integral quantities associated to any solution
of the PDE verify the ODE system (1.6). More realistic coefficients in Eq (1.5), depending not just on
the average quantities Σ,Λ, but rather on the values of s, λ themselves, would make the analysis of the
PDE more interesting, but would weaken the link with a system of ODEs in the way that is managed
in this work. Still, the study of such more realistic models could shed more light on the dynamics of
disease awareness beyond what is achieved in this work.

Finally, the presented methods are not restricted to the study of disease awareness. One may use
similar ideas to consider other relevant traits in epidemiology, such as vaccination, immunity, treatment
intensity, hospitalization, and so on. We hope that our methodology may be used to create new models
in these, or other, topics.
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