Research article Special Issues

On rotavirus infectious disease model using piecewise modified $ ABC $ fractional order derivative

  • Received: 22 November 2023 Revised: 05 February 2024 Accepted: 18 February 2024 Published: 23 February 2024
  • The goal of this manuscript is to use a mathematical model with four compartments to examine the positive effects of rotavirus vaccinations. Susceptible, vaccinated, infected, and recovered (SVIR) classes are included in the suggested model. Some qualitative conclusions are established for the complicated pediatric disease epidemic model of rotavirus, which travels through a population at an inconsistent rate. The model has been fitted with piecewise equations of non-singular kernel-type derivatives in the modified Atangana-Balaneu-Caputo $ (mABC) $ sense. Using the Laplace transform and the notion of non-singular-type derivatives, we prove several basic conclusions regarding the solution's feasibility and positivity. We have used the matrix approach to compute the reproductive number further. Also, the sensitivity of the model has been computed. Additionally, we have used an efficient numerical approach to simulate the model by using some numerical values for the nomenclature of the model. Additionally, using the numerical approach, various graphical illustrations are given.

    Citation: Eiman, Kamal Shah, Muhammad Sarwar, Thabet Abdeljawad. On rotavirus infectious disease model using piecewise modified $ ABC $ fractional order derivative[J]. Networks and Heterogeneous Media, 2024, 19(1): 214-234. doi: 10.3934/nhm.2024010

    Related Papers:

  • The goal of this manuscript is to use a mathematical model with four compartments to examine the positive effects of rotavirus vaccinations. Susceptible, vaccinated, infected, and recovered (SVIR) classes are included in the suggested model. Some qualitative conclusions are established for the complicated pediatric disease epidemic model of rotavirus, which travels through a population at an inconsistent rate. The model has been fitted with piecewise equations of non-singular kernel-type derivatives in the modified Atangana-Balaneu-Caputo $ (mABC) $ sense. Using the Laplace transform and the notion of non-singular-type derivatives, we prove several basic conclusions regarding the solution's feasibility and positivity. We have used the matrix approach to compute the reproductive number further. Also, the sensitivity of the model has been computed. Additionally, we have used an efficient numerical approach to simulate the model by using some numerical values for the nomenclature of the model. Additionally, using the numerical approach, various graphical illustrations are given.



    加载中


    [1] R. Bishop, Discovery of rotavirus: Implications for child health, J. Gastroen. Hepatol., 24 (2009), S81–S85. https://doi.org/10.1111/j.1440-1746.2009.06076.x doi: 10.1111/j.1440-1746.2009.06076.x
    [2] L. J. White, J. Buttery, B. Cooper, D. J. Nokes, G. F. Medley, Rotavirus within day care centres in Oxfordshire, UK: Characterization of partial immunity, J. R. Soc. Interface, 5 (2008), 1481–1490. https://doi.org/10.1098/rsif.2008.0115 doi: 10.1098/rsif.2008.0115
    [3] World health organization, Generic Protocol for Monitoring Impact of Rotavirus Vaccination on Gastroenteritis Disease Burdenand Viral Strains, Geneva, 2008.
    [4] E. Shim, H. T. Banks, C. Castillo-Chavez, Seasonality of rotavirus infection with its vaccination. Contemp. Math., 410 (2006), 327–348. https://doi.org/10.1090/conm/410/07735 doi: 10.1090/conm/410/07735
    [5] E. J. Anderson, S. G. Weber, Rotavirus infection in adults, Lancet Infect. Dis., 4 (2004), 91–99. https://doi.org/10.1016/S1473-3099(04)00928-4 doi: 10.1016/S1473-3099(04)00928-4
    [6] T. Ruuska, T. Vesikari, Rotavirus disease in Finnish children: Use of numerical scores for clinical severity of diarrhoeal episodes, Scand. J. Infect. Dis., 22 (1990), 259–267. https://doi.org/10.3109/00365549009027046 doi: 10.3109/00365549009027046
    [7] R. F. Bishop, Natural history of human rotavirus infection, In: S. Chiba, M. K. Estes, S. Nakata, C. H. Calisher, Archives of Virology, Springer, Vienna, 12 (1996), 119–128. https://doi.org/10.1007/978-3-7091-6553-9_14
    [8] P. H. Dennehy, Transmission of rotavirus and other enteric pathogens in the home, Pediatr. Infect. Dis. J., 19 (2000), S103–S105. https://doi.org/10.1097/00006454-200010001-00003 doi: 10.1097/00006454-200010001-00003
    [9] L. W. Nitiema, J. Nordgren, D. Ouermi, D. Dianou, A. S. Traore, L. Svensson, J. Simpore, Burden of rotavirus and other enteropathogens among children with diarrhea in Burkina Faso, Int. J. Infect. Dis., 15 (2011), 646–652. https://doi.org/10.1016/j.ijid.2011.05.009 doi: 10.1016/j.ijid.2011.05.009
    [10] T. Snelling, P. Markey, J. Carapetis, R. Andrews, Rotavirus infection in northern territory before and after vaccination, Microbiol. Aust., 33 (2012), 61–63. https://doi.org/10.1071/MA12061 doi: 10.1071/MA12061
    [11] Y. Wang, Z. Jin, Z. Yang, Z. K. Zhang, T. Zhou, G. Q. Sun, Global analysis of an SIS model with an infective vector on complex networks, Nonlinear Anal.: Real World Appl., 13 (2012), 543–557. https://doi.org/10.1016/j.nonrwa.2011.07.033 doi: 10.1016/j.nonrwa.2011.07.033
    [12] Y. Wang, Z. Jin, Global analysis of multiple routes of disease transmission on heterogeneous networks, Phys. A, 392 (2013), 3869–3880. https://doi.org/10.1016/j.physa.2013.03.042 doi: 10.1016/j.physa.2013.03.042
    [13] C. E. Okafor, Introducing rotavirus vaccination in Nigeria: Economic evaluation and implications, PharmacoEconomics-Open, 5 (2021), 545–557. https://doi.org/10.1007/s41669-020-00251-6 doi: 10.1007/s41669-020-00251-6
    [14] P. Jain, A. Jain, Waterborne viral gastroenteritis: An introduction to common agents, In: P. Singh, V. Sharma, Water and Health, Springer, New Delhi, 53–74, 2014. https://doi.org/10.1007/978-81-322-1029-0_4
    [15] U. D. Parashar, E. G. Hummelman, J. S. Bresee, M. A. Miller, R. I. Glass, Global illness and deaths caused by rotavirus disease in children, Emerg. Infect. Dis., 9 (2003), 565–572. https://doi.org/10.3201/eid0905.020562 doi: 10.3201/eid0905.020562
    [16] T. Wardlaw, P. Salama, C. Brocklehurst, M. Chopra, E. Mason, Diarrhoea: Why children are still dying and what can be done, Lancet, 375 (2010), 870–872. https://doi.org/10.1016/S0140-6736(09)61798-0 doi: 10.1016/S0140-6736(09)61798-0
    [17] O. Diekmann, J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, John Wiley and Sons, 2000.
    [18] S. Ahmad, A. Ullah, M. Arfan, K. Shah, On analysis of the fractional mathematical model of rotavirus epidemic with the effects of breastfeeding and vaccination under Atangana-Baleanu (AB) derivative, Chaos Soliton. Fract., 140 (2020), 110233. https://doi.org/10.1016/j.chaos.2020.110233 doi: 10.1016/j.chaos.2020.110233
    [19] O. N. Bjørnstad, K. Shea, M. Krzywinski, N. Altman, The SEIRS model for infectious disease dynamics, Nat. Methods, 17 (2020), 557–559.
    [20] N. B. Ilmi, I. Darti, A. Suryanto, Dynamical analysis of a rotavirus infection model with vaccination and saturation incidence rate, J. Phys.: Conf. Ser., 1562 (2020), 012018. https://doi.org/10.1088/1742-6596/1562/1/012018 doi: 10.1088/1742-6596/1562/1/012018
    [21] F. Weidemann, M. Dehnert, J. Koch, O. Wichmann, M. Höhle, Bayesian parameter inference for dynamic infectious disease modelling: Rotavirus in Germany. Stat. Med., 33 (2014), 1580–1599. https://doi.org/10.1002/sim.6041 doi: 10.1002/sim.6041
    [22] S. E. Shuaib, P. Riyapan, A mathematical model to study the effects of breastfeeding and vaccination on rotavirus epidemics, J. Math. Fundam. Sci., 52 (2020), 43–65. https://doi.org/10.5614/j.math.fund.sci.2020.52.1.4 doi: 10.5614/j.math.fund.sci.2020.52.1.4
    [23] O. L. Omondi, C. Wang, X. Xue, O. G. Lawi, Modeling the effects of vaccination on rotavirus infection, Adv. Differ. Equ., 2015 (2015), 381. https://doi.org/10.1186/s13662-015-0722-1 doi: 10.1186/s13662-015-0722-1
    [24] L. Lu, C. Huang, X. Song, Bifurcation control of a fractional-order PD control strategy for a delayed fractional-order prey-predator system, Eur. Phys. J. Plus., 138 (2023), 1–11. https://doi.org/10.1140/epjp/s13360-023-03708-9 doi: 10.1140/epjp/s13360-023-03708-9
    [25] C. Xu, Z. Liu, P. Li, J. Yan, L. Yao, Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks, Neural Process. Lett. 55 (2023), 6125–6151. https://doi.org/10.1007/s11063-022-11130-y doi: 10.1007/s11063-022-11130-y
    [26] P. Li, X. Peng, C. Xu, L. Han, S. Shi, Novel extended mixed controller design for bifurcation control of fractional-order $Myc/E2F/miR-17-92$ network model concerning delay, Math. Method. Appl. Sci., 46 (2023), 18878–18898. https://doi.org/10.1002/mma.9597 doi: 10.1002/mma.9597
    [27] C. Xu, Y. Zhao, J. Lin, Y. Pang, Z. Liu, J. Shen, Y. Qin, M. Farman, S. Ahmad, Mathematical exploration on control of bifurcation for a plankton-oxygen dynamical model owning delay, J. Math. Chem., (2023), 1–31. https://doi.org/10.1007/s10910-023-01543-y doi: 10.1007/s10910-023-01543-y
    [28] J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
    [29] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. http://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [30] O. J. J. Algahtani, Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model, Chaos Solitons Fract., 89 (2016), 552–559. https://doi.org/10.1016/j.chaos.2016.03.026 doi: 10.1016/j.chaos.2016.03.026
    [31] J. F. Gómez, L. Torres, R. F. Escobar, Fractional Derivatives With Mittag-Leffler Kernel, Switzerland: Springer International Publishing, 2019. https://doi.org/10.1007/978-3-030-11662-0
    [32] M. Al-Refai, D. Baleanu, On an extension of the operator with Mittag-Leffler kernel, Fractals, 30 (2022), 2240129. https://doi.org/10.1142/S0218348X22401296 doi: 10.1142/S0218348X22401296
    [33] H. Khan, J. Alzabut, W. F. Alfwzan, H. Gulzar, Nonlinear dynamics of a piecewise modified ABC fractional-order leukemia model with symmetric numerical simulations. Symmetry, 15 (2023), 1338. https://doi.org/10.3390/sym15071338 doi: 10.3390/sym15071338
    [34] H. Khan, J. Alzabut, H. Gulzar, Existence of solutions for hybrid modified ABC-fractional differential equations with p-Laplacian operator and an application to a waterborne disease model, Alex. Eng. J., 70 (2023), 665–672. https://doi.org/10.1016/j.aej.2023.02.045 doi: 10.1016/j.aej.2023.02.045
    [35] A. Atangana, S. İ. Araz, New concept in calculus: Piecewise differential and integral operators, Chaos Soliton. Fract., 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638 doi: 10.1016/j.chaos.2020.110638
    [36] O. Diekmann, J. A. P. Heesterbeek, J. A. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
    [37] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [38] E. Zeidler, Nonlinear Functional Analysis an its Applications: Fixed Point Theorems, Springer, New York, 1986. https://doi.org/10.1007/978-1-4612-0985-0
    [39] H. Khan, J. Alzabut, J. F. Gómez-Aguilar, P. Agarwal, Piecewise mABC fractional derivative with an application, AIMS Math., 8 (2023), 24345–24366. https://doi.org/10.3934/math.20231241 doi: 10.3934/math.20231241
    [40] M. Sinan, K. J. Ansari, A. Kanwal, K. Shah, T. Abdeljawad, B. Abdalla, Analysis of the mathematical model of cutaneous leishmaniasis disease, Alex. Eng. J., 72 (2023), 117–134. https://doi.org/10.1016/j.aej.2023.03.065 doi: 10.1016/j.aej.2023.03.065
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(971) PDF downloads(106) Cited by(3)

Article outline

Figures and Tables

Figures(5)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog