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Abstract: The goal of this manuscript is to use a mathematical model with four compartments to
examine the positive effects of rotavirus vaccinations. Susceptible, vaccinated, infected, and recovered
(SVIR) classes are included in the suggested model. Some qualitative conclusions are established for
the complicated pediatric disease epidemic model of rotavirus, which travels through a population at
an inconsistent rate. The model has been fitted with piecewise equations of non-singular kernel-type
derivatives in the modified Atangana-Balaneu-Caputo (mABC) sense. Using the Laplace transform and
the notion of non-singular-type derivatives, we prove several basic conclusions regarding the solution’s
feasibility and positivity. We have used the matrix approach to compute the reproductive number
further. Also, the sensitivity of the model has been computed. Additionally, we have used an efficient
numerical approach to simulate the model by using some numerical values for the nomenclature of the
model. Additionally, using the numerical approach, various graphical illustrations are given.
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1. Introduction

Rotavirus is an acute gastrointestinal pathogen that mainly affect infants and young children under
the age of five throughout the world. The virus of the said disease was first identified by Bishop [1],
when he found wheel-shaped particles in bowel specimens of a child. It can cause acute gastroenteritis
and diarrhea [2, 3]. According to the data on the peak incidence, which occurs between four and 36
months of age, about 95 percent of children worldwide have contracted the disease [4]. Its name comes
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from the fact that the virus resembles a wheel when viewed under a microscope. Its symptoms usually
appear about two days after a person is exposed to rotavirus and remain for eight days [5–7]. Symptoms
include fever, vomiting, pains in the abdomen, nausea, and recurrent watery diarrhea. Recurrent watery
diarrhea causes severe dehydration that can be dangerous, especially for infants and young children.
Therefore, limiting dehydration is essential for disease control. The oral-fecal pathway, hand-to-mouth
contact, infected objects and surfaces, and potentially the respiratory route are the main ways that the
aforementioned virus is spread [8–11]. The virus takes around two days to incubate [12–14].

It has been noted that the rate of rotavirus infection is comparable in industrialized and
underdeveloped nations, indicating that improvement to sanitation, hygiene, or water supply may not
be sufficient to realize adequate control measures. Therefore, it is advised to develop, test, and utilize
rotavirus vaccines widely in order to prevent severe and also fatal rotavirus sickness [15]. The World
Health Organization recommended in June 2009 that rotavirus vaccination shall be necessitated in
every country’s immunization program on the basis of recent, persuasive data on the illness load of
rotavirus and the ability of vaccinations to stop it in situations with limited resources [16].

Recent studies clarify that mathematical modeling can be used to obtain a better understanding of
the dynamics of rotavirus transmission, predict its effects in particular countries, and evaluate the
potential benefits of interventions. Epidemiology is being studied for treatment, cure, control, and
other outcomes for a number of infectious diseases because of the technological advancements in the
field. Consequently, throughout the past few decades, there has been a significant advancement in the
mathematical modeling of infectious diseases (see [17, 18]). Mathematical models can be used in
secure public health systems to effectively control a variety of diseases, including those listed in a
previous paper [19]. Both the dynamic behavior of infections and spatial temporal patterns can be
studied by using these mathematical models. Over the past three years, researchers have examined
rotavirus sickness from a number of perspectives by utilizing and exploiting the importance of
mathematical models. Many approaches are being used by researchers in this field to provide
workable protocols to manage this sickness (see [20, 21]). Some researchers [22] have analyzed at a
mathematical model that was designed to look into how vaccinations and breastfeeding affect the
rotavirus pandemic.

The mentioned infectious disease has been studied through the use of mathematical modeling
recently. In addition, recent studies that also examined state-of-the-art techniques for diagnosis and
treatment have identified risk factors for severe rotavirus infection. Sustained investigation in these
domains is crucial in the fight against rotavirus and the mitigation of fatalities resulting from this
pathogen. Focusing on the aforementioned disease, a group of authors studied the following
compartmental model [23]:

Ṡ(t) = (1 − ϑ̂)µ + ςV(t) − [κI(t) + (ρ + λ)]S(t),

V̇(t) = ϑ̂µ + ρS(t) − [ζκI(t) + (ς + λ)]V(t),

İ(t) = [κS(t) + ζκV(t) − (τ + ω + λ)]I(t),
Ṙ(t) = −λR(t) + ωI(t),
S(0) = S0, V(0) = V0,I(0) = I0, R(0) = R0.

(1.1)

Fractional calculus has garnered much attention by researchers in the last few decades. The mentioned
area has been utilized very well to study various problems in the real world.
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Here, we remark that researchers [24] studied various biological problems by using fractional
calculus to investigate the bifurcation and control analysis. In the same way, other researchers [25]
have studied some problems related to neural networks by using fractional derivatives. Another group
of authors [26] used tools of fractional calculus to investigate a mixed-controller neural network
problem. In addition, regarding numerous problems in neural network models, researchers have used
the fractional-order derivatives to investigate bifurcation analysis in detail. In this regard, some recent
contributions can be found in [27]. There are several definitions available in the current literature
about the fractional calculus. The first notable definition was given by Reimann and Liouville, and it
has been used in large numbers of articles. Also, Caputo, Grünwald-Letnikov, Hadamard, Hilfer, and
Riesz have defined fractional-order differentiations with their own concepts. For some historical
improvement in the mentioned area, readers should read [28]. Recently, in 2015 and 2016, two new
differential operators were introduced on the basis of exponential and Mittag-Leffler kernels, and they
were called non-singular fractional differential operators. The derivative with an exponential kernel
was given by Caputo and Fabrizio [29]. In the same way, Atangana and Baleanu introduced their
derivatives on the basis of the Mittag-Leffler kernel [30]. The said nonlocal operators have various
applications to the real world problems. The first definition given by Atangana and Baleanu in the
Caputo sense is called ABC [31]. The said derivative suffers from the lack of initialization condition.
Therefore, some modification was needed to upgrade the said operator. Other authors [32] modified
the former ABC derivative to an updated operator which circumvents the mentioned drawback. The
modified ABC (mABC) derivative has been used in many research articles for applied analysis. Here,
we refer the readers to [33, 34].

Various evolutionary processes suffer from sudden changes in their state of rest or uniform motion.
The multi-behavioral effect in dynamics as a result of these abrupt changes cannot be modeled by
ordinary derivatives. As a result, a number of researchers have observed recently that piecewise
differential equations can be used to design the aforementioned process more efficiently than
integer-order equations. Piecewise operators of differentiations have received attention recently. For
instance, a group of authors introduced the concepts in terms of fractional order (see [35]), where they
used the traditional form of ABC derivatives in the piecewise sense. Here, we remark that the
piecewise form of the mABC derivative has very rarely been used in epidemiological problems.

Therefore, motivated by the aforesaid work, for the analysis of crossover behavior, we chose to
investigate the considered problem for qualitative, numerical, and stability analysis in the sense of the
mABC piecewise derivative. This article is focused on investigating the rotavirus disease model under
the said operator, because the problem still has not been studied by using the piecewise version of
mABC derivatives. Here, we consider the model (1.1) with a vaccination class to analyze the considered
rotavirus infection for 0 < p < 1, t ∈ [0,T ] by using the mABC piecewise derivative as follows:

PABC
0 Dp

t (S(t)) = (1 − ϑ̂)µ − [κI(t) + ςV(t) + (ρ + λ)]S(t) = Ψ1(t,f(t)),
PABC
0 Dp

t (V(t)) = ϑ̂µ + ρS(t) − [ζκI(t) + (ς + λ)]V(t) = Ψ2(t,f(t)),
PABC
0 Dp

t (I(t)) = [κS(t) + ζκV(t) − (τ + ω + λ)]I(t) = Ψ3(t,f(t)),
PABC
0 Dp

t ((R)(t)) = −λR(t) + ωI(t) = Ψ4(t,f(t)),
S(0) = S0 > 0,V(0) = V0 ≥ 0,I(0) = I0 ≥ 0, R(0) = R0 ≥ 0,

(1.2)

where f = (S,V,I,R), and PABC
0 Dt

p represents the piecewise ABC derivative, which can be defined
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in Eq (1.3) for the function g as follows:

PABC
0 Dp

t (g(t)) =



C
0 Dp

t (g(t)) =
1

Γ(1 − p)

∫ t1

0
(t − ζ)−pg′(ζ)dζ, 0 < t ≤ t1,

mABC
0 Dp

t (g(t)) =
ABC(p)
1 − p

[
g(t) − Ep(µptp)g(0)

− µp

∫ t

t1
(t − ζ)p−1Ep,p(−µp(t − ζ)p)g(ζ)d(ζ)

]
, t1 < t ≤ T,

(1.3)

where µp =
p

1−p , and C
0 Dp

t and mABC
0 Dp

t are the Caputo and mABC derivatives, respectively. Further, the
compartments, and parameters are described in Table 1 in detail.

Table 1. The nomenclatures, and the corresponding specifications for the model (1.2).

Symbol Specification
S Quantity of susceptible class
V Quantity of vaccinated class
I Quantity of infected class
R Quantity of recovered class
ζ Expected decrease in risk of infection ζ ∈ (0, 1] due to vaccination
µ Recruitment rate for humans
ϑ̂ Recruitment rate for individuals who have been vaccinated
κ S class infection rate
ρ Individual vaccination rate for susceptible class
ς Rate at which vaccinated transfer to susceptible
τ Induced rate of disease
λ Natural death rate
ω Rate of recovery

In this case, we prove the positivity of the solution and the feasible region under the theory of the
modified piecewise ABC abbreviated as mPABC fractional-order derivative. To realize the
aforementioned outcomes, we chose to adhere the process described in [36, 37]. Existence of a
solution and uniqueness can be derived by using some tools of mathematical analysis [38].
Furthermore, we characterize the piecewise dynamics in order to observe crossover behaviors in the
solution. The Lagrange’s polynomial interpolation method [39] is extended to simulate our results
graphically. We use some real values for the parameters in the proposed model and present several
graphical illustrations resulting from the numerical simulations.

The outline of this work is follows. A detailed introduction is given in Section 1. The basic results
are given in Section 2. The qualitative analysis is given in Section 3. The numerical procedure is
described in Section 4. Results and discussion are given in Section 5. Finally, the conclusion of the
article is given in Section 6.

2. Preliminaries

Here, we give some definitions that are needed in our work.
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Definition 2.1. [32] The traditional mABC derivative of a function φ ∈ L1(0,T ) with order p ∈ (0, 1)
is defined in Eq (2.1) as follows:

mABC
0Dp

t (φ(t)) =
ABC(p)
1 − p

[
φ(t) − Ep(µptp)φ(0) − µp

∫ t

0
(t − χ)p−1Ep,p(−µp(t − χ)p)φ(χ)dχ

]
, (2.1)

where ABC(p) satisfies, ABC(0) = ABC(1) = 1. Also, Ep represents the Mittag-Leffler function. Then,
Γ(.) is defined by Γ(p) =

∫ ∞
0

tp−1 exp(−t)dt.

Definition 2.2. [32] The Riemann-Liouville integral of fractional order p ∈ (0, 1) for the function
φ ∈ L[0, t1] as follows:

0Ip
t [φ(t)] =

1
Γ(p)

∫ t

0
(t − χ)p−1φ(χ)dχ.

For φ ∈ L1(t1,T ) with order p ∈ (0, 1), the modified Atangana-Baleanue (mAB) integral is described
in Eq (2.2) by

mAB
t1 Ip

t [φ(t)] =
ABC(1 − p)

ABC(p)

[
(φ(t) − φ(t1)) +

µp

Γ(p)

∫ t

t1
(t − χ)p−1[φ(χ) − φ(0)]dχ

]
. (2.2)

Lemma 2.3. [32] For φ ∈ C[0,T ] and ψ ∈ L1[0,T ], the solution of the problem with the mABC
derivative, i.e.,

mABC
0Dp

t [φ(t)] = ψ(t), p ∈ (0, 1),
φ(0) = φ0

is given by

φ(t) = φ0 +
ABC(1 − p)

ABC(p)

[
(ψ(t) − ψ(0)) +

µp

Γ(p)

∫ t

0
(t − χ)p−1[ψ(χ) − ψ(0)]dχ

]
= φ0 +

ABC(1 − p)
ABC(p)

[
ψ(t) − ψ(0)

(
1 +

µptp

Γ(p + 1)

)
+

µp

Γ(p)

∫ t

0
(t − χ)p−1ψ(χ)dχ

]
.

Definition 2.4. [33]. The piecewise integral of a differentiable function φ is defined as follows:

0It[φ(t)] =


∫ t1

0
φ(χ)dχ, 0 < t ≤ t1,∫ t2

t1
φ(χ)dχ t1 < t ≤ T.

Definition 2.5. [32, 35]. From Definition 2.2 and the usual Riemann-Liouville integral of fractional-
order for a function φ ∈ L[0,T ], we define the piecewise integral in the mAB sense as follows:

PAB
0 Ip

t [φ(t)] =


1

Γ(p)

∫ t

0
(t − χ)p−1φ(χ)d(χ), 0 < t ≤ t1,

ABC(1 − p)
ABC(p)

[
(φ(t) − φ(t1)) +

µp

Γ(p)

∫ t

t1
(t − χ)p−1[φ(χ) − φ(t1)]dχ, t1 < t ≤ T.
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Definition 2.6. [32, 35]. From Definition 2.1 and the usual Caputo fractional-order derivative, we
define the piecewise mABC derivative with order p ∈ (0, 1) as follows:

PABC
0Dp

t [φ(t)] =



C
0Dp

t (φ(t)) =
1

Γ(1 − p)

∫ t

0
ψ(χ)(t − χ)−pdχ, 0 < t ≤ t1,

mABC
t1 Dp

t (φ(t)) =
ABC(p)
1 − p

[
φ(t) − Ep(µptp)φ(t1)

− µp

∫ t

t1
(t − χ)p−1Ep,p(−µp(t − χ)p)φ(χ)dχ

]
, t1 < t ≤ T.

Lemma 2.7. [32, 35]; Let φ ∈ L1(0,T ) and ψ ∈ L1[0,T ]; the solution of the problem with the PABC
derivative

PABC
0Dp

t [φ(t)] = ψ(t), p ∈ (0, 1),
φ(0) = φ0

is given by

φ(t) =

φ0 + 1
Γ(p)

∫ t

0
(t − χ)p−1ψ(χ)dχ, 0 < t ≤ t1,

φ(t1) +
ABC(1−p)

ABC(p)

[
ψ(t) − ψ(t1)

(
1 +

µptp

Γ(p+1)

)
+

µp

Γ(p)

∫ t

t1
(t − χ)p−1ψ(χ)dχ

]
, t1 < t ≤ T.

Let us define a Banach space by B = C[0,T ], with the norm described by ‖f‖ = maxt∈[0,T ] |f(t)|.

Theorem 2.8. [36] If the following hold true:

• A : B→ B is a compact operator;
• there exists a constant ε > 0 and f = δA(f), δ ∈ (0, 1) such that ‖A(f)‖ ≤ ε;

then the operator equation A has at least one solution.

3. Qualitative results

In this section, we establish some results about positivity, equilibrium points, the basic reproduction
number, and its sensitivity. The mentioned results are investigated by using the mABC derivative and
integral transform.

Theorem 3.1. The set Υ = {(S,V,I,R) ∈ R4
+ : N ≤ µ

λ
} is positive- invariant. Additionally, every

solution is drawn to R4
+.

Proof. From the model (1.2), and given that N is the total population, we have

PABC
0 Dp

t N(t) = µ − λS(t) − λV(t) − λI(t) − λR(t) − τI(t)
≤ µ − λ(S(t) +V(t) + I(t) + R(t))
= µ − λN(t). (3.1)

We can write Eq (3.1) as follows:

PABC
0 Dp

t N(t) =

CDp
t N(t) ≤ µ − λN,

mABCDp
t N(t) ≤ µ − λN(t).

(3.2)
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Taking the Laplace transform, and following [32] by using γp = ABC(p) + λ(1 − p) and N(0) = N0,

from Eq (3.2), the result follows:

N(t) ≤


µp

λ

(
1 − Ep(−λtp)

)
+ N0Ep(−λtp),

N0ABC(p)
γp

Ep

(
−

λptp

γp

)
+

(1−p)µ
γp

+
(1−p)µ
γp

[
µp −

λp
γp

(
tp−1Ep,p

(
−

λptp

γp

))]
.

(3.3)

If we apply t → ∞ in Eq (3.3), we obtain that

N(t) ≤
µ

λ
.

Therefore, the region corresponds to that in which the solutions are bounded and Υ is positively
invariant. �

Theorem 3.2. Let {(S0,V0,I0,R0) ≥ 0} ∈ R4
+; then, the set {(S,V,I,R)} of the solution of model

(1.2) remains positive at all t > 0.

Proof. From the first equation of model (1.2), one has

PABC
0 Dp

t [S(t)] = (1 − ϑ̂)µ + ςV(t) − [κS(t)I(t) − (ρ + λ)S(t)]

≥ −

(
κI(t) − (ρ + λ)

)
S(t). (3.4)

Let us use ω = κI(t) − (ρ + λ) in Eq (3.4); we have

PABC
0 Dp

t [S(t)] ≥ −ωS(t). (3.5)

Now, we can write Eq (3.5) as follows:

PABC
0 Dp

t [S(t)] =

CDp
t [S(t)] ≥ −ωS(t)

mABCDp
t [S(t)] ≥ −ωS(t).

We establish that
CDp

t [S(t)] ≥ −ωS(t), t ∈ (0, t1].

Taking the Laplace transform, one has

S(t) ≥ S0Ep(−ωtp) > 0, for all t ∈ (0, t1].

Now, consider the other case:
mABCDp

t [S(t)] ≥ −ωS(t)

which leads to the Laplace transform by using the fact that γω = ABC(p) + (1 − p)ω and σ =
µpω(1−p)

γω

L [S(t)] ≥
S0ABC(p)

γω

( sp−1

sp + σ

)
, (3.6)

Equation (3.6) implies that

S(t) ≥ S0Ep(−σtp) > 0, for all t ∈ (t1,T ]. (3.7)

Therefore, from Eq (3.7), we have that S > 0 at every t > 0. Using the same process, for other
compartments, we can prove thatV > 0, I > 0, and R > 0. �
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Remark 3.3. Furthermore, it can be easily seen that the disease-free equilibrium point is given by

(S0,V0, 0, 0) =

( (λµ)(1 − ϑ̂) + ςµ

λ(ρ + λ + ς)
,
µ(ρ + λϑ̂)
λ(ρ + λ + ς)

, 0, 0
)
.

Using the third equation of model (1.2), the basic reproduction number can be calculated by taking
the following matrices as follows:

F =
[
κS0 + χκV0

]
, V−1 =

[
1

τ+ω+λ

]
.

The Jacobian matrices at the trivial equilibrium point of F and V are respectively given by

F =

[
κ
λ

(
(λµ)(1−ϑ̂)+ςµ

(ρ+λ+ς) + χµ(ρ+λϑ̂)
(ρ+λ+ς)

) ]
, V−1 =

[
1

τ+ω+λ

]
.

We have

FV−1 =

[
κ

λ(τ+ω+λ)

(
(λµ)(1−ϑ̂)+ςµ

(ρ+λ+ς) + χµ(ρ+λϑ̂)
(ρ+λ+ς)

) ]
.

The total number of rotavirus infections that a single infected person can cause in the presence of
vaccination is the basic reproduction number of the proposed model. Furthermore, R0 indicates the
basic reproduction number in the absence of such intervention. Using the next generation’s matrix
approach [32, 35], we define Rv as follows:

Rv =
κ

λ(τ + ω + λ)

[ (λµ)(1 − ϑ̂) + ςµ + ζµ(ρ + λϑ̂)
ρ + λ + ς

]
. (3.8)

In the absence of vaccination, ρ = ς = θ = 0, we get the basic reproduction number as follows:

R0 =
µκ

λ(τ + ω + λ)
. (3.9)

Using Eq (3.9), we can write Eq (3.8) as follows:

Rv = R0

[
λ(1 − ϑ̂ + ζϑ̂) + ς + ζρ

ρ + λ + ς

]
. (3.10)

Since we have 0 < ζ < 1, it follows from Eq (3.10) that λ(1−ϑ̂+ζϑ̂)+ς+ζρ
ρ+λ+ς

< 1, which means that Rv < R0.
Further, when ζ = 1 or ρ = ς = θ = 0, Rv = R0. The expression of Rv demonstrates that vaccinations
against new illnesses are beneficial for both susceptible individuals and those infected from birth. Keep
in mind that ζ = 1 suggests that vaccinations are not necessary, which is not the case.

Additionally, if R0 < 1, the disease-free equilibrium will be asymptotically stable; if R0 > 1, it will
be unstable. We present some 3D profiles for R0 in Figure 1 by using different values of the parameters.
This behavior indicates stabile behavior of the disease-free equilibrium point. We chose to take the
parameter values from [23], as shown in Table 2.
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Table 2. The parameters and their numerical values for the model (1.2).

Parameters Values Parameters Values
ς 0.001884 λ 0.00002537
ζ 0.001 τ 0.00004466
ρ 0.002778 κ 0.0001
ϑ̂ 0.001884 ω 0.099
µ 0.4109

We see that, for the given parameter values, R0 < 1, which indicates that the disease-free
equilibrium point of the suggested model is asymptotically stable.
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Figure 1. 3D graphical illustration of Rv of the proposed model.
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3.1. Sensitivity analysis

Here, we present the sensitivity analysis for Rv on the basis of the significance of parameters by
using the procedure given in [40]. These indices emphasize the importance of each component in the
development and spread of the disease. Sensitivity analysis has been used to evaluate how well the
model’s predictions hold up to various parameter values. In this way, we chose to use the following
formula depends on the parameters to compute the sensitivity indices p:

SRv
p =

p
Rv

[
∂Rv

∂p

]
. (3.11)

Using Eq (3.11), we have

SRv
µ =

µ

Rv

[
∂Rv

∂µ

]
= 1 > 0,

SRv
κ =

κ

Rv

[
∂Rv

∂κ

]
= 1 > 0,

S
Rv
λ =

λ

Rv

[
∂Rv

∂λ

]
= −1.4586 < 0,

SRv
τ =

τ

Rv

[
∂Rv

∂τ

]
= −0.00045079 < 0,

SRv
ω =

ω

Rv

[
∂Rv

∂ω

]
= −0.9992 < 0,

S
Rv

ϑ̂
=

ϑ̂

Rv

[
∂Rv

∂ϑ̂

]
= −0.000024919 < 0,

SRv
ρ =

ρ

Rv

[
∂Rv

∂ρ

]
= −0.5912 < 0,

S
Rv
ζ =

χ

Rv

[
∂Rv

∂ζ

]
= −0.000022872 < 0,

SRv
ς =

ς

Rv

[
∂Rv

∂ς

]
= 0.0015 > 0. (3.12)

Here in Figure 2, we present the sensitivity indices based on the values in Eq (3.12).
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Figure 2. Illustration of sensitivity analysis results.

3.2. Existence of solution

Consider the following possible form for model (1.2)

PABC
0Dp

t [f(t)] = Ψ(t,f(t)), p ∈ (0, 1), (3.13)
f(0) = f0.

Theorem 3.4. The solution of Eq (3.13) is given by

f(t) =

f0 + 1
Γ(p)

∫ t

0
(t − χ)p−1Ψ(χ,f(χ))dχ, 0 < t ≤ t1,

f(t1) +
ABC(1−p)

ABC(p)

[
Ψ(t,f(t)) − Ψ(t1,f(t1))

(
1 +

µptp

Γ(p+1)

)
+

µp

Γ(p)

∫ t

t1
(t − χ)p−1Ψ(χ,f(χ))dχ

]
, t1 < t ≤ T.

Proof. With the help of Lemma 2.7, we can easily obtain the solution. �

We describe some assumptions:

(G1) For the real values LΨ > 0, and given that f, z ∈ B, one has

|Ψ(t,f(t)) − Ψ(t, z(t))| ≤ LΨ|f − z|.

(G2) For real valuesMΨ,NΨ > 0, one has

|Ψ(t,f(t))| ≤ MΨ +NΨ|f(t)|.

Theorem 3.5. In view of (G1), and if

max
{ LΨtp

1

Γ(p + 1)
,
(ABC(1 − p)

ABC(p)
+

(T p − t1
p)µp

Γ(p + 1)

)
LΨ

}
= Λ < 1

holds, then the problem described by Eq (3.13) has a unique solution.
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Proof. Let us define A : B→ B as follows:

A(f(t)) =


f0 + 1

Γ(p)

∫ t

0
(t − χ)p−1Ψ(χ,f(χ))dχ, 0 < t ≤ t1,

f(t1) +
ABC(1−p)

ABC(p)

[
Ψ(t,f(t)) − Ψ(t1,f(t1))

(
1 +

µptp

Γ(p+1)

)
+

µp

Γ(p)

∫ t

t1
(t − χ)p−1Ψ(χ,f(χ))dχ

]
, t1 < t ≤ T.

For f, z ∈ B, consider the following:

|A(f(t)) − A(z(t))| =



∣∣∣∣∣ 1
Γ(p)

∫ t

0
(t − χ)p−1Ψ(χ,f(χ))dχ − 1

Γ(p)

∫ t

0
(t − χ)p−1Ψ(χ, z(χ))dχ

∣∣∣∣∣, 0 < t ≤ t1,∣∣∣∣∣ABC(1−p)
ABC(p)

[
Ψ(t,f(t)) − Ψ(t, z(t))

+
µp

Γ(p)

∫ t

t1
(t − χ)p−1Ψ(χ,f(χ))dχ − µp

Γ(p)

∫ t

0
(t − χ)p−1Ψ(χ, z(χ))dχ

]∣∣∣∣∣, t1 < t ≤ T

which further implies that

|A(f(t)) − A(z(t))| ≤


1

Γ(p)

∫ t

0
(t − χ)p−1 |Ψ(χ,f(χ)) − Ψ(χ, z(χ))| dχ, 0 < t ≤ t1,

ABC(1−p)
ABC(p)

[
|Ψ(t,f(t)) − Ψ(t, z(t))|

+
µp

Γ(p)

∫ t

t1
(t − χ)p−1 |Ψ(χ,f(χ)) − Ψ(χ, z(χ))| dχ

]
, t1 < t ≤ T.

On further simplification of Eq (3.14), we have

‖A(f) − A(z)‖ ≤


LΨtp1

Γ(p+1)‖f − z‖, 0 < t ≤ t1,(
ABC(1−p)

ABC(p) +
(T p−t1p)µp

Γ(p+1)

)
LΨ‖f − z‖, t1 < t ≤ T.

(3.14)

Then, from Eq (3.14), we obtain the following:

‖A(f) − A(z)‖ ≤

Λ‖f − z‖, 0 < t ≤ t1,

Λ‖f − z‖, t1 < t ≤ T.
(3.15)

Therefore, Eq (3.15) yields thatA is a contraction operator. Hence, the problem described by Eq (3.13)
has a unique solution. Consequently, the model (1.2) has a unique solution. �

Theorem 3.6. Using (G2), the problem described by Eq (3.13) has at least one solution.

Proof. We consider a bounded closed subset Ω = {f ∈ B : ‖f‖ ≤ ε, ε > 0} ⊆ B. Then, we define
C : Ω→ Ω such that f ∈ Ω and we obtain the following:

C(f(t)) =


f0 + 1

Γ(p)

∫ t

0
(t − χ)p−1Ψ(χ,f(χ))dχ, 0 < t ≤ t1,

f(t1) +
ABC(1−p)

ABC(p)

[
Ψ(t,f(t)) − Ψ(t1,f(t1))

(
1 +

µptp

Γ(p+1)

)
+

µp

Γ(p)

∫ t

t1
(t − χ)p−1Ψ(χ,f(χ))dχ

]
, t1 < t ≤ T,
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from which we deduce that

|C(f(t))| ≤


|f0| +

1
Γ(p)

∫ t

0
(t − χ)p−1|Ψ(χ,f(χ))|dχ, 0 < t ≤ t1,

|f(t1)| + ABC(1−p)
ABC(p)

[
|Ψ(t,f(t))| +

∣∣∣∣∣Ψ(t1,f(t1))
(
1 +

µptp

Γ(p+1)

)∣∣∣∣∣
+

µp

Γ(p)

∫ t

t1
(t − χ)p−1|Ψ(χ,f(χ))|dχ

]
, t1 < t ≤ T.

(3.16)

Hence, using (G2), we get from Eq (3.16) that

‖C(f‖ ≤ max
t∈[0,T ]


|f0| +

1
Γ(p)

∫ t

0
(t − χ)p−1|Ψ(χ,f(χ))|dχ, 0 < t ≤ t1,

|f(t1)| + ABC(1−p)
ABC(p)

[
|Ψ(t,f(t))| +

∣∣∣∣∣Ψ(t1,f(t1))
(
1 +

µptp

Γ(p+1)

)∣∣∣∣∣
+

µp

Γ(p)

∫ t

t1
(t − χ)p−1|Ψ(χ,f(χ))|dχ

]
, t1 < t ≤ T.

(3.17)

Here, some parameters are presented for simplification:

∆1 = |f0| +
ABC(1 − p)

ABC(p)

[
MΨ +

∣∣∣∣∣Ψ(0,f((t1)))
(
1 +

µpT p

Γ(p + 1)

)∣∣∣∣∣ +
MΨµp

Γ(p + 1)

]
,

∆2 =
ABC(1 − p)

ABC(p)
NΨ

[
1 +

µpT p

Γ(p + 1)

]
.

Therefore, we can write Eq (3.17) as follows:

‖C(f‖ ≤

|f0| +
tp1

Γ(p+1)

[
MΨ +NΨε

]
, 0 < t ≤ t1,

∆1 + ∆2ε, t1 < t ≤ T.
(3.18)

Assume that ε ≥ max
{
|f0 |+tp1MΨ

Γ(p+1)−tp1NΨ
, ∆1

1−∆2

}
; then, Eq (3.18) implies that

‖C(f‖ ≤

ε, 0 < t ≤ t1,

ε, t1 < t ≤ T.
(3.19)

Hence, we have from Eq (3.19) C(f ∈ Ω which yields that C(Ω) ⊆ Ω. Therefore, the operator C is
bounded. We next aim to prove continuity. As we know that, Ψ is continuous over the sub-intervals
[0, t1] and (t1,T ], C is also continuous over the same sub-intervals [0, t1] and (t1,T ]. To prove uniform
continuity, let us take tk > t j in the both sub-intervals; then, we have the following:

|C(f(tk)) − C(f(t j))| ≤



1
Γ(p)

∫ tk
0

[(tk − χ)p−1 − (t j − χ)p−1]|Ψ(χ,f(χ))|dχ

+ 1
Γ(p)

∫ tk
t j

(tk − χ)p−1]|Ψ(χ,f(χ))|dχ, 0 < t ≤ t1,

ABC(1−p)
ABC(p)

[
|Ψ(tk,f(tk)) − Ψ(t j,f(t j))| +

∣∣∣∣∣Ψ((t1),f((t1)))
(
µp(tpk−tpj )

Γ(p+1)

)∣∣∣∣∣
+

µp

Γ(p)

∫ t j

t1
[(tk − χ)p−1 − (t j − χ)p−1]|Ψ(χ,f(χ))|dχ

+
µp

Γ(p)

∫ tk
t j

(tk − χ)p−1|Ψ(χ,f(χ))|dχ
]
, t1 < t ≤ T.

(3.20)
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Upon simplification and using (G2), Eq (3.20) gives the following:

|C(f(tk)) − C(f(t j))| ≤


(MΨ+NΨε)

Γ(p+1)

[
tp
k − tp

j

]
, 0 < t ≤ t1,

ABC(1−p)
ABC(p)

[
|Ψ(tk,f(tk)) − Ψ(t j,f(t j))| +

|Ψ((t1),f((t1)))|µp(tpk−tpj )

Γ(p+1)

+
µp(MΨ+NΨε)

Γ(p)

(
tp
k − tp

j

) ]
, t1 < t ≤ T.

(3.21)

The right-handside of Eq (3.21) goes to zero when we apply tk → t j over both sub intervals of [0,T ].
Hence, we conclude that |C(f(tk)) − C(f(t j))| → 0 with tk → t j over both sub-intervals of [0,T ]. Also,
C is a bounded and continuous. Hence, C is a uniformly continuous operator. Thus, C is compact.
The conditions of Theorem 2.8 are satisfied. So, Eq (3.13) has at least one solution. In view of this
theorem, our proposed model has at least one solution. �

4. Numerical procedure

To derive the method for the numerical solution of the proposed model (1.2), let us consider the
solution of Eq (3.13) as follows:

f(t) =


f(0) + 1

Γ(p)

∫ t

0
(t − χ)p−1Ψ(χ,f(χ))dχ, 0 < t ≤ t1,

f(t1) +
ABC(1−p)

ABC(p)

[
Ψ(t,f(t)) − Ψ(t1,f(t1))

(
1 +

µptp

Γ(p+1)

)
χ
]

+
ABC(1−p)µp

ABC(p)Γ(p)

∫ t

t1
(t − χ)p−1Ψ(χ,f(χ))d, t1 < t ≤ T.

(4.1)

Here, we approximate the integral by taking the step size h = t j+1 − t j, where t j = t0 + jh at j = 0,
t0 = 0. Replacing t = t j+1 in Eq (4.1) gives the following:

f(t j+1) =


f(t0) + 1

Γ(p)

∑ j
l=0

∫ tl+1

tl
(tl+1 − χ)p−1Ψ(χ,f(χ))dχ, 0 < tl+1 ≤ t1,

f(t1) +
ABC(1−p)

ABC(p)

[
Ψ(t j+1,f(t j+1)) − Ψ(t1,f(t1))

(
1 +

µptpj+1

Γ(p+1)

)
χ
]

+
ABC(1−p)µp

ABC(p)Γ(p)

∑ j
l=0

∫ tl+1

t1
(tl+1 − χ)p−1Ψ(χ,f(χ))d, t1 < tl+1 ≤ T.

(4.2)

Now, approximating the nonlinear function Ψ(χ,f(χ)) by applying the Lagrange interpolation [39]
with equally spaced arguments is achieved as follows:

Ψ(χ,f(χ)) ≈
tl−1 − χ

h
Ψ(tl,f(tl)) −

tl − χ

h
Ψ(tl−1,f(tl−1)). (4.3)

Substituting Eq (4.3) in Eq (4.2), one obtains the following:

f(t j+1) ≈



f(t0) + 1
Γ(p)

∑ j
l=0

∫ ti+1

0
(tl+1 − χ)p−1

[
tl−1−χ

h Ψ(tl,f(tl)) −
tl−χ

h Ψ(tl−1,

f(tl−1))
]
dχ, 0 < tl+1 ≤ t1,

f(t1) +
ABC(1−p)

ABC(p)

[
Ψ(t j+1,f(t j+1)) − Ψ(t1,f(t1))

(
1 +

µptpj+1

Γ(p+1)

)
χ
]

+
ABC(1−p)µp

ABC(p)Γ(p)

∑ j
l=0

∫ tl+1

t1
(tl+1 − χ)p−1

×

[
tl−1−χ

h Ψ(tl,f(tl)) −
tl−χ

h Ψ(tl−1,f(tl−1))
]
dχ, t1 < tl+1 ≤ T.

(4.4)
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Evaluating the integrals in Eq (4.4) and simplifying, we get

f(t j+1) ≈


f(0) + hp

Γ(p+2)

∑ j
l=0

[
Ψ(tl,f(tl))al, j − Ψ(tl−1,f(tl−1))bl, j

]
, 0 < t j+1 ≤ t1,

f(t1) +
ABC(1−p)

ABC(p)

[
Ψ(t j,f(t j)) − Ψ(t1,f(t1))

(
1 +

µptpj
Γ(p+1)

)]
+
µpABC(1−p)

ABC(p)
hp

Γ(p+2)

∑ j
l=2

[
Ψ(tl,f(tl))al, j − Ψ(tl−1,f(tl−1))bl, j

]
, t1 < t j+1 ≤ T,

(4.5)

where

al, j = (l + 1 − j)p(l − j + 2 + p) − (l − j)p(l − j + 2 + 2p),
bl, j = (l + 1 − j)p+1 − (l − j)p(l − j + 1 + p).

In view of Eq (4.5), the numerical solution of the proposed model (1.2) is described as follows:

S(t j+1) ≈


S(0) + hp

Γ(p+2)

∑ j
l=0

[
Ψ1(tl,f(tl))al, j − Ψ1(tl−1,f(tl−1))bl, j

]
, 0 < t j+1 ≤ t1,

S(t1) +
ABC(1−p)

ABC(p)

[
Ψ1(t j,f(t j)) − Ψ1(t1,f(t1))

(
1 +

µptpj
Γ(p+1)

)]
+
µpABC(1−p)

ABC(p)
hp

Γ(p+2)

∑ j
l=2

[
Ψ1(tl,f(tl))al, j − Ψ1(tl−1,f(tl−1))bl, j

]
, t1 < t j+1 ≤ T,

V(t j+1) ≈


V(0) + hp

Γ(p+2)

∑ j
l=0

[
Ψ2(tl,f(tl))al, j − Ψ2(tl−1,f(tl−1))bl, j

]
, 0 < t j+1 ≤ t1,

V(t1) +
ABC(1−p)

ABC(p)

[
Ψ2(t j,f(t j)) − Ψ2(t1,f(t1))

(
1 +

µptpj
Γ(p+1)

)]
+
µpABC(1−p)

ABC(p)
hp

Γ(p+2)

∑ j
l=2

[
Ψ2(tl,f(tl))al, j − Ψ2(tl−1,f(tl−1))bl, j

]
, t1 < t j+1 ≤ T,

I(t j+1) ≈


I(0) + hp

Γ(p+2)

∑ j
l=0

[
Ψ3(tl,f(tl))al, j − Ψ3(tl−1,f(tl−1))bl, j

]
, 0 < t j+1 ≤ t1,

I(t1) +
ABC(1−p)

ABC(p)

[
Ψ3(t j,f(t j)) − Ψ3(t1,f(t1))

(
1 +

µptpj
Γ(p+1)

)]
+
µpABC(1−p)

ABC(p)
hp

Γ(p+2)

∑ j
l=2

[
Ψ3(tl,f(tl))al, j − Ψ3(tl−1,f(tl−1))bl, j

]
, t1 < t j+1 ≤ T,

and, the last compartment is approximated as follows:

R(t j+1) ≈


R(0) + hp

Γ(p+2)

∑ j
l=0

[
Ψ4(tl,f(tl))al, j − Ψ4(tl−1,f(tl−1))bl, j

]
, 0 < t j+1 ≤ t1,

R(t1) +
ABC(1−p)

ABC(p)

[
Ψ4(t j,f(t j)) − Ψ4(t1,f(t1))

(
1 +

µptpj
Γ(p+1)

)]
+
µpABC(1−p)

ABC(p)
hp

Γ(p+2)

∑ j
l=2

[
Ψ4(tl,f(tl))al, j − Ψ4(tl−1,f(tl−1))bl, j

]
, t1 < t j+1 ≤ T.

5. Results and discussion

Here, we describe the use of the initial data in Table 3 and the parameters values given in Table 2
for the numerical analysis of model Eq (1.2).
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Table 3. The initial values for compartments of model (1.2), as taken from [23].

Symbol Specification Symbol Specification
S 500 I 100
V 300 R 50

In addition, we have divided the domain of t into two sub-intervals, [0, 10] and [10, 50], and
plotted the corresponding graphs for various fractional orders by using the relevant numerical scheme.
Using the mABC derivative of fractional order has significant application, as these type of operators
do not force artificial singularities on any model; instead, they exhibit power law, stretched
exponential, Brownian motion, Markovian, and non-Markovian properties simultaneously. Further,
the derivative’s probability distribution was found to be both Gaussian and non-Gaussian, and it can
transition from Gaussian to non-Gaussian even without going through the steady state. The mean
square displacement is a crossover from normal diffusion to sub-diffusion. This indicates that the
non-singular kernel fractional derivatives are both stochastic and deterministic at the same time.
Hence, the proposed model has been simulated in the following figures to investigate the mentioned
properties.
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Figure 3. The approximate solutions for different classes of the proposed model (1.2) are
presented graphically for various fractional orders (0, 0.45].
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Figure 4. The approximate solutions for different classes of the proposed model (1.2) are
presented graphically for various fractional orders (0.50, 0.75].
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Figure 5. The approximate solutions for different classes of the proposed model (1.2) are
presented graphically for various fractional orders (0.75, 1.0].

We have presented the approximate solutions of the proposed model (1.2) by using three different
sets of fractional- orders. We observed the crossover behaviors near the point t1 = 10 have been
presented for various compartments of the mentioned model. This interesting feature can be detected
by using the piecewise derivative of fractional orders. The numerical solutions have been presented
for various fractional-order values in Figures 3–5. We point out that the time-fractional derivative has
a significant association with memory, and that it has been used in many scientific and technological
domains, highlighting its enormous value in epidemiology and in other subjects. It is actually indicated
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that the memory function is the kernel of the fractional-order derivative, and the order of the time
derivative emphasizes the memory rate. In this research work, we have effectively applied the idea
of piecewise differentiation to capture the crossover behaviors in the transmission dynamics of the
rotavirus disease. The population dynamics of the susceptible class and the infected class was found
to decrease in the presence of the vaccination. Due to the vaccination and decline in the infection,
the population density of the recovered class has been shown to increase. Here, near t = 10, we see
the crossover behaviors in all classes of the proposed model, where a sudden change occurred and the
dynamics show multiplicity in the behaviors.

6. Conclusions

In this study, we examined a biological model of rotavirus by using vaccination guidelines. A few
qualitative findings were obtained by using the Laplace transform under the mABC derivative.
Regarding the aforementioned model, the basic reproduction has been computed. We have also
performed sensitivity analysis on Rv. Using the mABC idea, we have implemented some updated
piecewise derivative techniques. Piecewise derivatives can shed light on some of the sudden changes
in the evolution of infectious diseases. In order to accommodate the necessary fractional differential
operator, we have divided the time domain into two sub-intervals. We have simulated the findings for
various fractional orders, p, by using Lagrange’s polynomial interpolation criteria. In the same way,
we have included a few graphs that show how the rotavirus vaccination model evolved in response to
a piecewise derivative. In the future, we will analyze the aforementioned model by combining the first
and second derivatives of the Lyapunov function method. Also, to predict the wave in the infection for
the future, we will compute the strengthen number in next work. In addition, the aforementioned
model will be studied by using the stochastic analysis for the aforementioned model.
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