Processing math: 100%
Research article Special Issues

Global attractivity of a rational difference equation with higher order and its applications

  • We study in this paper the global attractivity for a higher order rational difference equation. As application, our results not only include and generalize many known ones, but also formulate some new results for several conjectures presented by Camouzis and Ladas, et al.

    Citation: Xianyi Li, Luyao Lv. Global attractivity of a rational difference equation with higher order and its applications[J]. Mathematical Modelling and Control, 2024, 4(3): 260-272. doi: 10.3934/mmc.2024021

    Related Papers:

    [1] Tengda Wei, Xiang Xie, Xiaodi Li . Persistence and periodicity of survival red blood cells model with time-varying delays and impulses. Mathematical Modelling and Control, 2021, 1(1): 12-25. doi: 10.3934/mmc.2021002
    [2] Zeyan Yue, Lijuan Dong, Sheng Wang . Stochastic persistence and global attractivity of a two-predator one-prey system with S-type distributed time delays. Mathematical Modelling and Control, 2022, 2(4): 272-281. doi: 10.3934/mmc.2022026
    [3] Hui Li, Nana Jin, Yu Zhang . Existence of nonoscillatory solutions for higher order nonlinear mixed neutral differential equations. Mathematical Modelling and Control, 2024, 4(4): 417-423. doi: 10.3934/mmc.2024033
    [4] Tomás Caraballo, Javier López-de-la-Cruz . Survey on chemostat models with bounded random input flow. Mathematical Modelling and Control, 2021, 1(1): 52-78. doi: 10.3934/mmc.2021005
    [5] Elijah B. Baloba, Baba Seidu . A mathematical model of anthrax epidemic with behavioural change. Mathematical Modelling and Control, 2022, 2(4): 243-256. doi: 10.3934/mmc.2022023
    [6] S. Y. Tchoumi, Y. Kouakep-Tchaptchie, D. J. Fotsa-Mbogne, J. C. Kamgang, J. M. Tchuenche . Optimal control of a malaria model with long-lasting insecticide-treated nets. Mathematical Modelling and Control, 2021, 1(4): 188-207. doi: 10.3934/mmc.2021018
    [7] Shipeng Li . Impulsive control for stationary oscillation of nonlinear delay systems and applications. Mathematical Modelling and Control, 2023, 3(4): 267-277. doi: 10.3934/mmc.2023023
    [8] Anusmita Das, Kaushik Dehingia, Nabajit Ray, Hemanta Kumar Sarmah . Stability analysis of a targeted chemotherapy-cancer model. Mathematical Modelling and Control, 2023, 3(2): 116-126. doi: 10.3934/mmc.2023011
    [9] Xipu Xu . Global existence of positive and negative solutions for IFDEs via Lyapunov-Razumikhin method. Mathematical Modelling and Control, 2021, 1(3): 157-163. doi: 10.3934/mmc.2021014
    [10] Salma Al-Tuwairqi, Asma Badrah . A qualitative analysis of a model on alpha-synuclein transport and aggregation in neurons. Mathematical Modelling and Control, 2023, 3(2): 104-115. doi: 10.3934/mmc.2023010
  • We study in this paper the global attractivity for a higher order rational difference equation. As application, our results not only include and generalize many known ones, but also formulate some new results for several conjectures presented by Camouzis and Ladas, et al.



    Difference equations, which come not only from the discretization of differential equations, but also from the modelling of real problems, have many real applications in various disciplines, for example, cybernetics, biology, physics, engineering and other applied fields. Rational difference equations (RDEs) belongs to a kind of typical nonlinear difference equations, whose research history, relatively speaking, is very short. Because the research of many core problems for difference equations may be reduced to the prototype for the corresponding problems of RDEs, the investigations of RDEs have recently become popular, and have rapidly developed. See, for example, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17].

    The research contents of RDEs are very extensive, and mainly include stability, oscillation, periodicity, bifurcation, chaos, etc. The form of a RDE may look very simple while it may display very complicated dynamical behaviors, such as dichotomy [18,19], trichotomy [20], homoclinic bifurcation, etc. Recently, there has been a great interest in exploring the local and global stability, the boundedness, and the periodicity of RDEs (see [5,6,12,15]). The investigation of global asymptotical stability of RDEs is more difficult than that of their local asymptotical stability.

    In the present paper, we mainly investigate the global attractivity of the following RDE

    xn+1=p+qxnA+Bxn+Cxnk+Dxnl,n=0,1,, (1.1)

    where the parameters p,q,A,B,C,D[0,), k and l are positive integers with k<l, and the initial conditions xl,,x1,x0(0,). To avoid trivial cases, suppose that p+q>0 and B+C+D>0.

    The motivation for us to investigate Eq (1.1) comes from the following known work:

    Ladas et al. [21] first considered the following special case of Eq (1.1):

    xn+1=a+bxnA+xn1, n=0,1,, (1.2)

    where the parameters

    a,b,A(0,) (1.3)

    and the initial values x1,x0 are arbitrary positive numbers. The unique positive equilibrium point ˉx of Eq (1.2) has been proved to be locally asymptotically stable. For its global dynamics, some results are stated as follows:

    Theorem 1.1. [1,2,21] Suppose that (1.3) holds, and one of the following conditions is true:

    (1) b<A;

    (2) bA and aAb;

    (3) bA and Ab<a<2A(b+A);

    (4) b1+5/2A,Ab<a and b2/A<ˉx<2b.

    Then, ˉx is globally asymptotically stable.

    Computer simulations show that the local asymptotical stability of the positive equilibrium point ˉx of Eq (1.2) implies its global asymptotical stability, which is equivalent to its global attractivity as long as (1.3) holds. However, except for the partial results mentioned in the above Theorem 1.1, this point of view cannot be completely and theoretically proved. So, Ladas presented the following conjecture in [1,2,7,21], respectively.

    Conjecture 1.1. [2, Conjecture 6.1.1] Assume that Eq (1.3) holds. Then, the positive equilibrium point ˉx of Eq (1.2) is globally asymptotically stable.

    Those authors [2,22,23,24] partly obtained some results for Conjecture 1.1.

    From that time on, more and more researchers have paid attention to similar RDEs. Cunningham et al. in [5] investigated the following RDE:

    xn+1=α+βxnBxn+Cxn1,n=0,1,, (1.4)

    where the parameters α,β,B,C are nonnegative real numbers and the initial values x1,x0 are arbitrary positive numbers.

    The change of variable

    xn=βByn

    reduces Eq (1.4) to the following difference equation:

    yn+1=yn+pyn+qxn1,n=0,1,, (1.5)

    where

    p=αBβ2andq=CB.

    They obtained the following results:

    Theorem 1.2. [5, Theorem 3] The equilibrium ˉy of Eq (1.5) is globally asymptotically stable when

    q4p+1.

    Muna and Mohammad [10] studied the following RDE in 2017:

    xn+1=α+βxnA+Bxn+Cxnk,n=0,1,. (1.6)

    By analyzing the semicycle, they derived the following results:

    Theorem 1.3. [10, Theorem 3.4] The positive fixed point ˉx of Eq (1.7) is globally asymptotically stable.

    In 2021, the first author of this paper and the authors in [15] considered the following difference equation:

    xn+1=p+qxn1+rxnk, n=0,1,, (1.7)

    where p,q[0,),r>0, k1 is an integer and initial conditions xk,,x1,x0(0,).

    Furthermore, the authors formulated the conclusion as follows:

    Theorem 1.4. [15, Theorem XY] Assume that p,q[0,), r>0 and k1 is a positive integer. Then the unique positive equilibrium ˉx of Eq (1.7) is a global attractor of all of its positive solutions.

    There are some other RDEs related to Eq (1.1) that we will not cite one by one here, see [1,2,7,21] and the references cited therein.

    All of these problems mentioned above motivate us to investigate in this paper the global attractivity of Eq (1.1), which has more generalized form.

    We present several key auxiliary lemmas that are used to prove our main results in this paper.

    Lemma 2.1. [2, Theorem 2.3.1] Consider the difference equation

    xn+1=xnf(xn,xnk1,,xnkr), (2.1)

    where k1,k2,,kr are positive integers. Denote by k the maximum of k1,k2,,kr. Also, assume that the function f satisfies the following hypotheses:

    (H1) fC[(0,)×[0,)r,(0,)] and gC[[0,)r+1,(0,)], where

    g(u0,u1,,ur)=u0f(u0,u1,,ur)

    for u0(0,) and u1,,ur[0,),

    g(0,u1,,ur)=limu00+g(u0,u1,,ur);

    (H2) f(u0,u1,,ur) is nonincreasing in u1,,ur;

    (H3) The equation

    Ff(x,x,,x)=1

    has a unique positive solution ¯x;

    (H4) Either the function f(u0,u1,,ur) does not depend on u0 or for every x>0 and u0,

    [f(x,u,,u)f(¯x,u,,u)](x¯x)0

    with

    [f(x,¯x,,¯x)f(¯x,¯x,,¯x)](x¯x)<0

    for x¯x.

    Define a new function F given by

    F(x)={maxxy¯xG(x,y),  for  0x¯x,min¯xyxG(x,y),for  x>¯x, (2.2)

    where

    G(x,y)=yf(y,x,,x)f(¯x,¯x,,¯x,y)[f(¯x,x,,x)]k1. (2.3)

    Then,

    (a) FC[(0,),(0,)] and F is nonincreasing in [0,);

    (b) Assume that the function F has no periodic points of prime period 2. Then, ¯x is a global attractor of all positive solutions of Eq (2.1).

    Lemma 2.2. [2, Lemma 1.6.3 (a),(d)] Let

    F[[0,),(0,)]

    be a nonincreasing function and let ¯x denote the unique fixed point of F, then the following statements are equivalent:

    (a) ¯x is the only fixed point of F2 in (0,);

    (b) ¯x is a global attractor of all positive solutions of the difference equation

    xn+1=F(xn),  n=0,1, (2.4)

    with x0[0,).

    Lemma 2.3. [2,3] Consider the difference Eq (2.4), where F is a decreasing function which maps some interval I into itself. Assume that F has a negative Schwarzian derivative

    SF(x)=F(x)F(x)32(F(x)F(x))2=[F(x)F(x)]12(F(x)F(x))2<0

    everywhere on I, except for point x, where

    F(x)=0.

    Then, the positive equilibrium ¯x of Eq (2.4) is a global attractor of all positive solutions of Eq (2.4).

    In this section, our main result in this paper and its proof will be given. The main idea for the proof is to invoke three key lemmas in Section 2 to transfer the higher order RDE (1.1) into a first order difference equation more easily dealt with.

    Equation (1.1) has a unique nonnegative equilibrium point, denoted as ˉx, namely,

    ˉx=qA+(qA)2+4p(B+C+D)2(B+C+D).

    Our main result in this paper is the following.

    Theorem 3.1. Consider Eq (1.1). Assume that the parameters p,q, A,B,C,D[0,) with

    p+q>0andB+C+D>0,

    and the paramenters k and l are positive integers with k<l. Then, the unique nonnegative equilibrium ˉx of Eq (1.1) is a global attractor of all of its positive solutions when

    p=0and0<qA

    or

    q(A+Bˉx+Cˉx)pD.

    Proof. When p=0 and q(0,A], ˉx=0. It follows from Eq (1.1) that

    xn+1<qAxn,

    so xn eventually monotonically tends to ˉx. Hence, in the sequel, we only consider the case

    q(A+Bˉx+Cˉx)pD.

    For convenience of writing, we introduce the following notations:

    u=B+C+D,v=pDqr,r=A+Bˉx+Cˉx,s=A+Bˉx,t=C+D,e=(A+Bˉx+Cˉx+Dˉx)l.

    Obviously, u(0,), s,t,e[0,),

    v=pDq(A+Bˉx+Cˉx)0.

    Moreover, it is easy to see that the following inequalities hold:

    i) Dstr0;ii) DAur0;iii) qspt0;iv) qApu0. (3.1)

    These inequalities can be verified by the following observations:

    i) Dstr=Ds(C+D)(s+Cˉx)=CrCDˉx0;ii) DAur=DA(B+C+D)(A+Bˉx+Cˉx)=(B+C)(r+Dˉx)0;iii) qspt=q(rCˉx)p(C+D)=vC(p+qˉx)0;iv) qApu=q(rBˉxCˉx)p(B+C+D)=v(B+C)(p+qˉx)0.

    Now, we continue to consider the global attractivity of Eq (1.1). First of all, Eq (1.1) can be written as

    xn+1=xnpxn+qA+Bxn+Cxnk+Dxnl. (3.2)

    Set

    f(u0,u1,,uk,,ul)=pu0+qA+Bu0+Cuk+Dul.

    It is easy to verify that the function f satisfies the conditions (H1)–(H4) of Lemma 2.1. So, the function G defined by Eq (2.3) may be derived as

    G(x,y)=ypy+qA+By+txpˉx+qr+Dy(pˉx+qs+tx)l1=(p+qy)e(A+By+tx)(r+Dy)(s+tx)l1.

    Moreover,

    G(x,y)y=e(s+tx)l1(qrpD)(A+tx)δ(A+By+tx)2(r+Dy)2, (3.3)

    where

    δ=prB+2pBDy+qBDy2>0.

    The known assumption

    q(A+Bˉx+Cˉx)pD

    implies qrpD. So, from (3.3) we have

    G(x,y)y0.

    Accordingly, the function F defined by (2.2),

    F(x)=G(x,x)=e(p+qx)(s+tx)l1(A+ux)(r+Dx). (3.4)

    In order to apply Lemma 2.1 (b), according to Lemma 2.2, we must prove that ¯x is a global attractor of Eq (2.4). Accordingly, in view of Lemma 2.3, one has to verify that F has a negative Schwarzian derivative.

    To do this, notice

    F(x)=e[q(p+qx)(uA+ux+Dr+Dx+(l1)ts+tx)](A+ux)(r+Dx)(s+tx)l1,

    where

    q(p+qx)(Dr+Dx)=qrDpr+Dx=vr+Dx0,

    hence, F(x)0.

    Take

    I=[0,epArsl1].

    For any given xI, one has

    0<F(x)F(0)=limx0+F(x)=epArsl1.

    So, F(I)I. Moreover,

    F(x)=e(A+ux)(r+Dx)(s+tx)l1[2u2(p+qx)(A+ux)2+2(l1)tu(p+qx)(A+ux)(s+tx)+l(l1)t2(p+qx)(s+tx)2+2Du(p+qx)(A+ux)(r+Dx)2quA+ux+2(l1)tD(p+qx)(s+tx)(r+Dx)2q(l1)ts+tx+2D2(p+qx)(r+Dx)22Dqr+Dx]=e(A+ux)(r+Dx)(s+tx)l1[(p+qx)(2u2(A+ux)2+l(l1)t2(s+tx)2+2(l1)tu(A+ux)(s+tx))+2vr+Dx(uA+ux+(l1)ts+tx+Dr+Dx)]>0.

    For convenience of expression, let

    E=:(p+qx)M+2vr+DxN

    and

    F=:q(p+qx)N,

    where

    M=:2u2(A+ux)2+l(l1)t2(s+tx)2+2(l1)tu(A+ux)(s+tx)>0

    and

    N=:uA+ux+(l1)ts+tx+Dr+Dx>0.

    Then,

    M=4u3(A+ux)3+2(l1)tu2(A+ux)2(s+tx)+2(l1)t2u(A+ux)(s+tx)2+2l(l1)t3(s+tx)3<0,N=u2(A+ux)2+(l1)t2(s+tx)2+D2(r+Dx)2<0,SF(x)=[F(x)F(x)]12(F(x)F(x))2=(EF)12(EF)2=2EFE(2F+E)2F2.

    By Lemma 2.3, it suffices for us to prove

    2EFE(2F+E)0.

    Hence, the remaining work is to determine the sign of the function 2EFE(2F+E). Now, calculate it.

    2EFE(2F+E)=2[qM+(p+qx)M2DvN(r+Dx)2+2vNr+Dx][q(p+qx)N][(p+qx)M+2vNr+Dx][(p+qx)M+2vNr+Dx2qN2(p+qx)N]=2q2M2q(p+qx)MN+2q(p+qx)M2(p+qx)2MN2q2Dv(r+Dx)2N+4Dv(p+qx)(r+Dx)2N2+4vqr+DxN+2q(p+qx)MN+2(p+qx)2MN(p+qx)2M24v(p+qx)r+DxMN+4vqr+DxN24v2(r+Dx)2N2=(p+qx)2[2(MNMN)M2]+2v(p+qx)Nr+Dx(2DNr+DxM)+2vNr+Dx[2Dqr+Dx+2qN(p+qx)M]+4vqNr+Dx+q[2qM+(p+qx)M]+q(p+qx)M4v2N2(r+Dx)2. (3.5)

    Next, we will simplify

    2(MNMN)M2,2DNr+DxM,2Dqr+Dx+2qN(p+qx)M

    and

    2qM+(p+qx)M.

    Using the inequalities in (3.1) and noticing l2 is a positive integer, we determine their signs.

    First, we simplify 2(MNMN)M2. Obviously,

    2(MNMN)M2=2MN+2MNM2=2[4u3(A+ux)3+2(l1)tu2(A+ux)2(s+tx)+2(l1)t2u(A+ux)(s+tx)2+2l(l1)t3(s+tx)3[uA+ux+(l1)ts+tx+Dr+Dx]2[2u2(A+ux)2+l(l1)t2(s+tx)2+2(l1)tu(A+ux)(s+tx)]×[u2(A+ux)2+(l1)t2(s+tx)2+D2(r+Dx)2][2u2(A+ux)2+l(l1)t2(s+tx)2+2(l1)tu(A+ux)(s+tx)]2=24u3(A+ux)3uA+ux22u2(A+ux)2u2(A+ux)24u4(A+ux)4+24u3(A+ux)3(l1)ts+tx22u2(A+ux)22(l1)tu(s+tx)(A+ux)+8u3D(A+ux)3(r+Dx)+22(l1)2t2u2+2(l1)t3u2(A+ux)2(s+tx)222(l1)t2u2+l(l1)t2u2(A+ux)2(s+tx)24(l1)2t2u2(A+ux)2(s+tx)2+22(l1)t2u(A+ux)(s+tx)2(l1)ts+tx4(l1)tu(A+ux)(s+tx)(l1)t2(s+tx)2+22l(l1)t3(s+tx)3(l1)ts+tx2l(l1)t2(s+tx)2(l1)t2(s+tx)2l2(l1)2t4(s+tx)4+22(l1)tu2(A+ux)2(s+tx)uA+ux22(l1)tu(A+ux)(s+tx)u2(A+ux)2+22l(l1)t3(s+tx)3Dr+Dx+22l(l1)t3(s+tx)3uA+ux2l(l1)t2(s+tx)22(l1)tu(A+ux)(s+tx)+22(l1)tu2(A+ux)2(s+tx)Dr+Dx+22(l1)t2u(A+ux)(s+tx)2Dr+Dx22u2(A+ux)2l(l1)t2(s+tx)22D2(r+Dx)2[2u2(A+ux)2+l(l1)t2(s+tx)2+2(l1)tu(A+ux)(s+tx)]=8u4(A+ux)44u4(A+ux)44u4(A+ux)4+8(l1)tu3(A+ux)3(s+tx)8(l1)tu3(A+ux)3(s+tx)+4(l1)tu3(A+ux)3(s+tx)4(l1)tu3(A+ux)3(s+tx)+4(l1)2t2u2+2(l1)t2u2(A+ux)2(s+tx)24(l1)t2u2+2l(l1)t2u(A+ux)2(s+tx)24(l1)2t2u2(A+ux)2(s+tx)24l(l1)t2u2(A+ux)2(s+tx)2+4(l1)2t3u(A+ux)(s+tx)34(l1)2t3u(A+ux)(s+tx)3+4l(l1)2t3(s+tx)42l(l1)2t3(s+tx)4l2(l1)2t2(s+tx)4+4l(l1)t3u(s+tx)3(A+ux)4l(l1)2t3u(s+tx)3(A+ux)
    +4(l1)t2uD(s+tx)2(A+ux)(r+Dx)+4(l1)tu2D(s+tx)(A+ux)2(r+Dx)+8u3D(A+ux)3(r+Dx)+4l(l1)t3D(s+tx)3(r+Dx)2D2(r+Dx)2M=6l(l1)t2u2(A+ux)2(s+tx)2+4(l1)t2uD(A+ux)(s+tx)2(r+Dx)+4(l1)tu2D(A+ux)2(s+tx)(r+Dx)+l(2l)(l1)2t4(s+tx)42D2(r+Dx)2M+4l(2l)(l1)3t3u(s+tx)3(A+ux)+8u3D(A+ux)3(r+Dx)+4l(l1)t3D(s+tx)3(r+Dx)=:αx+β(A+ux)2(s+tx)2(r+Dx)+l(2l)(l1)2t4(s+tx)42D2(r+Dx)2M+4l(2l)(l1)3t3u(s+tx)3(A+ux)+8u3D(A+ux)3(r+Dx)+4l(l1)t3D(s+tx)3(r+Dx),

    where

    α=:4(l1)tu2Ds4l(l1)t2u2r+4(l1)t2uDA2l(l1)t2u2r=4(l1)tu2(Dsltr)+2(l1)t2u(2DAlur)=4(l1)tu2(Ds(1+l1)tr)+2(l1)t2u[l(DAur)+(2l)DA]=4(l1)tu2(Dstr)4(l1)2t2u2r+2l(l1)t2u(DAur)+2(2l)(l1)t2uDA0,β=:8(l1)t2u2D6l(l1)t2u2D=2(l1)(43l)t2u2D0.

    Obviously, except the last two positive terms

    8u3D(A+ux)3(r+Dx)and4l(l1)l3D(s+tx)3(r+Dx),

    every term of the final expression in 2(MNMN)M2 is non-positive.

    Second, simplify 2DNr+DxM.

    2DNr+DxM=2Dr+Dx[uA+ux+(l1)ts+tx+Dr+Dx]2u2(A+ux)2l(l1)t2(s+tx)22(l1)tu(A+ux)(s+tx)=2uD(r+Dx)(A+ux)2(l1)tu(A+ux)(s+tx)+2(l1)tD(r+Dx)(s+tx)l(l1)t2(s+tx)2+2D2(r+Dx)22u2(A+ux)2=2uA+ux[Dr+Dx(l1)ts+tx]+(l1)ts+tx[2Dr+Dxlts+tx]+2[Dr+Dx+uA+ux][Dr+DxuA+ux]
    =2uA+ux[Dr+Dx(1+l2)ts+tx]+(l1)ts+tx[2Dr+Dx(2+l2)ts+tx]+2[DA+ux+uA+ux][Dr+DxuA+ux]=2uA+ux[Dr+Dxts+tx]2(l2)tu(A+ux)(s+tx)+(l1)ts+tx[2Dr+Dx2ts+tx](l1)(l2)t2(s+tx)2+2[Dr+Dx+uA+ux][Dr+DxuA+ux]=2(Dstr)(r+Dx)(s+tx)[uA+ux+(l1)ts+tx]2(l2)tu(A+ux)(s+tx)(l1)(l2)t2(s+tx)2+2(DAur)(r+Dx)(A+ux)(Dr+Dx+uA+ux)0,

    because Dstr0,DAur0, and l2.

    Third,

    2Dqr+Dx+2qN(p+qx)M=2Dqr+Dx+2q[uA+ux+(l1)ts+tx+Dr+Dx](p+qx)[2u2(A+ux)2+l(l1)t2(s+tx)2+2(l1)tu(A+ux)(s+tx)]=2quA+ux2u2(p+qx)(A+ux)2+2(l1)qts+txl(l1)t2(p+qx)(s+tx)22(l1)tu(p+qx)(A+ux)(s+tx)=2uA+ux[qu(p+qx)A+ux]+(l1)ts+tx[2qlt(p+qx)s+tx]2(l1)tu(p+qx)(A+ux)(s+tx)=2u(qApu)(A+ux)2+(l1)ts+tx[2q(2+l2)t(p+qx)s+tx]2(l1)tu(p+qx)(A+ux)(s+tx)=2u(qApu)(A+ux)2+2[(l1)ts+tx][qt(p+qx)s+tx][(l1)ts+tx][(l2)t(p+qx)s+tx]2(l1)tu(p+qx)(A+ux)(s+tx)=2u(qApu)(A+ux)2+2(l1)t(qspt)(s+tx)2(l1)(l2)t2(p+qx)(s+tx)22(l1)tu(p+qx)(A+ux)(s+tx)0,

    because qApu0,qspt0,l2.

    Fourth,

    2qM+(p+qx)M=2q[2u2(A+ux)2+l(l1)t2(s+tx)2+2(l1)tu(A+ux)(s+tx)](p+qx)×[4u3(A+ux)3+2(l1)tu2(A+ux)2(s+tx)+2(l1)t2u(A+ux)(s+tx)2+2l(l1)t3(s+tx)3]
    =2q2u2(A+ux)24u3(p+qx)(A+ux)3+2q2(l1)tu(A+ux)(s+tx)(p+qx)×[2(l1)tu2(A+ux)2(s+tx)+2(l1)t2u(A+ux)(s+tx)2]+2ql(l1)t2(s+tx)2(p+qx)2l(l1)t3(s+tx)3=4u2(A+ux)2[qu(p+qx)A+ux]+2(l1)tu(A+ux)(s+tx)[2qu(p+qx)A+uxt(p+qx)s+tx]+2l(l1)t2)(s+tx)2[qt(p+qx)s+tx]=4u2(qApu)(A+ux)3+2(l1)tu(A+ux)(s+tx)[qu(p+qx)A+ux+qt(p+qx)s+tx]+2l(l1)t2(qspt)(s+tx)3=4u2(qApu)(A+ux)3+[2(l1)tu(A+ux)(s+tx)](qApuA+ux+qspts+tx)+2l(l1)t2(qspt)(s+tx)3=2(l1)t(qspt)(s+tx)2[uA+ux+lts+tx]+2u(qApu)(A+ux)2[2uA+ux+(l1)ts+tx]0,

    because qApu0,qspt0, and l2. Now, we deal with the two positive terms

    8u3D(A+ux)3(r+Dx)and4l(l1)l3D(s+tx)3(r+Dx).

    By combining with other negative items in (3.5), we have

    8u3D(p+qx)2(A+ux)3(r+Dx)+4l(l1)t3D(p+qx)2(s+tx)3(r+Dx)4u2D2(A+ux)2×(p+qx)2(r+Dx)2+2l(l1)t2D2(p+qx)2(s+tx)2(r+Dx)2+2vr+DxuA+ux×2u(qApu)(A+ux)2+4uv(DAur)(p+qx)(A+ux)2(r+Dx)2(Dr+Dx+uA+ux)+2v(p+qx)r+Dx(l1)2t2(s+tx)22(Dstr)(r+Dx)(s+tx)+4u2q(qApu)(A+ux)32(l2)(l1)2t3v(p+qx)(s+tx)3(r+Dx)4(l1)2t2uv(p+qx)(A+ux)(s+tx)2(r+Dx)+4(l1)2(qspt)t2v(s+tx)3(r+Dx)+2l(l1)t2q(qspt)(s+tx)34vqr+Dx×[u2(A+ux)2+(l1)t2(s+tx)2]8uv2D(A+ux)(r+Dx)3q(p+qx)[4u3(A+ux)3+2l(l1)t3(s+tx)3]=4u3D(p+qx)2(A+ux)3(r+Dx)+4uvD(DAur)(p+qx)(A+ux)2(r+Dx)3+4u2v(DAur)(p+qx)(A+ux)3(r+Dx)28uv2D(A+ux)(r+Dx)34u3q(p+qx)(A+ux)34u2vq(A+ux)2(r+Dx)+4u3D(p+qx)2(A+ux)3(r+Dx)
    +4u2v(qApu)(A+ux)3(r+Dx)+4u2q(qApu)(A+ux)34u2D2(p+qx)2(A+ux)2(r+Dx)2+2l(l1)t3D(p+qx)2(s+tx)3(r+Dx)+4(l1)2t2v(qspt)(s+tx)3(r+Dx)4(l1)vt2q(s+tx)2(r+Dx)2l(l1)t3q(p+qx)(s+tx)32(l1)2(l2)vt3(p+qx)(s+tx)3(r+Dx)+2l(l1)t3D(p+qx)2(s+tx)3(r+Dx)+4(l1)2vt2(Dstr)(p+qx)(s+tx)3(r+Dx)24(l1)2uvt2(p+qx)(A+ux)(s+tx)2(r+Dx)+2l(l1)t2q(qspt)(s+tx)32l(l1)t2D2(p+qx)2(s+tx)2(r+Dx)2=:H+I+J+L,
    H=4u3D(p+qx)2(A+ux)3(r+Dx)+4uvD(DAur)(p+qx)(A+ux)2(r+Dx)3+4u2v(DAur)(p+qx)(A+ux)3(r+Dx)28uv2D(A+ux)(r+Dx)34u3q(p+qx)(A+ux)34u2vq(A+ux)2(r+Dx),I=4u3D(p+qx)2(A+ux)3(r+Dx)+4u2v(qApu)(A+ux)3(r+Dx)+4u2q(qApu)(A+ux)34u2D2(p+qx)2(A+ux)2(r+Dx)2,J=2l(l1)t3D(p+qx)2(s+tx)3(r+Dx)+4(l1)2vt2(qspt)(s+tx)3(r+Dx)4(l1)vt2q(s+tx)2(r+Dx)2l(l1)t3q(p+qx)(s+tx)32(l1)2(l2)vt3(p+qx)(s+tx)3(r+Dx),L=2l(l1)t3D(p+qx)2(s+tx)3(r+Dx)+4(l1)2vt2(Dstr)(p+qx)(s+tx)3(r+Dx)24(l1)2t2uv(p+qx)(A+ux)(s+tx)2(r+Dx)+2l(l1)t2q(qspt)(s+tx)32l(l1)t2D2(p+qx)2(s+tx)2(r+Dx)2.

    It suffices for us to verify H,I,J,L0. Now, invoking the inequalities in (3.1) and noticing l2, we begin to verify them one by one.

    H=4u3D(p+qx)2(A+ux)3(r+Dx)+4uvD(DAur)(p+qx)(A+ux)2(r+Dx)3+4u2v(DAur)(p+qx)(A+ux)3(r+Dx)28uv2D(A+ux)(r+Dx)34u3q(p+qx)(A+ux)34u2vq(A+ux)2(r+Dx)=4u(p+qx)(A+ux)(r+Dx)[u2D(p+qx)(A+ux)2+v(Dr+DxuA+ux)×(Dr+Dx+uA+ux)]4u3q(p+qx)(A+ux)34u2vq(A+ux)2(r+Dx)8uv2D(A+ux)(r+Dx)3=4u(p+qx)(A+ux)(r+Dx)[u2D(p+qx)(A+ux)2u2v(A+ux)2+vD2(r+Dx)2]
    4u3q(p+qx)(A+ux)34u2vq(A+ux)2(r+Dx)8uv2D(A+ux)(r+Dx)3=4uvD2(p+qx)(A+ux)(r+Dx)3+4u3q(p+qx)(A+ux)34u3q(p+qx)(A+ux)38uv2D(A+ux)(r+Dx)34u2vq(A+ux)2(r+Dx)=4uv(A+ux)(r+Dx)[D2(p+qx)(r+Dx)2D(pDqr)(r+Dx)2uqA+ux]4uv2D(A+ux)(r+Dx)3=4uv(A+ux)(r+Dx)(qDr+DxuqA+ux)4uv2D(A+ux)(r+Dx)3=4uvq(DAur)(A+ux)2(r+Dx)24uv2D(A+ux)(r+Dx)30;I=4u3D(p+qx)2(A+ux)3(r+Dx)+4u2v(qApu)(A+ux)3(r+Dx)+4u2q(qApu)(A+ux)34u2D2(p+qx)2(A+ux)2(r+Dx)2=4u2(A+ux)3[uD(p+qx)2+v(qApu)r+Dx+q(qApu)]4u2D2(p+qx)2(A+ux)2(r+Dx)2=4u2(A+ux)3[uD(p+qx)2r+Dx+D(qApu)(p+qx)r+Dx]4u2D2(p+qx)2(A+ux)2(r+Dx)2=4u2qD(p+qx)(A+ux)2(r+Dx)4u2D2(p+qx)2(A+ux)2(r+Dx)2=4u2D(p+qx)(A+ux)2(r+Dx)[qD(p+qx)r+Dx]=4u2vD(p+qx)(A+ux)2(r+Dx)20;
    J=2l(l1)t3D(p+qx)2(s+tx)3(r+Dx)+4(l1)2vt2(qspt)(s+tx)3(r+Dx)4(l1)vt2q(s+tx)2(r+Dx)2l(l1)t3q(p+qx)(s+tx)32(l1)2(l2)vt3(p+qx)(s+tx)3(r+Dx)=2l(l1)t3(p+qx)(s+tx)3[D(p+qx)r+Dxq]4(l1)t2vq(s+tx)2(r+Dx)+4(l1)2vt2(qspt)(s+tx)3(r+Dx)2(l1)2(l2)vt3(p+qx)(s+tx)3(r+Dx)=4(l1)2vt2(qspt)(s+tx)3(r+Dx)2(l1)2(l2)t3v(p+qx)(s+tx)3(r+Dx)+2l(l1)vt3(p+qx)(s+tx)3(r+Dx)4(l1)vt2q(s+tx)2(r+Dx)=2(l1)2vt2(s+tx)2(r+Dx)[2(qspt)s+tx(l2)t(p+qx)s+tx]+2(l1)vt2(s+tx)2(r+Dx)[lt(p+qx)s+tx2q]
    =2(l1)2vt2(s+tx)2(r+Dx)[2(qt(p+qx)s+tx(l2)t(p+qx)s+tx]+2(l1)vt2(s+tx)2(r+Dx)[lt(p+qx)s+tx2q]=2(l1)2t2v(s+tx)2(r+Dx)[2qlt(p+qx)s+tx]+2(l1)t2v(s+tx)2(r+Dx)×[lt(p+qx)s+tx2q]=[lt(p+qx)s+tx2q][2(2l)(l1)t2v(s+tx)2(r+Dx)]=[2(2l)(l1)t2v(s+tx)2(r+Dx)][2t(p+qx)s+tx2q+(l2)t(p+qx)s+tx]=[2(2l)(l1)t2v(s+tx)2(r+Dx)][2(ptqs)s+tx+(l2)t(p+qx)s+tx]0;
    L=2l(l1)t3D(p+qx)2(s+tx)3(r+Dx)+4(l1)2vt2(Dstr)(p+qx)(s+tx)3(r+Dx)24(l1)2t2uv(p+qx)(A+ux)(s+tx)2(r+Dx)+2l(l1)t2q(qspt)(s+tx)32l(l1)t2D2(p+qx)2(s+tx)2(r+Dx)2=2(l1)t2(p+qx)(s+tx)2(r+Dx)[ltD(p+qx)s+tx+2(l1)v(Dstr)(s+tx)(r+Dx)2(l1)uvA+ux]+2l(l1)t2q(qspt)(s+tx)32l(l1)t2D2(p+qx)2(s+tx)2(r+Dx)2=2(l1)t2(p+qx)(s+tx)2(r+Dx)[ltD(p+qx)s+tx+2(l1)vDr+Dx2(l1)vts+tx2(l1)uvA+ux]+2l(l1)t2q(qspt)(s+tx)32l(l1)t2D2(p+qx)2(s+tx)2(r+Dx)2=2(l1)t2(p+qx)(s+tx)2(r+Dx)[ltD(p+qx)s+tx(l+l2)vts+tx+2(l1)vDr+Dx2(l1)uvA+ux]+2l(l1)t2q(qspt)(s+tx)32l(l1)t2D2(p+qx)2(s+tx)2(r+Dx)2=2(l1)t2(p+qx)(s+tx)2(r+Dx)[ltD(p+qx)s+txlvts+tx(l2)vts+tx]+2l(l1)t2q(qspt)(s+tx)3+4(l1)2vt2(DAur)(p+qx)(A+ux)(s+tx)2(r+Dx)22l(l1)t2D2(p+qx)2(s+tx)2(r+Dx)2=2(l1)t2(p+qx)(s+tx)2(r+Dx)[lts+tx(Dp+DqxDp+qr)(l2)vts+tx]+4(l1)2vt2(DAur)(p+qx)(A+ux)(s+tx)2(r+Dx)2+2l(l1)t2q(qspt)(s+tx)32l(l1)t2D2(p+qx)2(s+tx)2(r+Dx)2=2l(l1)t3q(p+qx)(s+tx)3+2l(l1)t2q(qspt)(s+tx)3
    2l(l1)t2D2(p+qx)2(s+tx)2(r+Dx)22(l1)(l2)vt3(p+qx)(s+tx)3(r+Dx)+4(l1)2vt2(DAur)(p+qx)(A+ux)(s+tx)2(r+Dx)2=2l(l1)t2q2(s+tx)22l(l1)t2D2(p+qx)2(s+tx)2(r+Dx)22(l1)(l2)vt3(s+tx)3×p+qxr+Dx+4(l1)2vt2(DAur)(p+qx)(A+ux)(s+tx)2(r+Dx)2=2l(l1)t2(s+tx)2[q+D(p+qx)r+Dx][qD(p+qx)r+Dx]2(l1)(l2)(s+tx)3×(p+qx)vt3r+Dx+4(l1)2vt2(DAur)(p+qx)(A+ux)(s+tx)2(r+Dx)2=2l(l1)t2(s+tx)2[q+D(p+qx)r+Dx](vDqxr+Dx)2(l1)(l2)(s+tx)3×(p+qx)vt3r+Dx+4(l1)2vt2(DAur)(p+qx)(A+ux)(s+tx)2(r+Dx)20.

    Up to here, it is verified that

    2EFE(2F+E)0.

    That is SF(x)0. Thus, according to Lemma 2.3, ˉx is a global attractor of all positive solutions of Eq (2.4). In turn, according to Lemma 2.2, ˉx is the only fixed point of F2 in (0,). Then, using Lemma 2.1 (b), it is shown that ˉx is the global attractor for all positive solutions of Eq (2.1), hence Eq (3.2) and so Eq (1.1). Thereby, the proof of Theorem 3.1 is complete.

    In this section, we state some applications of Theorem 3.1.

    Example 4.1. Consider the following difference equation, which is studied in [5, Eq #142],

    xn+1=p+xnA+xn+Dxn2,n=0,1, (4.1)

    with the positive parameters p,A,D and arbitrary nonnegative initial conditions x2,x1,x0. It has a unique positive equilibrium point

    ˉx=1A+(1A)2+4p(1+D)2(1+D).

    The authors of [4] said that the positive equilibrium point ˉx of Eq (4.1) is locally asymptotically stable when

    A1,

    or

    0A<1andD<4A(A+1)(2A1)2,

    or

    0A<1,D4A(A+1)(2A1)2,andp>p

    and unstable when

    0A<1,D4A(A+1)(2A1)2,andp<p,

    where

    p=2AD+5AD4A2D2D2+D34AD3+4A2D32(9D2+6D+1)(1+A+2D+ADD2+2AD2)γD2(9D2+6D+1),γ=4A2D4AD+D4A24A.

    Furthermore, the authors of [4] proposed a conjecture as follows:

    Conjecture 4.1. [4, Conjecture 5.142.1] Assume that

    p<p<(D1)(1A)24.

    Show that every solution of Eq (4.1) converges to the equilibrium point ˉx.

    According to our Theorem 3.1, one sees that, when A+ˉxpD, the positive equilibrium ˉx of Eq (4.1) is globally asymptotically stable. Precisely speaking, we derive the following result.

    Theorem 4.1. The positive equilibrium ˉx of Eq (4.1) is global asymptotically stable when

    pAD2+(A+1)D+1D2(1+D).

    Proof. It follows from our Theorem 3.1 that, when A+ˉxpD, the positive equilibrium ˉx of Eq (4.1) is globally asymptotically stable. Notice that A+ˉxpD is equivalent to

    A+1A+(1A)2+4p(1+D)2(1+D)pD.

    Namely,

    (1A)2+4p(1+D)2(1+D)pD[A(1+2D)+1]. (4.2)

    So, for

    2(1+D)pD[A(1+2D)+1]0,

    i.e.,

    pA(1+2D)+12D(1+D)=2AD+A+12D(1+D),

    and Eq (4.2) is equivalent to

    D2(1+D)2p2(1+D)[2AD2+(A+1)D+1]p+A[AD2+(A+1)D+1]0.

    The above inequality holds for

    pA1+D

    or

    pAD2+(A+1)D+1D2(1+D).

    Obviously,

    AD2+(A+1)D+1D2(1+D)2AD+A+12D(1+D).

    So, for

    pAD2+(A+1)D+1D2(1+D),

    then, Eq (4.2) holds. Then, the positive equilibrium ˉx of Eq (4.1) is globally asymptotically stable.

    Obviously, our result is different with the corresponding one of [4]. We not only present new results for the global asymptotic stability of Eq (4.1), but also give part results for Conjecture 4.1.

    Example 4.2. Consider the following difference equation [4, Eq #67]:

    xn+1=p+xnA+xn2, n=0,1, (4.3)

    with positive parameters p,A and arbitrary nonnegative initial conditions x2,x1,x0. Equation (4.3) has the unique positive equilibrium

    ˉx=1A+(1A)2+4p2.

    The authors in [4] stated that the positive equilibrium ˉx of Eq (4.3) is globally asymptotically stable for A1. The authors of [4] also presented the following conjecture:

    Conjecture 4.2. [4, Conjecture 5.67.1] Assume that either

    12A<1

    or

    13A<12andp<A2(A2+3A1)(2A1)2

    holds. Show that the equilibrium ˉx of Eq (4.2) is globally asymptotically stable.

    By using our result, namely, Theorem 3.1, it is easy to derive that the equilibrium ˉx of Eq (4.2) is globally asymptotically stable for Ap. Namely, we derive the following result:

    Theorem 4.2. The equilibrium ˉx of Eq (4.2) is globally asymptotically stable when 0<Ap.

    So, our Theorem 4.2 shows that the Conjecture 4.2 is partly correct.

    Example 4.3. Consider the following difference equations, which are numbered as Eqs #517, #521, #523, #545, #547 in [4]:

    xn+1=p+qxnDxn3,n=0,1,, (4.4)
    xn+1=pBxn+Dxn3,n=0,1,, (4.5)
    xn+1=pA+Bxn+Dxn3,n=0,1,, (4.6)
    xn+1=pCxn1+Dxn3,n=0,1,, (4.7)
    xn+1=pA+Cxn1+Dxn3,n=0,1,. (4.8)

    They assumed that the parameters p,q,A,B,C,D>0 and initial conditions x3,x2,x1,x0 are arbitrarily nonnegative, and they derived that the solutions of these equations are bounded [4].

    However, according to the assumptions for the parameters in [4] and our Theorem 3.1, we can easily derive the following result.

    Theorem 4.3. Every equilibrium point ˉx of Eqs (4.4)–(4.8) is globally asymptotically stable.

    So, our result improves and generalizes the corresponding ones in [4].

    This paper mainly deals with the global attractivity of all positive solutions of a higher order rational difference equation. As some applications of special cases, our result not only improves many known results, but also partly solves several conjectures presented in some known works.

    Nevertheless, it is a pity for us not to derive a complete result for the global asymptotic stability of Eq (1.1). Namely, we only know that the nonnegative fixed point of Eq (1.1) is globally asymptotically stable when

    q(A+Bˉx+Cˉx)pD.

    How about

    q(A+Bˉx+Cˉx)>pD?

    We put forward the following question to interested readers.

    Open Problem. Consider the global asymptotic stability of Eq (1.1) when

    q(A+Bˉx+Cˉx)>pD.

    The investigations of RDEs are still interesting for many readers.

    The forms of RDEs look very simple, so, it is often mistakenly believed that the investigations of the properties of RDEs are simple. In fact, generally speaking, it is extremely difficult for one to derive a complete result for some characteristics in their entire parameter space because such RDEs generally contain many parameters, such as 8 parameters in Eq (1.1), and some calculations to derive such properties are actually very complex and time consuming. Hence, one often only obtains partial results in the entire parameter space. However, RDEs possess many fascinating properties, such as dichotomy [18,19], trichotomy [20], bifurcation [25,26,27,28,29], chaos [30,31], etc. Up to now, there are not yet any effective methods or ways to deal with such problems. One always tries to look for effective methods or ways to study such problems. That is why many readers are still interested in the studies of RDEs nowdays, and it is part of the charm of investigating RDEs.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work is partly supported by the National Natural Science Foundation of China (61473340), the Distinguished Professor Foundation of Qianjiang Scholar in Zhejiang Province (F708108P01), and the Natural Science Foundation of Zhejiang University of Science and Technology (F701108G14).

    The authors declare that they have no conflicts of interest.



    [1] G. Ladas, Open problems and conjectures, J. Differ. Equations Appl., 3 (1995), 317–321. https://doi.org/10.1080/10236199508808030 doi: 10.1080/10236199508808030
    [2] V. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Kluwer Academic Publishers, 1993.
    [3] V. L. Kocic, G. Ladas, Global attractivity in a nonlinear second-order difference equation, Commun. Pure Appl. Math., 48 (1995), 1115–1122. https://doi.org/10.1002/cpa.3160480907 doi: 10.1002/cpa.3160480907
    [4] E. Camouzis, G. Ladas, Dynamics of third-order rational difference equations with open problems and conjectures, Chapman and Hall/CRC, 2007.
    [5] K. Cunningham, M. R. S Kulenović, G. Ladas, S. V. Valicenti, On the recursive sequence xn+1=α+βxnBxn+Cxn1, Nonlinear Anal. Theory Methods Appl., 47 (2001), 4603–4614. https://doi.org/10.1016/S0362-546X(01)00573-9 doi: 10.1016/S0362-546X(01)00573-9
    [6] M. Saleh, A. Farhat, Global asymptotic stability of the higher order equation xn+1=axn+bxnkA+Bxnk, J. Appl. Math. Comput., 55 (2017), 135–148. https://doi.org/10.1007/s12190-016-1029-4 doi: 10.1007/s12190-016-1029-4
    [7] M. R. S. Kulenovic, G. Ladas, Dynamics of second-order rational difference equations, with open problems and conjectures, Chapman and Hall/CRC, 2001.
    [8] M. J. Douraki, M. Dehghan, J. Mashreghi, Dynamics of the difference equation xn+1=xn+pxnkxn+q, Comput. Math. Appl., 56 (2008), 186–198. https://doi.org/10.1016/j.camwa.2007.06.029 doi: 10.1016/j.camwa.2007.06.029
    [9] X. Li, Existence of solutions with a single semicycle for a general second-order rational difference equation, J. Math. Anal. Appl., 334 (2007), 528–533. https://doi.org/10.1016/j.jmaa.2006.12.072 doi: 10.1016/j.jmaa.2006.12.072
    [10] A. A. Muna, S. Mohammad, Dynamics of higher order rational difference equation xn+1=α+βxnkA+Bxn+Cxnk, J. Appl. Math. Comput., 8 (2017), 363–379. https://doi.org/10.22075/IJNAA.2017.10822.1526 doi: 10.22075/IJNAA.2017.10822.1526
    [11] L. Hu, W. Li, S. Stević, Global asymptotic stability of a second order rational difference equation, J. Differ. Equations Appl., 14 (2008), 779–797. https://doi.org/10.1080/10236190701827945 doi: 10.1080/10236190701827945
    [12] M. A. Kerker, E. Hadidi, A. Salmi, Qualitative behavior of a higher order nonautonomous rational difference equation, J. Appl. Math. Comput., 64 (2020), 399–409. https://doi.org/10.1007/s12190-020-01360-5 doi: 10.1007/s12190-020-01360-5
    [13] X. Li, H. Zhu, Global dynamics of a rational difference equation with higher order, Acta Math. Sin., 66 (2023), 989–1002. https://doi.org/10.12386/B20220320 doi: 10.12386/B20220320
    [14] M. Saleh, S. Abu-Baha, Dynamics of a higher order rational difference equation, Appl. Math. Comput., 181 (2006), 84–102. https://doi.org/10.1016/j.amc.2006.01.012 doi: 10.1016/j.amc.2006.01.012
    [15] X. Li, W. Li, Global asymptotical stability in a rational difference equation, Appl. Math. J. Chin. Univ., 36 (2021), 51–59. https://doi.org/10.1007/s11766-021-3586-y doi: 10.1007/s11766-021-3586-y
    [16] F. J. Palladino, M. A. Radin, A trichotomy result for non-autonomous rational difference equations, Cent. Eur. J. Math., 9 (2011), 1135–1142. https://doi.org/10.2478/s11533-011-0066-3 doi: 10.2478/s11533-011-0066-3
    [17] Z. Nurkanović, M. Nurkanović, M. Garić-Demirović, Stability and Neimark-Sacker bifurcation of certain mixed monotone rational second-order difference equation, Qual. Theory Dyn. Syst., 20 (2021), 75. https://doi.org/10.1007/s12346-021-00515-4 doi: 10.1007/s12346-021-00515-4
    [18] G. Deng, X. Li, Dichotomy of a perturbed Lyness difference equation, Appl. Math. Comput., 236 (2014), 229–234. https://doi.org/10.1016/j.amc.2014.03.078 doi: 10.1016/j.amc.2014.03.078
    [19] G. Deng, X. Li, Q. Lu, L. Qian, Dichotomy between a generalized Lyness difference equation with period-two coefficients and its perturbation, Appl. Math. Lett., 109 (2020), 1–8. https://doi.org/10.1016/j.aml.2020.106522 doi: 10.1016/j.aml.2020.106522
    [20] X. Li, C. Wang, On a conjecture of trichotomy and bifurcation in a third order rational difference equation, Ann. Rev. Chaos Theory Bifurc. Dyn. Syst., 2013.
    [21] G. Ladas, Open problems and conjectures, J. Differ. Equations Appl., 4 (1998), 497–499. https://doi.org/10.1080/10236199808808157 doi: 10.1080/10236199808808157
    [22] C. Ou, H. Tang, W. Luo, Global stability for a class of difference equation, Appl. Math. J. Chin. Univ., 15 (2000), 33–36. https://doi.org/10.1007/s11766-000-0006-7 doi: 10.1007/s11766-000-0006-7
    [23] H. A. El-Morshedy, The global attractivity of difference equations of nonincreasing nonlinearities with applications, Comput. Appl. Math., 45 (2003), 749–758. https://doi.org/10.1016/S0898-1221(03)00035-X doi: 10.1016/S0898-1221(03)00035-X
    [24] R. D. Nussbaum, Global stability, two conjectures and maple, Nonlinear Anal. Theory Methods Appl., 66 (2007), 1064–1090. https://doi.org/10.1016/j.na.2006.01.005 doi: 10.1016/j.na.2006.01.005
    [25] Y. Liu, X. Li, Dynmics of a discrete predator-prey model with Holling-Ⅱ functional response, Int. J. Biomath., 8 (2021), 14. https://doi.org/10.1142/S1793524521500686 doi: 10.1142/S1793524521500686
    [26] Z. Pan, X. Li, Stability and Neimark-Sacker bifurcation for a discrete Nicholson's blowflies model with proportional delay, J. Differ. Equations Appl., 27 (2021), 250–260. https://doi.org/10.1080/10236198.2021.1887159 doi: 10.1080/10236198.2021.1887159
    [27] J. Dong, X. Li, Bifurcation of a discrete predator-prey model with increasing functional response and constant-yield prey harvesting, Electron. Res. Arch., 30 (2022), 3930–3948. https://doi.org/10.3934/era.2022200 doi: 10.3934/era.2022200
    [28] X. Li, Y. Liu, Transcritical bifurcation and flip bifurcation of a new discrete ratio-dependent predator-prey system, Qual. Theory Dyn. Syst., 21 (2022), 1–30. https://doi.org/10.1007/s12346-022-00646-2 doi: 10.1007/s12346-022-00646-2
    [29] Z. Ba, X. Li, Period-doubling bifurcation and Neimark-Sacker bifurcation of a discrete predator-prey model with Allee effect and cannibalism, Electron. Res. Arch., 31 (2023), 1406–1438. https://doi.org/10.3934/era.2023072 doi: 10.3934/era.2023072
    [30] Y. Zhang, W. Liang, X. Lv, Existence of chaos in controlled first-order partial difference equations with general delay controllers, Chaos Soliton Fract., 168 (2023), 113148. https://doi.org/10.1016/j.chaos.2023.113148 doi: 10.1016/j.chaos.2023.113148
    [31] Q. Din, Complexity and chaos control in a discrete-time prey-predator model, Commun. Nonlinear Sci. Numer. Simul., 49 (2017), 113–134. https://doi.org/10.1016/j.cnsns.2017.01.025 doi: 10.1016/j.cnsns.2017.01.025
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1019) PDF downloads(80) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog