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Abstract: In this work we define a kinetic model for understanding the impact of heterogeneous
opinion formation dynamics on epidemics. The considered many-agent system is characterized by
nonsymmetric interactions which define a coupled system of kinetic equations for the evolution of
the opinion density in each compartment. In the quasi-invariant limit we may show positivity and
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distribution exhibiting bimodal shape. The tendency of the system towards opinion clusters is further
analyzed by means of numerical methods, which confirm the consistency of the kinetic model with its
moment system whose evolution is approximated in several regimes of parameters.
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1. Introduction

The mathematical modelling for the spread of infectious diseases traces back to the pioneering
works of D. Bernoulli and has been made increasingly more sophisticated over the centuries. Amongst
the most influential approaches to mathematical epidemiology, the Kermack-McKendrick SIR model
dates back to the first half of the 20th century [32]. In general terms, compartmental modelling relies on
the subdivision of the population into epidemiologically relevant groups, where each group represents
a stage of progression in the individual’s health with respect to the transmission dynamics [31]. More
recently, several extensions of the SIR-type model have been proposed to incorporate behavioural
aspects into these model, see [7,8,25] and the references therein. However, a complete understanding of
the multiscale features of epidemic dynamics should take into account the heterogeneous scales driving
the infection dynamics. In this direction, kinetic equations for collective phenomena are capable to link
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the microscopic scale of agents with the macroscopic scale of observable data. In particular, suitable
transition rates have been determined in relation to emerging social dynamics [18], together with the
definition of possible control strategies [19].

The study of kinetic models for large interacting systems has gained increasing interest during the
last decades [1, 10, 29, 35]. Amongst the most studied emerging patterns in many-agent systems,
aggregation dynamics gained increased interest thanks to its the widespread applications in
heterogeneous fields, see [12, 14, 15, 30, 34, 39]. In particular, a solid theoretical framework suitable
for investigating emerging properties of opinion formation phenomena by means of mathematical
models has been provided by classical kinetic theory since the formation of a relative consensus is
determined by elementary variations of the agents’ opinion converging to an equilibrium distribution
under suitable assumptions [13, 20, 21, 36, 41, 42].

During the recent pandemic it has been observed how, as cases of infection escalated, the collective
adherence to the so-called non-pharmaceutical interventions was crucial to ensure public health in the
absence of effective treatments [22, 27]. Recent experimental results have shown that social norm
changes are often triggered by opinion alignment phenomena [43]. In particular, the perceived
adherence of individuals’ social network has a strong impact on the effective support of the protective
behaviour. Hence, the individual responses to threats are a core question to set up effective measures
prescribing norm changes in daily social contacts and have deep connection with vaccination
hesitancy. With the aim of understanding the impact of opinion formation in epidemic dynamics,
several models have been proposed to determine the evolution of the opinion of individuals on
protective measures in a multi-agent system under the spread of an infectious disease [5, 22, 33, 44].
The study of opinion formation phenomena is also closely connected with the problem of vaccination
hesitancy [24] and the propagation of misinformation on the agents’ contact network [38].

In this work, we concentrate on a kinetic compartmental model to investigate the emergence of
collective structures triggered by nonsymmetric interactions between agents in different
compartments. In this direction we expand the results in [44] taking advantage of the kinetic epidemic
setting developed in [17, 18]. Indeed, we will show how heterogeneous opinion exchanges in
multi-agent systems may lead to the formation of opinion clusters even for unpolarised societies,
having a direct impact on the evolution of the epidemic. Furthermore, we derive new macroscopic
equations encapsulating the effects of opinion phenomena in epidemic dynamics at the level of
observable quantities. In particular, we show that the emergence of opinion clusters in the form of
bimodal Beta distributions can be ignited by the coupled action of opinion and epidemic dynamics.
Furthermore, we provide proofs of positivity and uniqueness of the solution for a surrogate
Fokker-Planck-type model.

In more detail, the paper is organized as follows: in Section 2, we introduce the kinetic
compartmental model and we derive its constituent properties. Hence, in Section 3, we derive a
reduced complexity operator of Fokker-Planck type complemented with no-flux boundary conditions
to understand the emerging opinion patterns from the many-agent system and we prove the positivity
and the uniqueness of the solution to the corresponding Fokker-Planck system. In Section 4, we
derive a macroscopic system of equations and we exploit the new model to prove that the kinetic
epidemic system possesses an explicitly computable steady state. In Section 5, we perform several
numerical experiments based on a recently developed structure preserving scheme.
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2. The kinetic model

In this section, we introduce a kinetic compartmental model suitable to describe the evolution of
opinion of individuals on protective measures in a multi-agent system under the spread of an infectious
disease.

We consider a system of agents that is subdivided into the following four epidemiologically
relevant compartments: susceptible (S ), individuals that can contract the infection; infected (I),
infected and infectious agents; exposed (E), infected agents that are not yet infectious, and recovered
(R), agents that were in the compartment I and that cannot contract the infection. We assume that the
time scale of the epidemic dynamics is sufficiently rapid, so that demographic effects - such as entry
or departure from the population - may be ignored: as a direct consequence, the total population size
constant can be considered constant. In addition, we equip each agent of the population with an
opinion variable w ∈ [−1, 1] = I, where the boundaries of the interval I denote the two extreme
opposite opinions. In particular, if an individual has opinion w = −1, it means that he/she does not
believe in the adoption of protective measures (e.g., social distancing and masking), while, on the
contrary, w = 1 is linked to maximal approval of protection. Hereafter, we let I = [−1, 1] be the
interval of all admissible opinions. Last, we assume that agents with a high protective behavior are
less likely to contract the infection and that the exchange of opinions on protective measures is
influenced by the stage of progression in the individual’s health.

We denote by fH = fH(w, t) : [−1, 1] × R+ → R+ the distribution of opinions at time t ≥ 0 of agents
in the compartment H ∈ C = {S , E, I,R} such that fH(w, t)dw represents the fraction of agents with
opinion in [w,w + dw] at time t ≥ 0 in the compartment H. Without loss of generality thanks to the
conservation of the total population size, we impose that

∑
H∈C

fH(w, t) = f (w, t),
∫
I

f (w, t)dw = 1. (2.1)

For each time t ≥ 0, we define the mass fraction of agents in H ∈ C and their moment of order r > 0 to
be the quantities

ρH(t) =
∫
I

fH(w, t)dw, ρH(t)mr,H(t) =
∫
I

wr fH(w, t)dw,

respectively. In the following, to simplify notations, we will use m1,H(t) = mH(t) for the (local) mean
opinion at time t ≥ 0 in class H.

The kinetic compartmental model characterising the coupled evolution of opinions and infection is
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given by the following system of kinetic equations

∂t fS (w, t) = −K( fS , fI)(w, t) +
1
τ

∑
J∈C

QS J( fS , fJ)(w, t)

∂t fE(w, t) = K( fS , fI)(w, t) − νE fE +
1
τ

∑
J∈C

QEJ( fE, fJ)(w, t)

∂t fI(w, t) = νE fE(w, t) − νI fI +
1
τ

∑
J∈C

QIJ( fI , fJ)(w, t)

∂t fR(w, t) = νI fI(w, t) +
1
τ

∑
J∈C

QRJ( fR, fJ)(w, t)

(2.2)

for any w ∈ I and t ≥ 0. Having a close look at the system, we immediately recognize the presence of
two distinct time scales, the scale of epidemiological dynamics and the one characterising opinion
formation phenomena. The parameter denotes τ > 0 the frequency at which the agents modify their
opinion in response to the epidemic dynamics. In Eq (2.2) we introduced the operators QHJ(·, ·)
characterising the thermalization of the distribution fH towards its local equilibrium distribution in
view of the interaction dynamics with agents of compartments J ∈ C. Furthermore, in Eq (2.2) the
parameter νE > 0 is determined by the latency and νI > 0 is the recovery rate, see e.g., [3]. Finally, the
operator K(·, ·) is the local incidence rate, which is given by

K( fS , fI)(w, t) = fS (w, t)
∫
I

κ(w,w∗) fI(w∗, t)dw∗ (2.3)

for any w ∈ I, t ≥ 0 and with κ(·, ·) being the contact rate between people of opinion w and w∗. Several
choices can be made to model κ(·, ·), in the following we will consider the following

κ(w,w∗) =
β

4α
(1 − w)α(1 − w∗)α, (2.4)

where β > 0 is a baseline transmission rate characterizing the epidemics and α ≥ 0 is a coefficient
linked to the efficacy of the protective measures. The choice in Eq (2.4) synthesize the assumption
that agents with opinion close to −1, i.e. to non protective behaviour, are more likely to contract the
infection. These dynamics have been proposed in literature for vaccine hesitancy, see e.g., [38].

We may observe that if α = 0 the transition between compartments is given by the simplified
operator

K( fS , fI)(w, t) = β fS (w, t)ρI(t), (2.5)

in which we do not observe any effect of opinion formation dynamics on the epidemic dynamics.
Indeed, a direct integration of Eq (2.2) with respect to the opinion variable gives the classical SEIR
model for the system of masses ρJ(t), J ∈ C. On the other hand, the case in which α = 1 leads to a
local incidence rate of the form

K( fS , fI)(w, t) =
β

4
(1 − w) fS (w, t)(1 − mI(t))ρI(t). (2.6)

which highlights the dependence of the transition between epidemiological compartments on the
behaviour of infectious agents and in particular on their mean opinion.
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2.1. A kinetic model for opinion formation dynamics

Coherently with the modeling approach of [44], we let the opinion dynamics in kinetic
compartmental system (2.2) be described by the kinetic model of continuous opinion formation
introduced in [41]. The model is based on binary interactions (hence, the mathematical methods we
use are close to those used in the context of kinetic theory of granular gases [9]) and assumes that the
formation of opinion is made up of two distinct processes: the compromise process, that reflects the
human tendency to settle conflicts, and the diffusion process, that comprises all the unpredictable
opinion deviations that an agent might have in response to global access to information.

We recall that the novelty of the model we are proposing (compared to the one of [44]) is that
exchange of opinion on protective measures occurs between agents of any compartment. Hence, we
consider now two agents, one belonging to compartment H, endowed with opinion w, and one to
compartment J, endowed with opinion w∗. The post-interaction opinion pair (w′,w′∗) ∈ I

2 of two
interacting agents is given byw′ = w + P(w,w∗)(γJw∗ − γHw) + ηHD(|w|)

w′∗ = w∗ + P(w,w∗)(γHw − γJw∗)w + ηJD(|w∗|)
(2.7)

where P(·, ·) is the interaction function and P(·, ·) ∈ [0, 1], γH, γJ ∈ (0, 1) are compartment-dependent
compromise propensities, and ηH, ηJ are iid random variables such that ⟨ηH⟩ = ⟨ηJ⟩ = 0 and variance〈
η2

H

〉
=

〈
η2

J

〉
= σ2 > 0. At last, the local relevance of the diffusion is given by D(w) ≥ 0. We have

⟨w′ − w⟩ = −P(w,w∗)(γHw − γJw∗)〈
w′∗ − w∗

〉
= −P(w,w∗)(γJw∗ − γHw)

(2.8)

therefore, if γJw∗ > γHw, from the first equation in (2.8) we have ⟨w′ − w⟩ > 0 implying in average that
⟨w′⟩ > w. At the same time, from the second equation we get

〈
w′∗ − w∗

〉
< 0, implying in average that〈

w′∗
〉
< w∗. We remark that the assumptions made on γH, γJ, ηH, ηJ, P,D are not sufficient to guarantee

that w′,w′∗ ∈ I unless ηH ≡ ηJ ≡ 0. A sufficient condition to guarantee that (w′,w′∗) ∈ I
2 is that two

constants cH, cJ > 0 exist such that

|ηH | ≤ c(1 − γH), |ηJ | ≤ c(1 − γJ),

and
cHD(|w|) ≤ 1 − |w|, cJD(|w|) ≤ 1 − |w|,

for any w ∈ [−1, 1]. We point the interested reader to [41, 44] for a detailed proof.
Assuming the introduced bounds on the random variables in Eq (2.7) we may determine the

evolution of the distribution fH(w, t), H ∈ C, through the methods of kinetic theory for many-agent
systems [9]. In particular, the evolution of the kinetic density is obtained by means of a
Boltzmann-type equation

∂t fH(w, t) =
∑
J∈C

QHJ( fH, fJ)(w, t) (2.9)
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with

QHJ( fH, fJ)(w, t)

=

〈∫
I

(
1
′J

fH(′w, t) fJ(′w∗, t) − fH(w, t) fJ(w∗, t)
)

dw∗

〉
,

where (′w, ′w∗) are pre-interaction opinions generating the post-interaction opinions (w,w∗) and ′J is
the determinant of the Jacobian of the transformation (′w, ′w∗)→ (w,w∗).
Remark 2.1. In the microscopic interactions of [41] the terms related to the compromise propensity
are both governed by the same constant γ. This, in particular, gives to γ the interpretation of a shared
compromise propensity between the two agents exchanging their opinion. In the compartmental
extension of such opinion formation model, we keep this hypothesis by assuming that each agent of a
compartment shares the same compromise propensity.

2.2. Evolution of observable quantities

In the previous section, we introduced the microscopic model for opinion formation and the
corresponding kinetic equation. In order to derive the surrogate Fokker-Planck equation in Section 3,
in this subsection, we look at what macroscopic quantities are conserved in time by the model.

Let ϕ(w),w ∈ I, denote a test function. The weak formulation of kinetic equation (2.9) is given for
each H ∈ C by

d
dt

∫
I

ϕ(w) fH(w, t)dw =
∑
J∈C

∫
I

ϕ(w)QHJ( fH, fJ)(w, t)dw

=
∑
J∈C

〈∫
I2

[
ϕ(w′) − ϕ(w)

]
fH(w, t) fJ(w∗, t)dwdw∗

〉
, (2.10)

where ⟨·⟩ denotes the expected value with respect to the distribution of the random variable. Choosing
ϕ(w) = 1,w,w2, we are able to infer the evolution of observable quantities like the total number of
agents, their mean opinion within each compartment and the second order moment.

If ϕ(w) = 1 we get the conservation of mass. If ϕ(w) = w from Eq (2.10) we get

d
dt

(ρHmH) =
∑
J∈C

∫
I2

P(w,w∗)(γJw∗ − γHw) fH(w, t) fJ(w∗, t)dw dw∗,

and the mean opinion is not conserved in time. In the simplified case P ≡ 1 we get

d
dt

(ρHmH(t)) =
∑
J∈C

ρHρJ(γJmJ(t) − γHmH(t)) = ρH (M(t) − γHmH(t)) ,

where
M(t) :=

∑
J∈C

γJρJmJ(t) (2.11)

is the total weighted mean opinion at time t ≥ 0. Hence, the total mean opinion, that is definied as the
sum over the compartments of the local mean opinions, is a conserved quantity since we get

d
dt

∑
H∈C

ρHmH

 =∑
H∈C

(
d
dt
ρHmH

)
=

∑
H∈C

ρH (M − γHmH)
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=
∑
H∈C

ρH M −
∑
H∈C

γHρHmH =
∑
H∈C

ρH M − M = 0

in view of Eq (2.1). Therefore, unlike in [44], the mean opinion is not conserved for symmetric
interaction functions. If ϕ(w) = w2, the evolution of the energy of is given by

d
dt

∫
I

w2 fH(w, t)dw =
∑
J∈C

∫
I2

〈
(w′)2 − w2

〉
fH(w, t) fJ(w∗, t)dwdw∗

=
∑
J∈C

[∫
I2

(γ2
HP2(w,w∗) − 2γHP(w,w∗))w2 fH(w, t) fJ(w∗, t)dwdw∗

]
+

∑
J∈C

[
γ2

J

∫
I2

P2(w,w∗)w2
∗ fH(w, t) fJ(w∗, t)dwdw∗ + σ2ρJ

∫
I

D2(|w|) fH(w, t)dw
]

+
∑
J∈C

[
2γJ

∫
I2

(1 − γHP(w,w∗))P(w,w∗)ww∗ fH(w, t) fJ(w∗, t)dwdw∗

]
.

As in [44], we conclude that energy is not conserved by the model. In the case of P ≡ 1, it can be
equivalently written as

d
dt

(ρHm2,H(t)) = (γ2
H − 2γH)ρHm2,H(t) + ρH

∑
J∈C

γ2
JρJm2,J(t)

+ σ2
∫
I

D2(|w|) fH(w, t)dw + 2(1 − γH)ρH(t)mH(t)M(t),

and, again, we see that it is not conserved.

3. Derivation of a reduced complexity Fokker-Planck model

A closed-form analytical derivation of the equilibrium distribution of the Boltzmann-type collision
operator QHJ in Eq (2.9) is difficult. For this reason, several reduced complexity models have been
proposed. In this section, we consider a scaling of compromise and diffusion that has its roots in the
so-called grazing collision limit of the classical Boltzmann equation [9, 35, 41]. In the following, we
will assume that ϕ is 3-Hölder continuous and ηH, ηJ have finite third order moments, see [41].

Let ϵ > 0 be a scaling coefficient. We introduce the following scaling

γJ → ϵγJ, σ
2
J → ϵσ

2
J (3.1)

and, in the time scale ξ = ϵt, we introduce the corresponding scaled distributions

gH(w, ξ) = fH(w, t) = fH (w, ξ/ϵ) , H ∈ C.

In the following we will indicate with ρHmH(ξ) =
∫
I

wgH(w, ξ)dw. Rewriting the weak formulation
(2.10) of the opinion kinetic equation (2.9) for the scaled function, we get

ϵ
d
dξ

∫
I

ϕ(w)gH(w, ξ)dw =
∑
J∈C

∫
I2
⟨ϕ(w′) − ϕ(w)⟩ gH(w, ξ)gJ(w∗, ξ)dwdw∗. (3.2)
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Letting ϵ → 0+, we can introduce a Taylor expansion of ϕ around w

⟨ϕ(w′) − ϕ(w)⟩ = ⟨w′ − w⟩
d

dw
ϕ(w) +

1
2
⟨(w′ − w)2⟩

d2

dw2ϕ(w) +
1
6
⟨(w′ − w)3⟩

d3

dw3ϕ(w̄)

where w̄ ∈ (min(w,w′),max(w,w′)) and

⟨w′ − w⟩ = ϵP(w,w∗)(−γHw + γJw∗)
⟨(w′ − w)2⟩ = ϵ2P2(w,w∗)(γ2

Hw2 + γ2
Jw2
∗ − 2γHγJww∗) + ϵσ2D2(|w|).

Plugging these terms in Eq (3.2) we get

ϵ
d
dξ

∫
I

ϕ(w)gH(w, ξ)dw

= ϵ
∑
J∈C

∫
I2
ϕ′(w)P(w,w∗)(−γHw + γJw∗)gH(w, ξ)gJ(w∗, ξ)dwdw∗

+
1
2

∑
J∈C

∫
I2
ϕ′′(w)⟨(w′ − w)2⟩gH(w, ξ)gJ(w∗, ξ)dwdw∗

+
∑
J∈C

Rϵ(gH, gJ)(ξ),

(3.3)

and
Rϵ(gH, gJ)(ξ) =

1
6

∫
I2
⟨(w′ − w)3⟩ϕ′′′(w̄)gH(w)gJ(w∗)dwdw∗.

Hence, we may observe that for each J ∈ C, the reminder term is such that

1
ϵ
|Rϵ(gH, gJ)| → 0,

for ϵ → 0+ since
〈
η3

J

〉
< +∞ for all J ∈ C. Therefore, in the quasi-invariant scaling, letting ϵ → 0+ in

Eq (3.3), we get

d
dξ

∫
I

ϕ(w)gH(w, ξ)dw

=

∫
I

ϕ′
∫
I

P(w,w∗)
∑
J∈C

(γJw∗ − γHw) gJ(w∗)dw∗ + ϕ′′
σ2

2
D2(w)

 gH(w)dw
(3.4)

Integrating back by parts, in view of the smoothness of ϕ, we obtain the surrogate Fokker-Planck
operator

∂ξgH(w, ξ) = Q̄H(gH)(w, ξ) (3.5)

where

Q̄H(gH)(w, ξ) =
σ2

2
∂2

w

(
D2(|w|)gH(w, ξ)

)
+ ∂w

∫
I

P(w,w∗)
∑
J∈C

(γHw − γJw∗) gJ(w∗, ξ)dw∗

 gH(w, ξ)


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complemented with the no-flux boundary conditions

#1
∣∣∣
w=±1

+#1
∣∣∣
w=±1
= 0

#1
∣∣∣
w=±1
= 0

(3.6)

for any ξ ≥ 0. We observe that these conditions express a balance between the so-called advective and
diffusive fluxes on the boundaries w = ±1.

Remark 3.1. In the simplified case in which P ≡ 1, using Eq (2.1), it is straightforward to deduce that
Fokker-Planck equation (3.5) can be rewritten as

∂ξgH(w, ξ) =
σ2

2
∂2

w

(
D2(|w|)gH(w, ξ)

)
+ ∂w((γHw − M(ξ))gH(w, ξ) (3.7)

where M(ξ) has been defined in Eq (2.11). Therefore, under the additional assumption γH = γ and
D(|w|) =

√
1 − w2, we can compute the explicit steady state of Eq (3.7). Indeed, Eq (3.7) simplifies

into the following Fokker-Planck-type model

∂gH(w, ξ)
∂ξ

=
σ2

2
∂2

w

(
(1 − w2))gH(w, ξ)

)
+ ∂w ((γw − M(ξ))gH(w, ξ)) ,

where now M(ξ) = M̄ = γ
∑

J∈C ρJmJ which is a conserved quantity. For large times, we get

g∞H (w) = ρ∞H
(1 − w)−1+ 1−M̄

λ (1 + w)−1+ −1+M̄
λ

B((1 − M̄)/λ, (1 + M̄)/λ)
,

where λ = σ2/γ.

3.1. Properties of the model

We consider the kinetic compartmental model with opinion formation term given by the derived
Fokker-Planck model (3.5) and where the local incidence rate is given either by Eq (2.5) or by Eq
(2.6). Without loss of generality, in the following, we restore the time variable t ≥ 0. We get

∂tgS (w, t) = −K(gS , gI)(w, t) +
1
τ

Q̄S (gS )(w, t)

∂tgE(w, t) = K(gS , gI)(w, t) − νEgE(w, t) +
1
τ

Q̄E(gE)(w, t)

∂tgI(w, t) = νEgE(w, t) − νIgI(w, t) +
1
τ

Q̄I(gI)(w, t)

∂tgR(w, t) = νIgI(w, t) +
1
τ

Q̄R(gR)(w, t).

(3.8)

In this subsection we first prove the positivity of the solution to Eq (3.8) with no-flux boundary
conditions Eq (3.6), given positive gH(w, 0) = g0

H ∈ L1(I), for all H ∈ C. Then, under the same
hypotheses on the initial data, but with the additional assumption of constant interaction forces P ≡ 1,
we prove the uniqueness of such solution.
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Positivity of the solution to Eq (3.8). In order to prove the positivity of the solution, we adopt a
time-splitting strategy by isolating the opinion dynamics and the epidemiological one. Hence, the first
problem is obtained by 

∂tgH(w, t) = Q̄H(gH)(w, t)
gH(w, 0) = g0

H(w) H ∈ C,

No-flux boundary conditions (3.6),

(3.9)

for all H ∈ C, while the second one by



∂tgS (w, t) = −K(gS , gI)(w, t)
∂tgE(w, t) = K(gS , gI)(w, t)
∂tgI(w, t) = νEgE(w, t) − νIgI(w, t)
∂tgR(w, t) = νIgI(w, t)
gH(w, 0) = g0

H(w) H ∈ C.

(3.10)

We begin by proving the positivity of the solution to Eq (3.9). We exploit the arguments of [11]
and [23] and derive it as a corollary of the theorem that follows.

Proposition 3.2 (Non-increase of the L1 norm). Let gH(w, t) be a solution of Eq (3.9). If g0
H ∈ L1(I),

then
∫
I
|gH(w, t)|dw = ∥gH(·, t)∥L1(I) is non increasing for any t ≥ 0.

Proof. Let ϵ > 0. We denote by signϵ(gH) a regularized increasing approximation of the sign function
(e.g., a sigmoid, such as the hyperbolic tangent) and by |gH |ϵ the regularized approximation of |gH | via
the primitive of signϵ(gH).
Given weak formulation (3.4), we introduce for w ∈ I

A(w, t) =
∑
J∈C

∫
I

P(w,w∗) (γJw∗ − γHw) gJ(w∗)dw∗, B(w) =
λ

2
D2(|w|).

Hence, we obtain

d
dt

∫
I

ϕ(w)gH(w, t)dw =
∫
I

[
A(w, t)ϕ′(w) + B(w)ϕ′′(w)

]
gH(w, t)dw.

If we choose ϕ(w) = signϵ(gH) in the above equation and avoid the dependence on w ∈ I and t ≥ 0, we
obtain

d
dt

∫
I

signϵ(gH)gH dw =
∫
I

[
A ∂w(signϵ(gH)) + B ∂2

w(signϵ(gH))
]

gH dw.
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We have

d
dt

∫
I

|gH |ϵ dw =∫
I

AgH sign′ϵ(gH) ∂wgH dw +
∫
I

BgH ∂w[sign′ϵ(gH) ∂wgH] dw =∫
I

AgH sign′ϵ(gH) ∂wgH dw + #1
∣∣∣
w=±1

−

∫
I

∂w[B f ] sign′ϵ(gH) ∂wgH dw =∫
I

AgH sign′ϵ(gH) ∂wgH dw −
∫
I

∂wB gH sign′ϵ(gH) ∂wgH dw

−

∫
I

B gH sign′ϵ(gH) (∂wgH)2 dw

where we integrated by parts the second addend of the first equation and we used that #1|w=±1 is
vanishing in view of the second no-flux boundary condition in Eq (3.6). Observing that
∂w[gH signϵ(gH) − |gH |ϵ] = gH sign′ϵ(gH) ∂wgH, the weak formulation finally reads

d
dt

∫
I

|gH |ϵ dw =
∫
I

(A − ∂wB)∂w[gH signϵ(gH) − |gH |ϵ] dw

−

∫
I

B gH sign′ϵ(gH) (∂wgH)2 dw.

Integrating by parts the first addend of the right-hand side and using the first no-flux boundary
conditions in Eq (3.6), we have that

d
dξ

∫
I

|gH |ϵ dw =
∫
I

∂w(A − ∂wB) [gH signϵ(gH) − |gH |ϵ] dw

−

∫
I

B gH sign′ϵ(gH) (∂wgH)2 dw.

Therefore, in the limit ϵ → 0+ we obtain

d
dt

∫
I

|gH(w, t)| dw =
d
dt
∥gH(·, t)∥L1(I) ≤ 0.

□

Corollary 3.2.1 (Positivity of the solution to Eq (3.9)). Let gH be a solution of Eq (3.9). If g0
H ∈ L1(I)

and g0
H(w) ≥ 0, then gH(w, ξ) ≥ 0 for any w ∈ I, ξ ≥ 0.

Proof. The result follows from the proof presented in [11] and from Proposition 3.2. □

Now can prove the positivity of the solution to Eq (3.10) by distinguishing the scenarios in which
α = 0 and α = 1 (and, thus, when K( fS , fI) is of form Eqs (2.5) and (2.6) respectively).

Proposition 3.3 (Positivity of the solution to Eq (3.10)). Let gH, H ∈ C be a solution of the initial-
value problem (3.10). If g0

H(w) ≥ 0, then gH(w, t) ≥ 0 for any w ∈ I, t ≥ 0.
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Proof. The result follows from the proof presented in [5, 23]. □

Merging the positivity results in Corollary 3.2.1 and Proposition 3.3 we can provide positivity of
the solution to Eq (3.8).

Proposition 3.4 (Positivity of the solution to Eq (3.8)). Let gH, H ∈ C be a solution of Eq (3.8). If
g0

H ∈ L1(I) and g0
H(w) ≥ 0, then gH(w, ξ) ≥ 0 for any w ∈ I, ξ ≥ 0.

Proof. We can discretize equation (3.8) through a classical splitting method [40] in time. We briefly
recall the splitting strategy. For any given time T > 0 and n ∈ N, we introduce a time discretization
tk = k∆t, k ∈ [0, n] with ∆t = T/n > 0. Then we proceed by solving two separate problems in each
time step as follows:

• At time t = 0 we consider gH(w, 0) = g0
H(w) ≥ 0, g0

H ∈ H1(R), for all H ∈ C.
• For t ∈ [tk, tk+1] we solve the Fokker-Planck step

∂tgH(w, t) = Q̄H(gH)(w, t),
gH(w, tk) = gk

H(w)

for all H ∈ C.
• The solution of the Fokker-Planck step at time tk+1 is assumed as the initial value for the

epidemiological step in the same time interval t ∈ [tk, tk+1].
• For t ∈ [tk, tk+1] the epidemiological step is subsequently solved by considering Eq (3.10).

The method generates an approximation gH,n(w, t) of the solution to Eq (3.8), for which properties can
be easily derived by resorting to the properties of the Fokker-Planck and epidemiological steps, which
are solved in sequence. Hence, we may proceed as in [2] making use of the Trotter’s formula, which
allows to conclude that

lim
n→+∞

gn
H(w) = gH(w, t) ≥ 0

and this shows the positivity of gH(w, t). The approach is reminiscent of the one developed in [16]. □

Uniqueness of the solution to (3.8). In this subsection we additionally require P ≡ 1. Then, Fokker-
Planck equation (3.5) reduces to (3.7) and the operator on the right-hand side becomes linear in gH.
We remark that the contact rate κ(w,w∗) as in Eq (2.4) is bounded. Indeed, 0 ≤ κ(w,w∗) ≤ β for any
w,w∗ ∈ [−1, 1] and any α ≥ 0. We get the following result

Theorem 3.5 (Uniqueness of the solution to Eq (3.8)). Let gH, ḡH, H ∈ C be two solutions of Eq (3.8)
with P ≡ 1. If g0

H, ḡ
0
H ∈ L1(I), then there exists Cmax = Cmax(β, νE, νI) > 0 such that for any t ≥ 0∑

J∈C

||gH(·, t) − ḡH(·, t)||L1(I) ≤ eCmaxt
∑
H∈C

||g0
H − ḡ0

H ||L1(I)

Proof. The result follows from the proof presented in [5, 23]. The proof is based on the fact that
gH − ḡH is a solution to Eq (3.8), thanks to the linearity of the Fokker-Planck operator in gH, and that
consequently Proposition 3.2 may be applied to gH − ḡH. We remark that, at variance with the the
just-mentioned papers where the boundness of the contact rate was imposed by the authors, here κ is
bounded by definition, as shown in the calculations preceding the theorem. □
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4. Evolution of the moment system for the opinion-based SEIR model

As remarked in Section 3, the drift term in surrogate Fokker-Planck equation (3.5) depends on
time. This makes the mathematical analysis of the corresponding four-equation system in (3.8) more
challenging. As we’re interested in drawing conclusions on the macroscopic epidemic trends resulting
from the model, in this section, we derive the system for the evolution of the mass fractions and local
mean opinions and explain how these can be used to prove that Eq (3.8) possesses an explicitly
computable steady state. From now on, we restrict to the scenario of constant interaction forces P ≡ 1,
so that in particular the total mean opinion of the model is conserved as proven in Subsection 2.2.

Let us consider first the case α = 0. Then, κ(w,w∗) ≡ β and the local incidence rate K( fS , fI)(w, t)
is of form Eq (2.5). Kinetic compartmental system (2.2) reduces to

∂t fS = −β fSρI +
1
τ

∑
J∈{S ,E,I,R}

QS J( fS , fJ)

∂t fE = β fSρI − νE fE +
1
τ

∑
J∈{S ,E,I,R}

QEJ( fE, fJ)

∂t fI = νE fE − νI fI +
1
τ

∑
J∈{S ,E,I,R}

QIJ( fI , fJ)

∂t fR = νI fI +
1
τ

∑
J∈{S ,E,I,R}

QRJ( fR, fJ).

(4.1)

Integrating system (4.1) with respect to w ∈ I we get

d
dt
ρS (t) = −βρS (t)ρI(t)

d
dt
ρE(t) = βρS (t)ρI(t) − νEρE(t)

d
dt
ρI(t) = νEρE(t) − νIρI(t)

d
dt
ρR(t) = νIρI(t)

(4.2)

which is the classical S EIR compartmental model. Multiplying system (4.1) by w and integrating with
respect to the w variable, we obtain the system for the evolution of the mean opinions

d
dt

(ρS mS ) = −βρIρS mS +
ρS

τ
(M(t) − γS mS (t))

d
dt

(ρEmE) = βρIρS mS − νEρEmE +
ρE

τ
(M(t) − γEmE(t))

d
dt

(ρImI) = νEρEmE − νIρImI +
ρI

τ
(M(t) − γImI(t))

d
dt

(ρRmR) = νIρImI(t) +
ρR

τ
(M(t) − γRmR(t))

(4.3)

where we recall that M is given by Eq (2.11).
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On the other hand, if we let α = 1, the local incidence rate K( fS , fI)(w, t) is of the form Eq (2.6) and
the kinetic compartmental model (2.2) has the following form

∂t fS = −
β

4
(1 − w) fS (1 − mI)ρI +

1
τ

∑
J∈{S ,E,I,R}

QS J( fS , fJ)

∂t fE =
β

4
(1 − w) fS (1 − mI)ρI − νE fE +

1
τ

∑
J∈{S ,E,I,R}

QEJ( fE, fJ)

∂t fI = νE fE − νI fI +
1
τ

∑
J∈{S ,E,I,R}

QIJ( fI , fJ)

∂t fR = νI fI +
1
τ

∑
J∈{S ,E,I,R}

QRJ( fR, fJ).

(4.4)

Hence, integrating (4.4) with respect to w ∈ I we get

d
dt
ρS (t) = −

β

4
(1 − mI)(1 − mS )ρIρS

d
dt
ρE(t) =

β

4
(1 − mI)(1 − mS )ρIρS − νEρE

d
dt
ρI(t) = νEρE − νIρI

d
dt
ρR(t) = νIρI ,

(4.5)

whose evolution now depends on the first moment of the kinetic densities fS (w, t), fI(w, t). A direct
inspection on the evolution of the moment system is obtained by multiplying Eq (4.4) by w ∈ I and
integrating with respect to the opinion variable to get

d
dt

(ρS mS ) = −
β

4
ρI(1 − mI)

∫
I

w(1 − w) fS (w, t)dw

+
ρS

τ
(M(t) − γS mS )

d
dt

(ρEmE) =
β

4
ρI(1 − mI)

∫
I

w(1 − w) fS (w, t)dw − νEρEmE

+
ρE

τ
(M(t) − γEmE)

d
dt

(ρImI) = νEρEmE − νIρImI +
ρI

τ
(M(t) − γImI)

d
dt

(ρRmR) = νIρImI +
ρR

τ
(M(t) − γRmR),

(4.6)

which depends on the kinetic density fS (w, t). Unlike what presented in [44] we cannot rely on a
closure strategy since the mean opinions are not conserved quantities.

In more details, we observe that Fokker-Planck equation (3.7) admits quasi-stationary equilibrium
states and that they may be obtained by simply imposing ∂ξgH(w, ξ) = 0. However, it would not be
exact to close the systems with their moments, as, by doing so, we would be closing the system with
respect to quantities which are not conserved in time. Indeed, we recall again that our model conserves
the total mean opinion

∑
H∈C ρHmH, but not the mean opinions ρHmH in each compartment H.
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4.1. Stationary solutions in an explicitly solvable case

We consider the kinetic compartmental model (4.1) where the thermalization operators are now of
Fokker-Planck-type. We have 

∂tgS = −βgSρI +
1
τ

Q̄S (gS )

∂tgE = βgSρI − νEgE +
1
τ

Q̄E(gE)

∂tgI = νEgE − νIgI +
1
τ

Q̄I(gI)

∂tgR = νIgI +
1
τ

Q̄R(gR).

(4.7)

Since α = 0 and the system for the evolution of the mass fractions corresponds to the classical S EIR
compartmental model, we can use standard results on the large time behaviour of the solution to such
model (see for instance [3, 31]). In particular,

lim
t→∞
ρS (t) = ρ∞S > 0, lim

t→∞
ρE(t) = lim

t→∞
ρI(t) = 0, lim

t→∞
ρR(t) = ρ∞R > 0 (4.8)

where ρ∞S + ρ
∞
R = 1. Then, merging the fact that the mass fractions of the exposed and the infected

vanish for large times with the evolution of the local mean opinions given by Eq (4.3), in the limit
t → +∞, we get

ρS (t)mS (t)→ ρ∞S m∞S ,

ρE(t)mE(t)→ 0,
ρI(t)mI(t)→ 0,

ρR(t)mR(t)→ ρ∞R m∞R

with the asymptotic mean opinions m∞S ,m
∞
R satisfying

2M∞ − γS m∞S − γRm∞R = 0

where M∞ = γSρ
∞
S m∞S + γRρ

∞
R m∞R . Therefore, we have

γS m∞S = γRm∞R . (4.9)

Furthermore, we know from Subsection 2.2 that the total mean opinion m =
∑

J ρJmJ is conserved by
the model. This, in particular, implies that

ρ∞S m∞S + ρ
∞
R m∞R = m.

Hence, we are able to write m∞S ,m
∞
R as

m∞S =
γR

γRρ
∞
S + γSρ

∞
R

m, m∞R =
γS

γRρ
∞
S + γSρ

∞
R

m. (4.10)

We remark that, once the kinetic compartmental model is complemented with initial conditions,
m, ρ∞S , ρ

∞
R are quantities that are explicitly computable and, thanks to equation (4.10), so are m∞S ,m

∞
R .
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Finally, for the Fokker-Planck operator with constant interaction P ≡ 1 Eq (3.7) we get in the limit
τ → 0+ that the system reaches a steady state distribution g∞(w) = g∞S (w) + g∞R (w) where g∞H (w),
H ∈ {S ,R} are determined for any w ∈ I as the solutions of the following system of differential
equations

(γS w − γS m∞S )g∞S (w) +
σ2

2
∂w[D2(|w|)g∞S (w)] = 0,

(γRw − γRm∞R )g∞R (w) +
σ2

2
∂w[D2(|w|)g∞R (w)] = 0.

A proof for the existence of such steady state is provided in [17] and is based on the Fourier metrics
introduced in [4, 26]. Proceeding as in [44], in the relevant case D(w) =

√
1 − w2, the distributions

g∞S (w) and g∞R (w) are explicitly computable and are of form

g∞H (w) = ρ∞H
(1 − w)−1+

1−m∞H
λH (1 + w)−1+

1+m∞H
λH

B((1 − m∞H )/λH, (1 + m∞H )/λH)
, (4.11)

where B(·, ·) is the Beta function, m∞H is defined in Eq (4.10) and where we indicated with λH = σ
2/γH,

H ∈ {S ,R}. For a review on other choices of the diffusion function D(|w|) we refer to [41]. We may
observe that g∞H (w)/ρH defined in Eq (4.11) is a Beta probability density. Furthermore, we may observe
that the global steady state distribution g∞(w) may exhibit a bimodal shape.

As argued in [41] a Beta distribution has a peak in Iwhen λ = σ2/γ < 1−|m| and in correspondence
to the point

w̄ =
m

1 − λ
.

Therefore, we expect to observe a bimodal shape for g∞ if both λS < 1 − |m∞S | and λR < 1 − |m∞R | or,
equivalently, if σ2/γS < 1 − |m∞S | and σ2/γR < 1 − |m∞R |. In addition, we recall that γS , γR,m∞S ,m

∞
R are

linked by relation Eq (4.9). All in all, the five parameters σ2, γS , γR,m∞S ,m
∞
R shall satisfy

σ2

γS
< 1 − |m∞S |

σ2

γR
< 1 − |m∞R |

γS m∞S = γRm∞R with m∞S m∞R > 0

(4.12)

where the constraint on the product m∞S m∞R comes from the fact that σ2, γS , γR > 0 by their definition.
In the top row of Figure 1 we give two sets of parameters that satisfy the above conditions and for
which we see a bimodal shape. It is interesting to observe that multi-modal distributions are obtained
through Beta densities, at variance with [17] where multi-modal distributions were obtained through
Gamma ones.

Clearly, if either g∞S or g∞R reveal opinion polarization of a society, then the global steady state has
only one maximum in the interval I, as shown, for instance, in the bottom-left corner of Figure 1.
Finally, a question that arises spontaneous at this point is whether the existence of a maximum for both
g∞S and g∞R implies a bimodal shape for g∞. The answer is negative and a counterexample is presented
in the bottom-right corner of Figure 1.
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Figure 1. Plot of the global steady state g∞ for various choices of the opinion and
epidemiological parameters. In all the plots we fix σ2 = 10−3. The plot on the top-left corner
(a) is obtained by choosing γS = 0.8, γR = 0.2,m∞S = 0.1,m∞R = 0.4, so that consensus-
type dynamics for S and R is observed and Eq (4.12) is verified: as expected g∞ presents
two maxima in I. The plot on the top-right corner (b) is obtained with the same choices of
compromise-propensity parameters as before and in the case m∞S = −0.1, m∞R = −0.4. The
plot on the bottom-left corner (c) is obtained by choosing the same asymptotic mean opinions
as in the plot above it, but with γR = 0.0025 such that the constraint σ2/γR < 1 − |m∞R |
is not satisfied (that is, so that g∞R exhibits opinion polarization of a society). γS is then
calculated using Eq (4.9). The plot on the bottom-right corner (d) is obtained by choosing
γS = 0.1, γR = 0.1,m∞S = 0.5,m∞R = 0.55. In this scenario we obtain a uni-modal steady
profile and conclude that Eq (4.12) are not a sufficient condition for the existence of two
peaks.
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Remark 4.1. The Fokker-Planck-type system (4.7) we obtained is capable of exhibiting the formation of
asymptotic opinion clusters even in the case of constant interactions. In opinion-formation phenomena,
possible ways to observe the emergence of clusters is typically based on the adoption of bounded-
confidence-type interactions functions, see [30] and [6, 36] together with the references therein.

Remark 4.2. In this section, we restricted ourselves to the scenario in which α = 0. Indeed, as remarked
in the first part of the section, this simplified assumption allows us to obtain a S EIR model for the
evolution of the local mass fractions and, thus, to use the classical results on the behaviour of its
solution for large times. However, we remark that an open question regards the formation of opinion
clusters for α > 0.

5. Numerical results

In this section, we numerically test the consistency of the proposed modelling approach.
Furthermore, we will investigate the impact of opinion segregation features on epidemic dynamics.
From a methodological point of view, to approximate the kinetic SEIR model with
Fokker-Planck-type operators, we resort to structure-preserving schemes for nonlinear Fokker-Planck
equations [37]. These methods are capable of preserving the main physical properties of the
equilibrium density, like positivity, entropy dissipation and preservation of observable quantities.

In more detail, we are interested in the evolution of fJ(w, t), J ∈ C, w ∈ [−1, 1], t ≥ 0 solution to Eq
(3.8) and complemented by the initial conditions fJ(w, 0) = f 0

J (w). We consider a time discretization
of the interval [0, tmax] of size ∆t > 0. We will denote by f n

J (w) the approximation of fJ(w, tn). Hence,
we may introduce a splitting strategy between the collision step f ∗J = O∆t( f n

J )

∂t f ∗J =
1
τ

Q̄J( f ∗J ),

f ∗J (w, 0) = f n
J (w), J ∈ C,

and the epidemiological step f ∗∗J = E∆t( f ∗∗J )

∂t f ∗∗S = −K( f ∗∗S , f ∗∗I )
∂t f ∗∗E = K( f ∗∗S , f ∗∗I ) − νE f ∗∗E

∂t f ∗∗I = νE f ∗∗E − νI f ∗∗I

∂t f ∗∗R = νI f ∗∗I ,

f ∗∗J (w, 0) = f ∗J (w,∆t), J ∈ C.

The operators Q̄J(·) have been defined in Eq (3.5) and are complemented by no-flux conditions (3.6).
We highlight that, at time tn+1, the solution is given by the combination of the two introduced steps. In
the following we will adopts a second-order Strang splitting method that is obtained as

f n+1
J = E∆t/2(O∆t(E∆t/2( f n

J (w)))),

for all J ∈ C. As introduced above, the Fokker-Planck step is solved by a semi-implicit SP method,
whereas the integration of the epidemiological step is performed with an RK4 method. In the following,
we will always assume τ = 1.
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5.1. Test 1. Consistency between the kinetic model and the moment system

In this test we focus on the case α = 0 in Eq (4.1) such that

K( fS , fI)(w, t) = β fS (w, t)ρI(t),

and we compare the evolution of the derived moment system (4.2) and (4.3) derived with constant
interaction function P ≡ 1. To define the initial conditions, we introduce the distributions

g0(w) =

0 w ∈ [0, 1],
1 elsewhere,

h0(w) =

1 w ∈ [0, 1],
0 elsewhere.

(5.1)

In the following, we will consider the initial distributions

fS (w, 0) = ρS (0)g0(w), fE(w, 0) = ρE(0)g0(w),
fI(w, 0) = ρI(0)h0(w), fR(w, 0) = ρR(0)h0(w),

(5.2)

with ρE(0) = ρI(0) = ρR(0) = 0.05 and ρS (0) = 1 − ρE(0) − ρI(0) − ρR(0). The introduced initial
conditions describe a society where the subsceptible agents have negative initial opinions on protective
behaviour. We solve numerically (4.1) over the time frame [0, tmax] by introducing a time discretization
tn = n∆t, ∆t > 0, and n = 0, . . . ,T such that T∆t = tmax. We further introduce a grid wi ∈ [−1, 1]
with wi+1 − wi = ∆w > 0, i = 1, . . . ,Nw. In Figure 2 we report the evolution of the approximated
kinetic densities where we further considered the epidemiological parameters β = 0.3, νE = 1/2,
νI = 1/12, whereas the compromise propensities are given by γS = γE = 0.2, γI = γR = 0.4 and
the diffusion constant is fixed as σ2 = 10−2. The chosen compromise propensities imply that agents
in the compartments {S , E} change opinions through interactions more strongly than agents in the
compartments {I,R}.

We consider also the initial distributions

fS (w, 0) = ρS (0)h0(w), fE(w, 0) = ρE(0)h0(w),
fI(w, 0) = ρI(0)h0(w), fR(w, 0) = ρR(0)h0(w),

(5.3)

with ρE(0) = ρI(0) = ρR(0) = 0.05 and ρS (0) = 1 − ρE(0) − ρI(0) − ρR(0). The defined initial
conditions describe a society where all the agents share positive opinions towards the adoption of
protective behaviour. We consider the same epidemiological parameters of the previous test and the
same compromise propensities and diffusion constant. In Figure 3 we compare the evolution of the
computed observable quantities obtained as

∫ 1

−1
wr fJ(w, t)dw with ρJ(t), ρJmJ(t) defined in the

moment system (4.2) and (4.3) with the two sets of initial conditions. We may observe good
agreement between the approximated evolution of observable quantities and the moment system. At
the epidemiological level we may observe that, due to the hypothesis α = 0 which neglects opinion
effects in transition between compartmens, the evolution of mass fractions ρJ(t) do not change in view
of the two considered initial conditions. Anyway, thanks to the proposed kinetic approach we may
obtain details on the evolution of mean opinions in each compartment.
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(a) fS (w, t) (b) fE(w, t)

(c) fI(w, t) (d) fR(w, t)

Figure 2. Test 1. Evolution of the kinetic densities fJ(w, t), J ∈ C, over the time interval
[0, 100], ∆t = 10−1. We considered the epidemic parameters β = 0.3, νE = 1/2, νI = 1/12,
compromise propensities γS = γE = 0.2, γI = γR = 0.4, and diffusion constant σ2 = 10−2,
the scaling parameter is τ = 1. The discretization of the interval [−1, 1] is performed with
Nw = 501 gridpoints. We fixed the initial condition as in Eq (5.2) with ρE(0) = ρI(0) =
ρR(0) = 0.05 and ρS (0) = 1 − ρE(0) − ρI(0) − ρR(0).
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Figure 3. Test 1. Comparison between the evolution of ρJ, mJρJ solution to the moments
system (4.2) and (4.3) and mass and momentum obtained from the numerical solution to Eq
(4.1). Top row: initial condition defined in Eq (5.2). Bottom row: initial condition defined in
Eq (5.3). The epidemiological and numerical parameters have been fixed as in Figure 2.

5.2. Test 2: Opinion-dependent incidence rate

In this test we investigate the influence of the initial conditions in a kinetic compartmental model
with opinion-dependent local incidence rate of the form Eq (2.6). In particular, consider κ(w,w∗) in
Eq (2.4) with α = 1 and we integrate the kinetic model (4.4) on the time frame [0, 100], ∆t = 10−1 by
considering a positively skewed population, synthesized in the following initial condition

(IC1): fS (w, 0) = ρS (0)h1(w), fE(w, 0) = ρE(0)h1(w),
fI(w, 0) = ρI(0)h1(w), fR(w, 0) = ρR(0)h1(w),

with a negatively skewed population, obtained by considering the following initial condition

(IC2): fS (w, 0) = ρS (0)g1(w), fE(w, 0) = ρE(0)g1(w),
fI(w, 0) = ρI(0)h1(w), fR(w, 0) = ρR(0)h1(w).
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Figure 4. Test 2. Comparison between the evolution of ρJ, mJρJ solution to the moment
system (4.5) and (4.6) and mass and momentum obtained from the numerical solution to
kinetic system (4.4). The epidemiological and numerical parameters have been fixed as in
Figure 2 and the initial conditions as in (IC1) and (IC2).

where

g1(w)

2 w ∈ [−1
2 ,−1]

0 elsewhere
, h1(w)

2 w ∈ [1
2 , 1]

0 elsewhere.

In both cases we fixed ρE(0) = ρI(0) = ρR(0) = 0.05 and ρS (0) = 1 − ρE(0) − ρI(0) − ρR(0). In Figure
4 we depict the evolution of kinetic mass and momentum obtained from Eq (4.4) with respectively
initial conditions (IC1) or (IC2). We can observe that, at variance with what we obtained in Section
5.1, an opinion-dependent incidence rate effectively quantifies the impact of opinion-type dynamics
on the epidemic evolution. Indeed, in the case IC1, where the agents’ opinions tends to align towards
protective behaviours, the transmission dynamics become sensitive to the introduced social dynamics.

5.3. Test 3. Impact of opinion clusters on the epidemic dynamics

In this test we focus on the effects of the asymptotic formation of opinion clusters as discussed
in Section 4.1. We consider the epidemiological parameters defined in the previous tests, β = 0.3,
νI = 1/12, νE = 1/2. Furthermore we fix as initial conditions the one defined in Eq (5.2) with
ρE(0) = ρI(0) = ρR(0) = 0.05 and ρS (0) = 1 − ρE(0) − ρI(0) − ρR(0). The opinion formation dynamics
is solved through a semi-implicit SP scheme over an uniform grid for [−1, 1] composed by Nw =

501 gridpoints and a time discretization of the time horizon [0, 100] obtained with ∆t = 10−1. The
parameters characterizing the opinion dynamics are γS = γE = 0.8, γI = γR = 0.2 such that the
susceptible and the exposed populations, which are initially skewed towards negative opinions, weights
more opinions of other compartments as in Eq (2.7). Furthermore we consider a diffusion σ2 = 10−3.
We remark that these choices are coherent with the ones adopted to obtain Figure 1b.

In Figure 5 we present the evolution of the total density f (w, t) =
∑

J∈C fJ(w, t) for several choices of
the parameter α ≥ 0 in the local incidence rate expressed by (2.4). In the regime α = 0, as highlighted
in Section 4.1, we detect the formation of clusters. We may observe how opinion clusters appear also
in regimes α > 0 and may lead to stationary profiles of different nature with respect to the one obtained
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with α = 0. The emergence of opinion clusters can be therefore obtained in more general regimes
where the transmission dynamics depends on the behaviour of infected agents.

Figure 5. Test 3. Evolution of the density f (w, t) =
∑

J∈C fJ(w, t) over the time horizon
[0, 100], where fJ(w, t) are the numerical solutions to Eq (3.8) with β = 0.3, νI = 1/12,
νE = 1/2 and γS = γE = 0.8, γI = γR = 0.2. We considered α = 0 (left), α = 1 (center),
α = 2 (right). Initial condition as in Eq (5.2).

As discussed in the case of explicitly solvable stationary solution, the value of the diffusionσ2 > 0 is
of great importance to determine the emergence of opinion clusters and of polarization. The impact of
the steady state on the epidemic dynamics is studied in Figure 6 where we integrate (3.8) over the time
integral [0,T ], T = 200, for several values of the diffusion constant σ2 ∈ [10−4, 0.2] and we consider
the large-time mass of recovered individuals ρR(T ) =

∫
I

fR(w,T )dw for several values of α = 0, 1, 2.
As before, we fixed the compromise parameters γS = γE = 0.8, γI = γR = 0.2. We may observe how,
under the aforementioned conditions, large values of the diffusion parameters trigger a higher number
of recovered individuals. This is due to the emergence of polarization in the society which is driven
towards negative opinions under the considered initial condition.

Figure 6. Test 3: we depict ρR(T ) =
∫
I

fR(w,T )dw with T = 200 obtained with numerical
integration of (3.8) with initial condition (5.2), β = 0.3, νI = 1/12, νE = 1/2. Numerical
integration performed over [0,T ], T = 200 with ∆t = 10−1 and a discretization of I obtained
with Nw = 501 gridpoints.

6. Conclusion

In this work we focused on the development of a kinetic model for the interplay between opinion
and epidemic dynamics. The study of the impact of opinion-type phenomena in the evolution of
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infectious diseases can be suitably linked with vaccine hesitancy. Recently this phenomenon emerged
in close connection with the evolution of pandemics. In this paper, we studied the evolution of
opinion densities by means of a compartmental kinetic model where the microscopic interaction
dynamics is supposed heterogeneous with respect to the agents’ compartments. Through explicit
computations, we showed the formation of asymptotic clusters for a surrogate Fokker-Planck-type
model under the assumption that the transmission dynamics is independent of opinion-formation
processes. Furthermore, we studied positivity and uniqueness of the solution of the model. Numerical
experiments confirm the ability of the approach to force clusters formation also in the case of
opinion-dependent transmission dynamics. Future studies will aim at defining the parameters of the
model by resorting to existing experimental data.
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