Research article

A fractional order mathematical model of teenage pregnancy problems and rehabilitation in Nigeria

  • Received: 10 February 2022 Revised: 28 June 2022 Accepted: 10 August 2022 Published: 21 October 2022
  • Teenage pregnancy is a social problem in Nigeria, whereby girls between the ages of 10-14 become pregnant by sexual intercourse after ovulation or first menstrual period. This article involves the fractional order mathematical model formulation describing the societal problem of teenage pregnancy in the sense of Caputo. The positivity, existence and uniqueness results of the model were established, and the two equilibria, which are the teenage pregnancy-free and teenage pregnancy-present equilibrium solutions of the model are presented. The graphical illustrations showing the behavior of the model variables when the basic reproduction number $ R_{pr} $ is less and greater than unity are displayed, using the numerical technique of Fractional Multi-Stage Differential Transform Method (FMSDTM) in comparison with the Runge-Kutta fourth order method (RK4) via the maple computational software. In addition, simulations involving the effect of rehabilitation is observed not to lessen $ R_{pr} $ below unity, which shows that further mitigation measures are needed to halt teenage pregnancy problems in Nigeria.

    Citation: Oluwatayo Michael Ogunmiloro. A fractional order mathematical model of teenage pregnancy problems and rehabilitation in Nigeria[J]. Mathematical Modelling and Control, 2022, 2(4): 139-152. doi: 10.3934/mmc.2022015

    Related Papers:

  • Teenage pregnancy is a social problem in Nigeria, whereby girls between the ages of 10-14 become pregnant by sexual intercourse after ovulation or first menstrual period. This article involves the fractional order mathematical model formulation describing the societal problem of teenage pregnancy in the sense of Caputo. The positivity, existence and uniqueness results of the model were established, and the two equilibria, which are the teenage pregnancy-free and teenage pregnancy-present equilibrium solutions of the model are presented. The graphical illustrations showing the behavior of the model variables when the basic reproduction number $ R_{pr} $ is less and greater than unity are displayed, using the numerical technique of Fractional Multi-Stage Differential Transform Method (FMSDTM) in comparison with the Runge-Kutta fourth order method (RK4) via the maple computational software. In addition, simulations involving the effect of rehabilitation is observed not to lessen $ R_{pr} $ below unity, which shows that further mitigation measures are needed to halt teenage pregnancy problems in Nigeria.



    加载中


    [1] Adolescent pregnancy, World Health Organization. Available from: https://www.who.int/news-room/fact-sheets/detail/adolescent-pregnancy.
    [2] O. T. Alabi, I. O. Oni, Teenage Pregnancy in Nigeria: Causes, Effect and Control, International Journal of Academic Research in Business and Social Sciences, 7 (2017), 17–32.
    [3] F. E. Okonofua, Factors associated with adolescent pregnancy in rural Nigeria, J. Youth Adolescence, 24 (1995), 419–438. https://doi.org/10.1007/BF01537189 doi: 10.1007/BF01537189
    [4] Teenage pregnancy and challenges to the realisation of sexual and reproductive rights in Nigeria, 2015. Available from: https://thisisafrica.me/politics-and-society/teenage-pregnancy-challenges-realisation-sexual-reproductive-rights-nigeria/
    [5] Nigeria Birth Rate 1950-2022, MacroTrends. Available from: https://www.macrotrends.net/countries/NGA/nigeria/birth-rate
    [6] Nigeria Death Rate 1950-2022, MacroTrends. Available from: https://www.macrotrends.net/countries/NGA/death-rate
    [7] Factsheet: Understanding Nigeria's teenage pregnancy burden, 2021. Available from: https://dhsprogram.com/Who-We-Are/News-Room/Teenage-Pregnancy-in-Nigeria-Facts-and-Truth.cfm
    [8] J. O. Akanni, F. O. Akinpelu, S. Olaniyi, A. T. Oladipo, A. W. Ogunsola, Modeling financial crime population dynamics: optimal control and cost-effectiveness analysis, International Journal of Dynamics and Control, 8 (2020), 531–544. https://doi.org/10.1007/s40435-019-00572-3 doi: 10.1007/s40435-019-00572-3
    [9] H. T. Alemneh, Mathematical modeling, analysis, and optimal control of corruption dynamics, J. Appl. Math., 13 (2020), 5109841. https://doi.org/10.1155/2020/5109841 doi: 10.1155/2020/5109841
    [10] C. Castillo-Chavez, Z. Feng, W. Huang, On the computation of $R_0$ and its role on global stability, Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction, Springer, 1 (2002), 229–250. https://doi.org/10.1007/978-1-4757-3667-0_13
    [11] J. A. Feijo, The mathematics of sexual attraction, J. Biol., 9 (2010), 1–5. https://doi.org/10.1186/jbiol233 doi: 10.1186/jbiol233
    [12] H. Singh, D. Baleanu, J. Singh, H. Dutta, Computational study of fractional order smoking model, Chaos, Solitons and Fractals, 142 (2021), 110–440. https://doi.org/10.1016/j.chaos.2020.110440 doi: 10.1016/j.chaos.2020.110440
    [13] N. O. Mokaya, H. T. Alemmeh, C. G. Ngari, G. Gakii Muthuri, Mathematical Modeling and Analysis of Corruption of Morals amongst Adolescents with Control Measures in Kenya, Discrete Dyn. Nat. Soc., 1 (2021). https://doi.org/10.1155/2021/6662185
    [14] O. Danford, M. kimathi, S. Mirau, Mathematical modeling and analysis of corruption dynamics with control measures in Tanzania, Journal of Mathematics and Informatics, 19 (2020), 57–79. http://dx.doi.org/10.22457/jmi.v19a07179 doi: 10.22457/jmi.v19a07179
    [15] A. O. Binuyo, V. O. Akinsola, Stability analysis of the corruption free equilibrium of the mathematical model of corruption in Nigeria, Mathematical Journal of Interdisciplinary Sciences, 8 (2020), 61–68. https://doi.org/10.15415/mjis.2020.82008 doi: 10.15415/mjis.2020.82008
    [16] F. Y. Egudam, F. Oguntolu, T. Ashezua, Understanding the dynamics of corruption using mathematical modeling approach, International Journal of Innovative Science, Engineering and Technology, 4 (2017), 2348–7968.
    [17] S. M. E. K. Chowdhury, M. Forkan, S. F. Ahmed, P. Agarwal, A. B. M. Showkat Ali, S. M. Muyeen, Modeling the SARS-COV-2 parallel transmission dynamics: Asymptomatic and symptomatic pathways, Comput. Biol. Med., 143 (2022), 105264. https://doi.org/10.1016/j.compbiomed.2022.105264 doi: 10.1016/j.compbiomed.2022.105264
    [18] A. Rehman, R. Singh, P. Agarwal, Modeling, analysis and prediction of new variants of COVID-19 and dengue co-infection in complex network, Chaos Solitons and Fractals, 150 (2021), 111008. https://doi.org/10.1016/j.chaos.2021.111008 doi: 10.1016/j.chaos.2021.111008
    [19] P. Agrawal, J. J. Nieto, M. Ruhansky, D. F. M. Torres, Analysis of infectious disease problems (COVID-19) and their global impact, Springer, 2021. https://doi.org/10.1007/978-981-16-2450-6
    [20] S. M. E. K. Chowdhury, J. T. Chowdhury, S. F. Ahmed, P. Agarwal, I. A. Badruddin, S. Kamangar, Mathematical modeling of COVID-19 disease dynamics:interaction between immune system and SARS-COV-2 within host, AIMS Mathematics, 7 (2022), 2018–2033. https://doi.org/10.3934/math.2022147 doi: 10.3934/math.2022147
    [21] O. M. Ogunmiloro, S. E. Fadugba, E. O. Titiloye, On the existence, uniqueness and computational analysis of a fractional order spatial model for the squirrel population dynamics under the Atangana-Baleanu-Caputo operator, Mathematical Modeling and Computing, 8 (2021), 432–443. https://doi.org/10.23939/mmc2021.03.432 doi: 10.23939/mmc2021.03.432
    [22] O. M. Ogunmiloro, Mathematical analysis and approximate solution of a fractional order Caputo fascioliasis disease model, Chaos, Solitons and Fractals, 146 (2021), 110851. https://doi.org/10.1016/j.chaos.2021.110851 doi: 10.1016/j.chaos.2021.110851
    [23] O. M. Ogunmiloro, A. S. Idowu, T. O. Ogunlade, R. O. Akindutire, On the Mathematical Modeling of Measles Disease Dynamics with Encephalitis and Relapse Under the Atangana-Baleanu-Caputo Fractional Operator and Real Measles Data of Nigeria, Int. J. Appl. Comput. Math., 7 (2021), 1–20. https://doi.org/10.1007/s40819-021-01122-2 doi: 10.1007/s40819-021-01122-2
    [24] P. Agarwal, S. Denis, S. Jain, A. A. Alderremy, S. Ally, A new analysis of partial differential equations arising in biology and population genetics via semi-analytical techniques, Physica A, 542 (2020), 122769. https://doi.org/10.1016/j.physa.2019.122769 doi: 10.1016/j.physa.2019.122769
    [25] J. Zhou, Differential Transformation and Its Applications for Electrical Circuits, Huazhong University Press, Wuhan, China, 1986.
    [26] Z. Alkhudhari, S. Al-Sheikh, S. Al-Tuwairqi, Global dynamics of a mathematical model on smoking, Appl. Math., 1(2014), 847075. https://doi.org/10.1155/2014/847075 doi: 10.1155/2014/847075
    [27] E. Bonyah, A. Freihat, M. A. Khan, A. Khan, S. Islam, Application of the multi-step differential transform method to solve system of nonlinear fractional differential algebraic equations, J. Appl. Environ. Biol. Sci., 6 (2016), 83–95.
    [28] A. Hytham, A. Ahmad, I. Ismail, Multi-step fractional differential transform method for the solution of fractional order stiff systems, Ain Shams Eng. J., 12 (2021), 4223–4231. https://doi.org/10.1016/j.asej.2017.03.017 doi: 10.1016/j.asej.2017.03.017
    [29] Z. Odibat, S. Momani, V. S. Erturk, Generalized differential transform method: Application to differential equations of fractional order, Appl. Math. Comput., 197 (2008), 467–477. https://doi.org/10.1016/j.amc.2007.07.068 doi: 10.1016/j.amc.2007.07.068
    [30] S. Abuasad, A. Yildirim, I. Hashim, S. Ariffin Abdul Karim, J. F. Gomez-Aguilar, Fractional multi-step differential transform method for approximating a fractional stochastic SIS epidemic model with imperfect vaccination, Int. J. Environ. Res. Public Health., 16 (2019), 973. https://doi.org/10.3390/ijerph16060973 doi: 10.3390/ijerph16060973
    [31] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland mathematical studies, Vol. 204, North-Holland-Amsterdam: Elsevier Science Publishers, 2006.
    [32] C. P. Li, Y. T. Ma, Fractional dynamical system and its linearization theorem, Nonlinear Dynam., 71 (2013), 621-633. https://doi.org/10.1007/s11071-012-0601-1 doi: 10.1007/s11071-012-0601-1
    [33] N. C. Okafor, I. Oyakhiromen, Nigeria and Child Marriage: Legal Issues, Complications, Implications, Prospects and Solutions, Journal of Law, Policy and Globalization., 29 (2014). ISSN 2224-3240
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1506) PDF downloads(181) Cited by(3)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog