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Abstract: Teenage pregnancy is a social problem in Nigeria, whereby girls between the ages of 10-14 become pregnant by sexual
intercourse after ovulation or first menstrual period. This article involves the fractional order mathematical model formulation describing
the societal problem of teenage pregnancy in the sense of Caputo. The positivity, existence and uniqueness results of the model were
established, and the two equilibria, which are the teenage pregnancy-free and teenage pregnancy-present equilibrium solutions of the
model are presented. The graphical illustrations showing the behavior of the model variables when the basic reproduction number Rpr

is less and greater than unity are displayed, using the numerical technique of Fractional Multi-Stage Differential Transform Method
(FMSDTM) in comparison with the Runge-Kutta fourth order method (RK4) via the maple computational software. In addition,
simulations involving the effect of rehabilitation is observed not to lessen Rpr below unity, which shows that further mitigation measures
are needed to halt teenage pregnancy problems in Nigeria.
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1. Introduction

The rate of teenage pregnancy with its attendant
consequences in the world calls for concern. The World
Health Organization (WHO), reported that approximately
12 million teenage girls in age range of 15-19 years and
below 777, 000 adolescent girls under 15 years give birth
annually, where about 10 million unwanted pregnancies
occurs annually in developing nations [1]. Complications
due to pregnancy, childbirth and abortion are the leading
cause of teenage girls mortality, while approximately
5.6 million adolescent girls go for abortions each year
which results to lasting health issues, maternal mortality,
morbidity, economic loss, school drop out rate, crime, etc.
Nigeria is one of the nations in the world affected by the
problem of adolescent pregnancies yearly [2].

Okonofua [3] performed a univariate analysis using a
logistic regression model to determine the risk factors
associated with adolescent pregnancy in a rural community

of Gbogan in south western Nigeria. Their results showed
that both pregnant and non-pregnant adolescents had a poor
knowledge of, and attitude towards contraception and only
a small percentage of them have ever used contraceptives.
Also, publication from this is African news [4], revealed that
Family, Life and HIV Education Curriculum (FLHE) should
be taken into consideration in Nigeria to reduce the problem
of teenage pregnancy, while data on birth and death rates in
Nigerian population is seen in [5, 6].

Reports by the Demographic Health Survey (DHS) and
fact sheet regarding teenage pregnacy in Nigeria, revealed
that only three out of ten women have had sexual intercourse
at the age of 20, while 54 % was said to have had sex before
turning 18, while another 24 % indicated that they had not
even been 15 years yet [7]. The DHS also reported that
just 2% of sexually active girls between 15 and 19 years of
age use contraceptives. An important reason is that they do
not have access to contraceptives. Large numbers of girls
become pregnant because of voluntary early sex and peer
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pressure, while others are sexually abused or forced to marry
early. This occurs because they lack proper sex education
and information on contraceptives [33].

Mathematical models are used to depict real life
social problems [8–12]. Mokaya et al., [13] formulated
mathematical model sub-divided into classes of susceptible
humans with no corrupt morals, humans with corrupt morals
and treated humans incorporating the use of contraception
and education using Kenyan data. In their results, R0 >

1 is sufficient to increase corruption of morals unless
controls of contraception and education is increased, while
Danford, Kimathi and Mirau [14] derived a model to analyze
corruption dynamics with intervention using Tanzanian
statistics. They showed in the results that, the combined
effect of mass education and religious teaching proves
effective in the elimination of bad morals among Tanzanian
adolescents. Also, Binuyo and Akinola [15] and Egudam,
Oguntolu and Ashezua [16] modeled the dynamics of social
menace of corruption, thereby suggesting probable ways
to minimize it. Also, Mathematical model techniques are
applied to model the spread of the novel COVID-19 and
dengue disease co-infection in human host population [17–
20].

Fractional derivatives and integrals are important parts
of Mathematics applied to diverse fields in social, physical
and biological systems [21–23], because it explains better
the nature of models compared to the classical case. The
reason for the efficient nature of fractional dynamics of
complex phenomena is due to the liberty in choosing
any arbitrary order of fractional operators, which is not
applicable to classical derivatives and effective memory of
past information due to its nonlocal nature in predicting
the physical behavior of the system. Also, several semi-
analytical methods have been used to obtain approximate
solutions to several physical models based on ordinary
and partial differential equations, Agarwal et al., [24].
The method of interest in this paper is the Differential
Transform Method (DTM), which was first proposed by
Zhou [25], in obtaining approximate solutions to linear and
nonlinear problems in electric circuit analysis. The merit of
this method is that it reduces the volume of computation,
requires no discretization and forms a good approximation
in a small domain. Several extensions and modification

of DTM in solving fractional order models of linear and
nonlinear problems can be seen in [26–30].

The reason for the use of fractional order mathematical
model using integrals and derivatives of non-integer order
is due to the fact that exponential laws are based on
classical approach to analyzed the dynamics of population
densities, but there are more complex dynamics which are
faster or slower than exponential laws, which in such cases
are best described by fractional order functions due to
memory effect. Fractional calculus is used to illustrate real
world problems modeled with non-integer order derivatives.
Several examples of these are seen in Engineering, Biology,
Physics, Economics etc. Fractional derivative operators
based on nonlinear differential equations can be said to be
non-local. The advantage of Caputo fractional operator
in this work is that it allows the traditional initial values
to be included in the problem derivation and takes into
account, the interaction with past information and non-local
properties [31, 32].

The chief motivation behind this work is that, previous
literature only considered the effect of moral corruption
in adolescents using classical derivatives. Due to the
efficient nature of the Caputo fractional operator, this
work considers a new six compartmental fractional order
Caputo model describing sexual interactions and negative
peer influence among sexually active males and female
teenagers sub-divided into female teenagers susceptible to
early pregnancy, pregnant teenagers, pregnant teenagers
who practice abortion, pregnant teenagers who dropped
out of school and rehabilitated teenagers. The main of
advantage of the study is that it helps to describe and
predict the level of effect of teenage pregnancy burden in
Nigeria and to guide policy makers on how best to use
medical and social controls to minimize the menace caused
by teenage pregnancy in the nation. To the best of the
author’s knowledge, this has not been considered. The
paper is placed into sections, Section 2 presents the model
formulation from classical to non-classical order case in the
sense of Caputo. Section 3 establishes the qualitative results
of the fractional order model, while Section 4 involves
obtaining the equilibrium solutions, while the computation
of Rpr and numerical solution of the fractional order model
variables using FMSDTM are discussed in Section 5.
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Finally, Section 6 deals with the numerical simulations and
discussion of results and Section 7 presents the conclusion
of the work.

1.1. Mathematical preambles

Definition 1.1. [32, 22] The Riemann - Lioville integral

of order ι > 0 of function f (α) is defined by the integral

Dι
0,α[ f (α)] = 1

Γ(ι)
∫ α

0 (α−m)ι−1 f (m)dm,
α > 0.

Definition 1.2. [26, 22] Given a well-defined continuous

function f (α) ∈ Cn[0,T ] with ι > 0, the Caputo

fractional derivative of f (α) is defined by C Dι
0,α[ f (α)] =

1
Γ(n−ι)

∫ α

0 (α−m)n−ι−1 f (n)mdm,
where n − 1 < ι ≤ n, n ∈ N, such

that if ι → 1, then C Dι
0,α f (α) → f ′(α). If α ∈ (0, 1), then

one obtains C Dι
0,α f (α) = 1

Γ(1−ι)

∫ α

0
f ′(m)

(ι−m)α dm.

2. The mathematical model

Here, the total human fertile male population Ms is
given by N2(t) and the total population of female teenagers
denoted by N1(t) = Ta(t) + Tp(t) + Ab(t) + Td(t) + Re(t),
where Ta denotes the teenage female susceptible to early
pregnancy, Tp denotes the pregnant teenagers, Ab denotes
pregnant teenagers who practice abortion, while Td denotes
the pregnant teenagers who dropped out of school and Re

denotes the rehabilitated teenage females at time t > 0,
which gives rise to the classical model given by

dTa
dt = ΠA − (β1Ms + β2Td + β3Ab)Ta − µTa,

dMs
dt = Πm − (β4Ab + β5Td)Ms − µMs,

dTp

dt = β1TaMs − (µ + δ + σ)Tp − ρ1Tp,

dAb
dt = (β3Ta + β4Ms)Ab + σTp − (µ + ξ + γ)Ab − ρ2Ab,

dTd
dt = (β2Ta + β5Ms)Td + γAb − (µ + ρ3)Td,

dRe
dt = ρ1Tp + ρ2Ab + ρ3Td − µRe.

(2.1)
In (2.1), ΠA and Πm denotes the recruitment rates of

female teenagers and sexually active males respectively,
while β1 denotes the sexual interactions between susceptible
teenage girls and sexually active males and β2, β3, β4 and β5

represents the negative peer influence incidence rates among
the classes of human compartments. µ, δ and ξ denotes
the natural death, death due to pregnancy complication
and death due to abortion complication rates respectively.

Also, σ and γ denotes the progression rates of pregnant
teenagers to abortion and school drop out compartments,
while ρ1, ρ2 and ρ3 denotes rehabilitation rates respectively.
Transforming (2.1) into a fractional order model under the
Caputo sense yields

C Dι
0,t[Ta] = ΠA − (β1Ms + β2Td + β3Ab)Ta − µTa,

C Dι
0,t[Ms] = Πm − (β4Ab + β5Td)Ms − µMs,

C Dι
0,t[Tp] = β1TaMs − (µ + δ + σ)Tp − ρ1Tp,

C Dι
0,t[Ab] = (β3Ta + β4Ms)Ab + σTp

−(µ + ξ + γ)Ab − ρ2Ab,

C Dι
0,t[Td] = (β2Ta + β5Ms)Td + γAb − (µ + ρ3)Td,

C Dι
0,t[Re] = ρ1Tp + ρ2Ab + ρ3Td − µRe.

(2.2)

Subject to the initial conditions Ta ≥ 0,Ms ≥ 0,Tp ≥

0, Ab ≥ 0,Td ≥ 0, and Re ≥ 0. Hereafter, model system (2.2)
shall be referred to.

Figure 1. Block diagram of the human
interactions leading to teenage pregnancy.

Parameters and variables describing the social menace
of teenage pregnancy in Nigeria are tabulated below as
obtained from existing literature.

Table 1. Parameters Descriptions
Variables/Parameters Descriptions Values/Per Month Sources

Πa Recruitment rate of susceptible teenage girls 3.2192 [23, 25]

Πm Recruitment rate of sexually active males 1.801 [23, 25]

β1 Sexual interaction rate between fertile males and susceptible teenage girls 0.411 [11, 23]

β2 Negative peer influence between susceptible teenage girls and dropout teenage girls 0.320 [20, 22]

β3 Negative peer influence between teenage girls and teenage girls who aborted pregnancies 0.532 [20, 22]

β4 Negative Peer influence between fertile males and teenage girls who aborted pregnancies 0.0877 [20, 22]

β5 Negative Peer influence between susceptible fertile males and drop-out teenage girls 0.201 [20, 22]

µ Natural mortality rate 0.2863 [26]

δ Death induced by pregnancy complications 0.426 [20, 26]

σ Transition rate of pregnant teenage girls to Abortion class 0.370 [20, 22]

ρi(i = 1 − 3) Transition rates to rehabilitation 0 - 1 [20, 22]

ξ Death induced by abortion complications 0.370 [3, 20, 22]

Mathematical Modelling and Control Volume 2, Issue 4, 139–152



142

3. Qualitative analysis of the fractional order model

3.1. Existence and uniqueness results

Here, the existence and the uniqueness of the
model via the Caputo operator is established.
Consider a real valued and continuous function
denoted by a function B(Z) which is a Banach
space on Z[0, b] with norm||Ta,Ms,Tp, Ab,Td,Re|| =

||Ta|| + ||Ms|| + ||Tp|| + ||Ab|| + ||Td || + ||Re||, where
||Ta|| = supt∈Z|Ta(t)|, ||Ms|| = supt∈Z|Ms(t)|, ||Tp|| =

supt∈Z|Tp(t)|, ||Ab|| = supt∈Z|Ab(t)|, ||Td || = supt∈Z|Td(t)| and
||Re|| = supt∈Z|Re(t)|. Using the Caputo integral operator on
the model system (2.2) yields

Ta(t) − Ta(0) =C Dι
0,t {ΠA − (β1Ms + β2Td + β3Ab)Ta − µTa} ,

Ms(t) − Ms(0) =C Dι
0,t {Πm − (β4Ab + β5Td)Ms − µMs} ,

Tp(t) − Tp(0) =C Dι
0,t

{
β1TaMs − (µ + δ + σ)Tp − ρ1Tp

}
,

Ab(t) − Ab(0) =C Dι
0,t

{
(β3Ta + β4Ms)Ab + σTp

−(µ + ξ + γ)Ab − ρ2Ab} ,

Td(t) − Td(0) =C Dι
0,t {(β2Ta + β5Ms)Td + γAb − (µ + ρ3)Td} ,

Re(t) − Re(0) =C Dι
0,t

{
ρ1Tp + ρ2Ab + ρ3Td − µRe

}
.

(3.1)
The model expression in (3.1) refers to:

Ta(t) − Ta(0) = V(υ)
∫ t

0 (t − κ)−υU1(υ, κ,Ta(κ))dκ,

Ms(t) − Ms(0) = V(υ)
∫ t

0 (t − κ)−υU2(υ, κ,Ms(κ))dκ,

Tp(t) − Tp(0) = V(υ)
∫ t

0 (t − κ)−υU3(υ, κ,Tp(κ))dκ,

Ab(t) − Ab(0) = V(υ)
∫ t

0 (t − κ)−υU4(υ, κ, Ab(κ))dκ,

Td(t) − Td(0) = V(υ)
∫ t

0 (t − κ)−υU5(υ, κ,TD(κ))dκ,

Re(t) − Re(0) = V(υ)
∫ t

0 (t − κ)−υU6(υ, κ,Re(κ))dκ.
(3.2)

And the kernels are defined as follows

U1(υ, t,Ta(t)) = ΠA − (β1Ms + β2Td + β3Ab)Ta − µTa,

U2(υ, t,Ms(t)) = Πm − (β4Ab + β5Td)Ms − µMs,

U3(υ, t,Tp(t)) = β1TaMs − (µ + δ + σ)Tp − ρ1Tp,

U4(υ, t, Ab(t)) = (β3Ta + β4Ms)Ab + σTp

−(µ + ξ + γ)Ab − ρ2Ab,

U5(υ, t,Td(t)) = (β2Ta + β5Ms)Td + γAb − (µ + ρ3)Td,

U6(υ, t,Re(t)) = ρ1Tp + ρ2Ab + ρ3Td − µRe.

(3.3)

Now, Ui(i = 1 − 6) must guarantee the Lipschitz condition’s
validity with Ta(t),Tp(t), Ab(t),TD(t), and Re(t) as upper
bounds. Taking into considerations the functions Ta(t) and
T ∗a (t), then we can write

||U1(υ, t,Ta(t)) − U1(υ, t,T ∗a (t))||

=|| − ((β1Ms + β2Td + β3Ab) − µ)(Ta(t) − T ∗a (t))||.
(3.4)

Assuming that λ∗1 = || − ((β1Ms + β2Td + β3Ab) − µ)||, one
obtains

||U1(υ, t,Ta(t))−U1(υ, t,T ∗a (t))|| = λ∗1(Ta(t)−T ∗a (t))||. (3.5)

Following the same process in (3.4) - (3.5), one obtains



||U2(υ, t,Ms(t)) − U2(υ, t,M∗s (t))|| ≤ λ∗2(Ms(t) − T ∗s (t))||,

||U3(υ, t,Tp(t)) − U3(υ, t,T ∗p(t))|| ≤ λ∗3(Tp(t) − T ∗p(t))||,

||U4(υ, t, Ab(t)) − U4(υ, t, A∗b(t))|| ≤ λ∗4(Ab(t) − A∗b(t))||,

||U5(υ, t,Td(t)) − U5(υ, t,T ∗d (t))|| ≤ λ∗5(Td(t) − T ∗d (t))||,

||U6(υ, t,Re(t)) − U6(υ, t,R∗e(t))|| ≤ λ∗6(Re(t) − R∗e(t))||.
(3.6)

Hence, the Lipschitz conditions for the kernels is
established. Furthermore, (3.6) can be expressed recursively
as



Ta(t) = V(υ)
∫ t

0 (t − κ)−υU1(υ, κ,Tan−1(κ))dκ,

Ms(t) = V(υ)
∫ t

0 (t − κ)−υU2(υ, κ,Msn−1(κ))dκ,

Tp(t) = V(υ)
∫ t

0 (t − κ)−υU3(υ, κ,Tpn−1(κ))dκ,

Ab(t) = V(υ)
∫ t

0 (t − κ)−υU4(υ, κ, Abn−1(κ))dκ,

Td(t) = V(υ)
∫ t

0 (t − κ)−υU5(υ, κ,Tdn−1(κ))dκ,

Re(t) = V(υ)
∫ t

0 (t − κ)−υU6(υ, κ,Ren−1(κ))dκ.

(3.7)

Together with the initial conditions Ta ≥ 0,Ms ≥ 0,Tp ≥

0, Ab ≥ 0,Td ≥ 0, and Re ≥ 0, so that we obtain
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

ζTa,n(t) = Ta(t) − Tan−1(t) = V(υ)
∫ t

0 (t − κ)−υ

(U1(υ, κ,Tan−1(κ)) − U1(υ, κ,Tan−2(κ)))dκ,

ζMs,n(t) = Ms(t) − Msn−1(t) = V(υ)
∫ t

0 (t − κ)−υ

(U2(υ, κ,Msn−1(κ)) − U2(υ, κ,Msn−2(κ)))dκ,

ζTp,n(t) = Tp(t) − Tpn−1(t) = V(υ)
∫ t

0 (t − κ)−υ

(U3(υ, κ,Tpn−1(κ)) − U3(υ, κ,Tpn−2(κ)))dκ,

ζAb,n(t) = Ab(t) − Abn−1(t) = V(υ)
∫ t

0 (t − κ)−υ

(U4(υ, κ, Abn−1(κ)) − U4(υ, κ, Abn−2(κ)))dκ,

ζTd,n(t) = Td(t) − Tdn−1(t) = V(υ)
∫ t

0 (t − κ)−υ

(U5(υ, κ,Tdn−1(κ)) − U5(υ, κ,Tdn−1(κ)))dκ,

ζRe,n(t) = Re(t) − Ren−1(t) = V(υ)
∫ t

0 (t − κ)−υ

(U6(υ, κ,Ren−1(κ)) − U6(υ, κ,Ren−1(κ)))dκ.

(3.8)

It is pertinent to consider Ta(t) =
∑n

i=0 ζTa, i (t),
Ms(t) =

∑n
i=0 ζMs, i (t), Tp(t) =

∑n
i=0 ζTp, i (t), Ab(t) =∑n

i=0 ζAb, i (t), Td(t) =
∑n

i=0 ζTd, i (t) and Re(t) =
∑n

i=0 ζRe, i (t).
Moreover, from (3.3) and (3.4) and supposing that
ζTa, n−1(t) = Tan−1(t) − Tan−2(t), ζMs, n−1(t) = Msn−1(t) −
Msn−2(t), ζTp, n−1(t) = Tpn−1(t) − Tpn−2(t), ζTa, n−1(t) =

Abn−1(t) − Abn−2(t), ζTd , n−1(t) = Tdn−1(t) − TDn−2(t) and
ζRe, n−1(t) = Ren−1(t) − Ren−2(t), one obtains



||ζTa,n(t)|| ≤ V(υ)$1
∫ t

0 (t − κ)−υ||ζTa,n−1(κ)||dκ,

||ζMs,n(t)|| ≤ V(υ)$2
∫ t

0 (t − κ)−υ||ζMs,n−1(κ)||dκ,

||ζTp,n(t)|| ≤ V(υ)$3
∫ t

0 (t − κ)−υ||ζTp,n−1(κ)||dκ,

||ζAb,n(t)|| ≤ V(υ)$4
∫ t

0 (t − κ)−υ||ζAb,n−1(κ)||dκ,

||ζTd,n(t)|| ≤ V(υ)$5
∫ t

0 (t − κ)−υ||ζTd ,n−1(κ)||dκ,

||ζRe,n(t)|| ≤ V(υ)$6
∫ t

0 (t − κ)−υ||ζRe,n−1(κ)||dκ.

(3.9)

Theorem 3.1. Assume that V(υ)
υ

bυ$i < 1, i = 1, · · · , 6, then

the governing model possess a unique solution for t ∈ [0, b].

Proof. The boundedness and existence of
(Ta(t),Ms(t),Tp(t), Ab(t),Td(t),Re(t) have been established.
In addition, (3.4) and (3.5) are Lipschitz. Then, combining

(3.9) with a recursive hypothesis yields

||ζTan (t)|| ≤ ||Tao(t)||
(

V(υ)
υ

bυ$1

)n
,

||ζMsn (t)|| ≤ ||Mso(t)||
(

V(υ)
υ

bυ$2

)n
,

||ζTpn (t)|| ≤ ||Tpo(t)||
(

V(υ)
υ

bυ$3

)n
,

||ζAbn (t)|| ≤ ||Abo(t)||
(

V(υ)
υ

bυ$4

)n
,

||ζTdn (t)|| ≤ ||Tdo(t)||
(

V(υ)
υ

bυ$5

)n
,

||ζRen (t)|| ≤ ||Teo(t)||
(

V(υ)
υ

bυ$6

)n
.

(3.10)

Thus, ||ζTp,n || → 0, ||ζMs,n || → 0, ||ζTp,n || → 0, ||ζAb,n || →

0, ||ζTd,n || → 0, ||ζRe,n || → 0 as n → ∞. Moreover, from (3.10)
and imposing the triangular inequality for any k, one obtains

||Tan+k(t) − Tan(t)|| ≤
∑n+k

w=n+1 ri
1 =

rn+1
1 −rn+k+1

1
1−r1

,

||Msn+k(t) − Msn(t)|| ≤
∑n+k

w=n+1 ri
2 =

rn+1
2 −rn+k+1

2
1−r2

,

||Tpn+k(t) − Tpn(t)|| ≤
∑n+k

w=n+1 ri
3 =

rn+1
1 −rn+k+1

3
1−r3

,

||Abn+k(t) − Abn(t)|| ≤
∑n+k

w=n+1 ri
4 =

rn+1
1 −rn+k+1

4
1−r4

,

||Tdn+k(t) − Tdn(t)|| ≤
∑n+k

w=n+1 ri
5 =

rn+1
1 −rn+k+1

5
1−r5

,

||Ren+k(t) − Ren(t)|| ≤
∑n+k

w=n+1 ri
6 =

rn+1
1 −rn+k+1

6
1−r6

.

(3.11)

Hypothetically, it can be deduced that qi =
V(υ)
υ

bυ$i < 1.
Therefore, Tan,Msn,Tpn, Abn,Tdn and Ren are known as the
Cauchy sequences in B(Z) and are uniformly convergent.
Using the proposition on limit in (3.6) as n→ ∞ shows that
the model (2.2) is unique. Hence the existence of a unique
solution is established

3.2. Invariant region

Firstly, the fractional order model (2.2), is analyzed in a
feasible domain, such that the model is considered in two
parts, N1(t) = Ta(t) + Ms(t) + Tp(t) + Ab(t) + Td(t) + Re(t) for
the total female host population and N2(t) = Ms(t) for the
male host population.

Theorem 3.2. The region Γ = Γ1 × Γ2, where Γ1 ={
(Ta(t),Tp(t), Ab(t),Td(t),Re(t)) ∈ <+5 : 0 ≤ N1 ≤

ΠA
µ

}
and

Γ2 =
{
(Ms(t)) ∈ <+ : 0 ≤ N1 ≤

Πm
µ

}
is positively invariant.

Proof. The total female teenage girls is considered such
that in the absence of death due to pregnancy and abortion
complications yields

C Dι
0,tN(t) = ΠA − µN1 − δTp − ξAb ≤ ΠA − µN1 (3.12)
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so that
d
dt

(N1eµtι ) = ΠA (3.13)

and

N1(t) =
ΠA

µ

[
1 − e−µtι

]
. (3.14)

Similarly for the male population, one obtains

N2(t) =
Πm

µ

[
1 − e−µtι

]
. (3.15)

As t → ∞ in (3.14) and (3.15), the total female teenage girls
and fertile male population start and stays in the domains

Γ1 =

{
(Ta(t),Tp(t), Ab(t),Td(t),Re(t)) ∈ <+5 : 0 ≤ N1 ≤

ΠA

µ

}
(3.16)

and

Γ2 =

{
(Ms(t)) ∈ <+ : 0 ≤ N1 ≤

Πm

µ

}
. (3.17)

Therefore, (3.16) and (3.17) shows that
Ta(t),Ms(t),Tp(t), Ab(t),Td(t) and Re(t) are bounded
for all t > 0 and are not capable of leaving Γ which implies
that the fractional order model (2.2) is positively invariant.

Theorem 3.3. The fractional order model solutions of (2,2)

and initial conditions are non-negative for time t > 0.

Proof. Form the first mathematical expression in (2,2),

C Dι
0,t[Ta(t)] = ΠA − ((β1Ms + β2Td + β3Ab) − µ)Ta

≥ −((β1Ms + β2Td + β3Ab) − µ)Ta,
(3.18)

and

C Dι
0,t[Ta(t)] ≥ −((β1Ms + β2Td + β3Ab) − µ)dt, (3.19)

so that∫
C Dι

0,t[Ta(t)] ≥ −
∫

((β1Ms + β2Td + β3Ab) − µ)dt

(3.20)
becomes

C Dι
0,tTa(t) ≥ Ta(0)e((β1 Ms+β2Td+β3Ab)−µ)t > 0. (3.21)

In a similar approach to the remaining sub-equations in
(2.2), one obtains

C Dι
0,tTa(t) ≥ Ta(0)e((β1 Ms+β2Td+β3Ab)−µ)t > 0,

C Dι
0,t Ms(t) ≥ Ms(0)e((β4Ab+β5Td)−µ)t > 0,

C Dι
0,tAb(t) ≥ Ab(0)e((µ+ξ+γ)−ρ2)t > 0,

C Dι
0,tTd(t) ≥ Td(0)e(µ+ρ3)t > 0,

C Dι
0,tRe(t) ≥ Re(0)e(µ)t > 0.

(3.22)

Hence the solutions of model (2.2) are positive.

4. Equilibrium solutions and computation of Rpr

The model system in (2.2) has two equilibria, which
are the teenage pregnancy - free and teenage pregnancy -
present equilibrium solutions. The equilibrium solutions are
obtained by fixing the left hand side of (2.2) to zero, to yield
the teenage pregnancy - free equilibrium solution given by

Eo
k = (Ta,Ms,Tp, Ab,Td,Re) =

(ΠA

µ
,
Πm

µ
, 0, 0, 0, 0

)
. (4.1)

Also, the teenage pregnancy - present equilibrium solution
given by 

E∗k = (T ∗a ,M
∗
s ,T

∗
p, A

∗
b,T

∗
d ,R

∗
e) =

T ∗a =
ΠA−(β1 M∗s +β2+β3A∗b)T ∗d

µ
,

M∗s = Πm
β4A∗b+β5T ∗d +µ

,

T ∗p =
β1 M∗s T ∗d

(µ+δ+σ+ρ1) ,

A∗b =
σT ∗p

(γ+µ+ρ2+ξ)−β3T ∗a−β4 M∗s
,

T ∗d =
γA∗b

β2T ∗a +β5 M∗s−(µ+ρ3) ,

R∗e =
ρ1T ∗p+ρ2A∗b+ρ3T ∗d

µ
.

(4.2)

The basic reproduction number Rpr in this work denotes
the average rate at which new cases of teenage pregnancies
occur due to the introduction of a fertile male into a naive
susceptible teenage girls population during their course of
sexual interactions. The next generation matrix method,
used by [10], is employed to obtain the Rpr of model (2.2).
The Rpr of model (2.2) is given by

Rpr =
β1ΠA(ΠAβ2 + Πmβ5)(ΠAβ3 + Πmβ4)

µ3(µ + ρ3)(µ + δ + σ + ρ1)(µ + ξ + γ + ρ2)
. (4.3)

The threshold in (4.3) means that, when Rpr < 1, the
menace of teenage pregnancy goes to extinction and when
Rpr > 1, teenage pregnancy becomes prevalent in the host
community.
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5. Numerical technique of model solution

In order to obtain the approximate solution of the
fractional order model (2.2) the differential transform
method and its modification, called the Fractional Multi-
Stage Differential Transform Method (FMSDTM) is
considered [27–31]. Consider a system of fractional
ordinary differential equations given by



C D0,t
φ
1 x1(t) = f1(t, x1, x2, · · · , xn),

C D0,t
φ
2 x1(t) = f1(t, x1, x2, · · · , xn),

...

C D0,t
φ
n x1(t) = f1(t, x1, x2, · · · , xn).

(5.1)

Together with initial conditions xi(to) = ki, i = 1, 2, · · · , n,
where C Dφi

0,t is a Caputo derivative of order φi, where 0 <

φi ≤ 1, for i = 1, 2, · · · , n. Let [to,T ] be the interval where
the solution of (5.1) is to be determined. The kth order
approximate solution of the (5.1) is given by the finite series
of the form

xi(t) =

K∑
i=0

Xi(k)(t − to)kφi , t ∈ [to,T ], (5.2)

where Xi(k) satisfies the recurrence relation;

Γ((k + 1)φi + 1)
Γ(kφi + 1)

Xi(k + 1) = Fi(k, X1, X2, · · · , Xn). (5.3)

In (5.3), Xi(0) = ci and Fi(k, X1, X2, · · · , Xn) are the
initial conditions and differential transforms of functions
fi(t, x1, x2, · · · , xn) for i = 1, 2, · · · , n. Furthermore, assume
that the interval [to,T ] is partitioned into P sub-intervals
[tp−1, tp], p = 1, 2, · · · , P of equal step length h = (T − to)/P,
by the use of the nodes tp = to + ph.

In order to perform the numerical implementation,
firstly, the differential transform method is applied to (2.2)

to give

Ta(k + 1) =
Γ(φ1k+1)

Γ(φ1(k+1)+1)

(
ΠA − (β1Ms(k − l) + β2Td(k − l)

+β3Ab(k − l))Ta(k) − µTa(k)
)
,

Ms(k + 1) =
Γ(φ2k+1)

Γ(φ2(k+1)+1)

(
Πm − (β4Ab(k − l)

+β5Td(k − l))Ms(k) − µMs(k)
)
,

Tp(k + 1) =
Γ(φ3k+1)

Γ(φ3(k+1)+1)

(
β1Ta(k)Ms(k − l)

−(µ + δ + σ)Tp(k) − ρ1Tp(k)
)
,

Ab(k + 1) =
Γ(φ4k+1)

Γ(φ4(k+1)+1)

(
(β3Ta(k − l) + β4Ms(k − l))Ab(k)

+σTp(k) − (µ + ξ + γ)Ab(k) − ρ2Ab(k)
)
,

Td(k + 1) =
Γ(φ5k+1)

Γ(φ5(k+1)+1)

(
(β2Ta(k − l) + β5Ms(k − l))Td(k)

+γAb(k) − (µ + ρ3)Td(k)
)
,

Re(k + 1) =
Γ(φ6k+1)

Γ(φ6(k+1)+1)

(
ρ1Tp(k) + ρ2Ab(k) + ρ3Td(k)

−µRe(k)
)
.

(5.4)
where Ta(k),Ms(k),Tp(k), Ab(k),Td(k) and Re(k) with initial
conditions Ta ≥ 0,Ms ≥ 0,Tp ≥ 0, Ab ≥ 0,Td ≥

0, and Re ≥ 0 are the differential transforms of
Ta(t),Ms(t),Tp(t), Ab(t),Td(t) and Re(t) respectively. In
view of the differential inverse transform, the differential
transform series solution for (5.4) is obtained as

ta(t) =
∑N

n=0 Ta(n)tφ1n,

ms(t) =
∑N

n=0 Ms(n)tφ2n,

tp(t) =
∑N

n=0 Tp(n)tφ3n,

ab(t) =
∑N

n=0 Ab(n)tφ4n,

td(t) =
∑N

n=0 Td(n)tφ5n,

re(t) =
∑N

n=0 Re(n)tφ6n.

(5.5)

Using the Fractional Multi-Step Differential Transform
Method (FMSDTM), (5.4)-(5.5) becomes

ta(t) =



∑K
n=0 Ta1(n)tφ1n, t ∈ [0, t1],∑K
n=0 Ta2(n)(t − t1)φ1n, t ∈ [t1, t2],

...∑K
n=0 TaP(n)(t − tP−1)φ1n, t ∈ [tP−1, tP].

(5.6)

ms(t) =



∑K
n=0 Ms1(n)tφ2n, t ∈ [0, t1],∑K
n=0 Ms2(n)(t − t1)φ2n, t ∈ [t1, t2],

...∑K
n=0 MsP(n)(t − tP−1)φ2n, t ∈ [tP−1, tP].

(5.7)
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tp(t) =



∑K
n=0 Tp1(n)tφ3n, t ∈ [0, t1],∑K
n=0 Tp2(n)(t − t1)φ3n, t ∈ [t1, t2],

...∑K
n=0 TpP(n)(t − tP−1)φ3n, t ∈ [tP−1, tP].

(5.8)

ab(t) =



∑K
n=0 Ab1(n)tφ4n, t ∈ [0, t1],∑K
n=0 Ab2(n)(t − t1)φ4n, t ∈ [t1, t2],

...∑K
n=0 AbP(n)(t − tP−1)φ4n, t ∈ [tP−1, tP].

(5.9)

td(t) =



∑K
n=0 Td1(n)tφ5n, t ∈ [0, t1],∑K
n=0 Td2(n)(t − t1)φ5n, t ∈ [t1, t2],

...∑K
n=0 TdP(n)(t − tP−1)φ5n, t ∈ [tP−1, tP].

(5.10)

and

re(t) =



∑K
n=0 Re1(n)tφ6n, t ∈ [0, t1],∑K
n=0 Re2(n)(t − t1)φ6n, t ∈ [t1, t2],

...∑K
n=0 ReP(n)(t − tP−1)φ6n, t ∈ [tP−1, tP].

(5.11)

where Tai (n),Msi (n),Tpi (n), Abi (n),Tdi (n) and Rei (n) satisfy
the following recurrence relations given by

Tai (k + 1) =
Γ(φ1k+1)

Γ(φ1(k+1)+1)

(
ΠA − (β1Msi (k − l) + β2Tdi (k − l)

+β3Abi (k − l))Tai (k) − µTai (k)
)
,

Msi (k + 1) =
Γ(φ2k+1)

Γ(φ2(k+1)+1)

(
Πm − (β4Abi (k − l)

+β5Tdi (k − l))Msi (k) − µMsi (k)
)
,

Tpi (k + 1) =
Γ(φ3k+1)

Γ(φ3(k+1)+1)

(
β1Tai (k)Msi (k − l)

−(µ + δ + σ)Tpi (k) − ρ1Tpi (k)
)
,

Abi (k + 1) =
Γ(φ4k+1)

Γ(φ4(k+1)+1)

(
(β3Tai (k − l) + β4Msi (k − l))Abi (k)

+σTpi (k) − (µ + ξ + γ)Abi (k) − ρ2Abi (k)
)
,

Tdi (k + 1) =
Γ(φ5k+1)

Γ(φ5(k+1)+1)

(
(β2Tai (k − l) + β5Msi (k − l))Tdi (k)

+γAbi (k) − (µ + ρ3)Tdi (k)
)
,

Rei (k + 1) =
Γ(φ6k+1)

Γ(φ6(k+1)+1)

(
ρ1Tpi (k) + ρ2Abi (k) + ρ3Tdi (k)

−µRei (k)
)
.

(5.12)

Such that Tai(0) = tai(ti−1) = tai−1(ti−1),Msi(0) = msi(ti−1) =

msi−1(ti−1),Tpi(0) = tpi(ti−1) = tpi−1(ti−1), Abi(0) = abi(ti−1) =

abi−1(ti−1),Tdi(0) = tdi(ti−1) = tdi−1(ti−1) and Rei(0) =

rei(ti−1) = rei−1(ti−1).

6. Numerical simulations

The numerical simulations of the fractional order model
(2.2) are carried out using the FMSDTM scheme for the
model in comparison with the RK4 method via maple
computational software using the parameter values in Table
1. The initial values of the model variables are assumed
to be Ta(0) = 0.105000,Ms(0) = 0.72000,Tp(0) =

0.61000, Ab(0) = 0.34300,Td(0) = 0.23000 and Rc(0) =

0.14500. Figures 2(a)–2(f) shows the behavior of the
fractional order model (2.2) variables, which converges to
the teenage pregnancy - free equilibrium when Rpr < 1
and teenage pregnancy - present equilibrium when Rpr >

1. Figure 2(a) shows that teenage girls susceptible to
early pregnancy increases and move out of the class to
be influenced into having sex with males or negatively
influenced by already pregnant females who dropped out of
school and practice abortion as time increases. Also, Figure
2(b) shows the increasing rate of sexually active males who
look out for teenagers for sexual interactions, while the
decline implies that more sexually active males negatively
influence school drop out teenage girls or teenage girls into
practicing abortion overtime. Figure 2(c) shows the rate at
which pregnant teenagers increase within 2 months before
gradually decreasing. This occurs due to the increase in
the rate of teenage females who practice abortion as time
increases as shown in Figure 2(d). The effect of early
sexual debut, pregnancy and abortion also results to gradual
increase in school drop-out rate among female teenagers as
time increases in Figure 2(e). Rehabilitation of pregnant
teenagers, teenagers who aborted and teenage female school
drop-out is shown to be effective in Figure 2(f). As time
increases, the curve peaks in the first month but flattens
within the third to the twelfth month which shows that
rehabilitation is effective in curtailing the menace of teenage
pregnancy.

It is shown in Figure 3(a), that as sexually active males
involves in sexual interactions with susceptible female
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Behavior of the model variables using FMSDTM and RK4 when Rpr < 1 and Rpr > 1.

teenagers, more teenagers become more exposed to early
pregnancy, and abortion as time increases, while the effect
of negative peer influence or pressure on susceptible female
teenagers, pregnant teenagers and female teenagers who
engage in abortion practice is shown in Figures 3(b)–
3(e). As these rates (βi, i = 2, · · · , 5) increases gradually,

more female teenagers engage in these social ills as time
increases unless controls are applied to curtail the menace
of teenage pregnancy and its attendant consequences. It is
observed in Figures 4(a)–4(c) that more pregnant teenage
females involved in abortion and are school drop-outs
exhibit positive behavior as they are rehabilitated at different
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(a) (b)

(c) (d)

(e)

Figure 3. Simulations of sexual contact rate β1 and negative peer influence rates β2, β3, β4 and β5 at their fixed
values and different fractional orders ι = 0.2, 0.4, 0.8 and integer order value 1.

fractional order values and integer order. This shows that
rehabilitation must be scaled up to eradicate this menace in
Nigeria.

6.1. The effect of rehabilitation rates (ρi, i = 1, 2, 3) on Rpr

Figures 5(a)–5(c) shows the effect of rehabilitation rates
on Rpr threshold. It is observed that rehabilitation of
pregnant teenagers is still low since Rpr > 1, while the
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rehabilitation of teenage girls who practice abortion and
dropped out increases and lessens Rpr, but not below unity,
which shows that rehabilitation level is low in order to
eradicate teenage pregnancy.

6.2. Effects of βi, i = 1, · · · , 6 and ξ on the estimation of Rpr

The effect of varying the sexual contact rate β1 between
sexually actives males and teenage girls is observed in
Figure 6(a) to increase Rpr. Also, the effect of negative
peer influence among classes of human compartments as
they interact in Figures 6(b)-6(e) is shown to increase Rpr,
while death due to abortion complications also have a fatal
effect on Rpr. Therefore, Figures 5 and 6 shows that in order
to eradicate teenage pregnancy menace in Nigeria, the level
of rehabilitation must be increased and additional controls
added to curtail the social problem.

7. Conclusions

A fractional model illustrating the dynamics of social
menace of early pregnancy in female teenagers in the sense
of Caputo is formulated and analyzed. The existence
and uniqueness criteria of the fractional order model is
established, while the model is found to be positive and
bounded. The basic reproduction number Rpr of the model
is computed using the next generation matrix technique.
The numerical FMSDTM in comparison with fractional
RK4 method via maple computational software is used to
obtain the approximate solution of the fractional order model
variables, which showed the convergence of the methods
when Rpr is less and greater than unity. Furthermore,
simulations of the model parameters and the effect of
rehabilitation, sexual contact and negative peer influence
rates on Rpr is established. The behavior of Rpr as
to the effect of these parameters show that the level of
rehabilitation must be increased while further controls of
condom and contraceptive usage and media education must
be imposed on the model system to minimize and eradicate
the menace teenage pregnancy in Nigeria.

Conflict of interest

All authors declare no conflicts of interest in this paper.

(a)

(b)

(c)

Figure 4. Effects of rehabilitation parameters
ρ1, ρ2 and ρ3 on Rpr.

References

1. Adolescent pregnancy, World Health Organization.
Available from: https://www.who.int/news-room/
fact-sheets/detail/adolescent-pregnancy.

Mathematical Modelling and Control Volume 2, Issue 4, 139–152

https://www.who.int/news-room/fact-sheets/detail/adolescent-pregnancy
https://www.who.int/news-room/fact-sheets/detail/adolescent-pregnancy


150

(a) (b)

(c) (d)

(e) (f)

Figure 5. The effects of sexual contact rate β1 and negative peer influence rates βi, i = 2 − 5 and death due to
abortion complications ξ on Rpr.

2. O. T. Alabi, I. O. Oni, Teenage Pregnancy in Nigeria:
Causes, Effect and Control, International Journal of

Academic Research in Business and Social Sciences, 7
(2017), 17–32.

3. F. E. Okonofua, Factors associated with adolescent

pregnancy in rural Nigeria, J. Youth Adolescence, 24
(1995), 419–438. https://doi.org/10.1007/BF01537189

4. Teenage pregnancy and challenges to the realisation
of sexual and reproductive rights in Nigeria, 2015.
Available from: https://thisisafrica.me/politi

Mathematical Modelling and Control Volume 2, Issue 4, 139–152

http://dx.doi.org/https://doi.org/10.1007/BF01537189
https://thisisafrica.me/politics-and-society/teenage-pregnancy-challenges-realisation-sexual-reproductive-rights-nigeria/


151

cs-and-society/teenage-pregnancy-challenge

s-realisation-sexual-reproductive-rights-n

igeria/

5. Nigeria Birth Rate 1950-2022, MacroTrends. Available
from: https://www.macrotrends.net/countries/
NGA/nigeria/birth-rate

6. Nigeria Death Rate 1950-2022, MacroTrends. Available
from: https://www.macrotrends.net/countries/
NGA/death-rate

7. Factsheet: Understanding Nigeria’s teenage pregnancy
burden, 2021. Available from: https://dhsprogram
.com/Who-We-Are/News-Room/Teenage-Pregnanc

y-in-Nigeria-Facts-and-Truth.cfm

8. J. O. Akanni, F. O. Akinpelu, S. Olaniyi, A. T.
Oladipo, A. W. Ogunsola, Modeling financial
crime population dynamics: optimal control and
cost-effectiveness analysis, International Journal

of Dynamics and Control, 8 (2020), 531–544.
https://doi.org/10.1007/s40435-019-00572-3

9. H. T. Alemneh, Mathematical modeling,
analysis, and optimal control of corruption
dynamics, J. Appl. Math., 13 (2020), 5109841.
https://doi.org/10.1155/2020/5109841

10. C. Castillo-Chavez, Z. Feng, W. Huang, On
the computation of R0 and its role on global
stability, Mathematical Approaches for Emerging

and Reemerging Infectious Diseases: An

Introduction, Springer, 1 (2002), 229–250.
https://doi.org/10.1007/978-1-4757-3667-0 13

11. J. A. Feijo, The mathematics of sexual attraction, J. Biol.,
9 (2010), 1–5. https://doi.org/10.1186/jbiol233

12. H. Singh, D. Baleanu, J. Singh, H. Dutta, Computational
study of fractional order smoking model, Chaos,

Solitons and Fractals, 142 (2021), 110–440.
https://doi.org/10.1016/j.chaos.2020.110440

13. N. O. Mokaya, H. T. Alemmeh, C. G. Ngari, G.
Gakii Muthuri, Mathematical Modeling and Analysis of
Corruption of Morals amongst Adolescents with Control
Measures in Kenya, Discrete Dyn. Nat. Soc., 1 (2021).
https://doi.org/10.1155/2021/6662185

14. O. Danford, M. kimathi, S. Mirau, Mathematical
modeling and analysis of corruption dynamics
with control measures in Tanzania, Journal of

Mathematics and Informatics, 19 (2020), 57–79.
http://dx.doi.org/10.22457/jmi.v19a07179

15. A. O. Binuyo, V. O. Akinsola, Stability analysis of
the corruption free equilibrium of the mathematical
model of corruption in Nigeria, Mathematical

Journal of Interdisciplinary Sciences, 8 (2020),
61–68. https://doi.org/10.15415/mjis.2020.82008

16. F. Y. Egudam, F. Oguntolu, T. Ashezua, Understanding
the dynamics of corruption using mathematical modeling
approach, International Journal of Innovative Science,

Engineering and Technology, 4 (2017), 2348–7968.

17. S. M. E. K. Chowdhury, M. Forkan, S. F. Ahmed,
P. Agarwal, A. B. M. Showkat Ali, S. M. Muyeen,
Modeling the SARS-COV-2 parallel transmission
dynamics: Asymptomatic and symptomatic
pathways, Comput. Biol. Med., 143 (2022), 105264.
https://doi.org/10.1016/j.compbiomed.2022.105264

18. A. Rehman, R. Singh, P. Agarwal, Modeling,
analysis and prediction of new variants of COVID-
19 and dengue co-infection in complex network,
Chaos Solitons and Fractals, 150 (2021), 111008.
https://doi.org/10.1016/j.chaos.2021.111008

19. P. Agrawal, J. J. Nieto, M. Ruhansky, D. F. M.
Torres, Analysis of infectious disease problems (COVID-

19) and their global impact, Springer, 2021.
https://doi.org/10.1007/978-981-16-2450-6

20. S. M. E. K. Chowdhury, J. T. Chowdhury, S. F. Ahmed,
P. Agarwal, I. A. Badruddin, S. Kamangar, Mathematical
modeling of COVID-19 disease dynamics:interaction
between immune system and SARS-COV-2 within
host, AIMS Mathematics, 7 (2022), 2018–2033.
https://doi.org/10.3934/math.2022147

21. O. M. Ogunmiloro, S. E. Fadugba, E. O. Titiloye, On the
existence, uniqueness and computational analysis of a
fractional order spatial model for the squirrel population
dynamics under the Atangana-Baleanu-Caputo operator,
Mathematical Modeling and Computing, 8 (2021), 432–
443. https://doi.org/10.23939/mmc2021.03.432

Mathematical Modelling and Control Volume 2, Issue 4, 139–152

https://thisisafrica.me/politics-and-society/teenage-pregnancy-challenges-realisation-sexual-reproductive-rights-nigeria/
https://thisisafrica.me/politics-and-society/teenage-pregnancy-challenges-realisation-sexual-reproductive-rights-nigeria/
https://thisisafrica.me/politics-and-society/teenage-pregnancy-challenges-realisation-sexual-reproductive-rights-nigeria/
https://thisisafrica.me/politics-and-society/teenage-pregnancy-challenges-realisation-sexual-reproductive-rights-nigeria/
https://thisisafrica.me/politics-and-society/teenage-pregnancy-challenges-realisation-sexual-reproductive-rights-nigeria/
https://www.macrotrends.net/countries/NGA/nigeria/birth-rate
https://www.macrotrends.net/countries/NGA/nigeria/birth-rate
https://www.macrotrends.net/countries/NGA/death-rate
https://www.macrotrends.net/countries/NGA/death-rate
https://dhsprogram.com/Who-We-Are/News-Room/Teenage-Pregnancy-in-Nigeria-Facts-and-Truth.cfm
https://dhsprogram.com/Who-We-Are/News-Room/Teenage-Pregnancy-in-Nigeria-Facts-and-Truth.cfm
https://dhsprogram.com/Who-We-Are/News-Room/Teenage-Pregnancy-in-Nigeria-Facts-and-Truth.cfm
http://dx.doi.org/https://doi.org/10.1007/s40435-019-00572-3
http://dx.doi.org/https://doi.org/10.1155/2020/5109841
http://dx.doi.org/https://doi.org/10.1007/978-1-4757-3667-0_13
http://dx.doi.org/https://doi.org/10.1186/jbiol233
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.110440
http://dx.doi.org/https://doi.org/10.1155/2021/6662185
http://dx.doi.org/http://dx.doi.org/10.22457/jmi.v19a07179
http://dx.doi.org/https://doi.org/10.15415/mjis.2020.82008
http://dx.doi.org/https://doi.org/10.1016/j.compbiomed.2022.105264
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.111008
http://dx.doi.org/https://doi.org/10.1007/978-981-16-2450-6
http://dx.doi.org/https://doi.org/10.3934/math.2022147
http://dx.doi.org/https://doi.org/10.23939/mmc2021.03.432


152

22. O. M. Ogunmiloro, Mathematical analysis
and approximate solution of a fractional order
Caputo fascioliasis disease model, Chaos,

Solitons and Fractals, 146 (2021), 110851.
https://doi.org/10.1016/j.chaos.2021.110851

23. O. M. Ogunmiloro, A. S. Idowu, T. O. Ogunlade, R. O.
Akindutire, On the Mathematical Modeling of Measles
Disease Dynamics with Encephalitis and Relapse Under
the Atangana-Baleanu-Caputo Fractional Operator and
Real Measles Data of Nigeria, Int. J. Appl. Comput.

Math., 7 (2021), 1–20. https://doi.org/10.1007/s40819-
021-01122-2

24. P. Agarwal, S. Denis, S. Jain, A. A. Alderremy, S.
Ally, A new analysis of partial differential equations
arising in biology and population genetics via semi-
analytical techniques, Physica A, 542 (2020), 122769.
https://doi.org/10.1016/j.physa.2019.122769

25. J. Zhou, Differential Transformation and Its Applications

for Electrical Circuits, Huazhong University Press,
Wuhan, China, 1986.

26. Z. Alkhudhari, S. Al-Sheikh, S. Al-Tuwairqi,
Global dynamics of a mathematical model
on smoking, Appl. Math., 1(2014), 847075.
https://doi.org/10.1155/2014/847075

27. E. Bonyah, A. Freihat, M. A. Khan, A. Khan,
S. Islam, Application of the multi-step differential
transform method to solve system of nonlinear fractional
differential algebraic equations, J. Appl. Environ. Biol.

Sci., 6 (2016), 83–95.

28. A. Hytham, A. Ahmad, I. Ismail, Multi-step
fractional differential transform method for
the solution of fractional order stiff systems,
Ain Shams Eng. J., 12 (2021), 4223–4231.
https://doi.org/10.1016/j.asej.2017.03.017

29. Z. Odibat, S. Momani, V. S. Erturk, Generalized
differential transform method: Application
to differential equations of fractional order,
Appl. Math. Comput., 197 (2008), 467–477.
https://doi.org/10.1016/j.amc.2007.07.068

30. S. Abuasad, A. Yildirim, I. Hashim, S. Ariffin
Abdul Karim, J. F. Gomez-Aguilar, Fractional multi-

step differential transform method for approximating a
fractional stochastic SIS epidemic model with imperfect
vaccination, Int. J. Environ. Res. Public Health., 16
(2019), 973. https://doi.org/10.3390/ijerph16060973

31. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory

and Applications of Fractional Differential Equations,
North-Holland mathematical studies, Vol. 204, North-
Holland-Amsterdam: Elsevier Science Publishers, 2006.

32. C. P. Li, Y. T. Ma, Fractional dynamical system and
its linearization theorem, Nonlinear Dynam., 71 (2013),
621-633. https://doi.org/10.1007/s11071-012-0601-1

33. N. C. Okafor, I. Oyakhiromen, Nigeria and Child
Marriage:Legal Issues, Complications, Implications,
Prospects and Solutions, Journal of Law, Policy and

Globalization., 29 (2014). ISSN 2224-3240

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Modelling and Control Volume 2, Issue 4, 139–152

http://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.110851
http://dx.doi.org/https://doi.org/10.1007/s40819-021-01122-2
http://dx.doi.org/https://doi.org/10.1007/s40819-021-01122-2
http://dx.doi.org/https://doi.org/10.1016/j.physa.2019.122769
http://dx.doi.org/https://doi.org/10.1155/2014/847075
http://dx.doi.org/https://doi.org/10.1016/j.asej.2017.03.017
http://dx.doi.org/https://doi.org/10.1016/j.amc.2007.07.068
http://dx.doi.org/https://doi.org/10.3390/ijerph16060973
http://dx.doi.org/https://doi.org/10.1007/s11071-012-0601-1
http://creativecommons.org/licenses/by/4.0

	Introduction
	Mathematical preambles

	The mathematical model
	Qualitative analysis of the fractional order model
	Existence and uniqueness results
	Invariant region

	Equilibrium solutions and computation of Rpr
	Numerical technique of model solution
	Numerical simulations
	The effect of rehabilitation rates (i, i=1,2,3) on Rpr
	Effects of i, i=1,@let@token ,6 and  on the estimation of Rpr

	Conclusions

